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When a decision must be made, a tool called multi-criteria decision-making (MCDM) is used to assess and select alternatives
among numerous criteria. For a wide variety of complex problems, MCDM methods have demonstrated usefulness in finding
the optimal solutions. Despite the abundance of MCDM methods available today, there has been slow progress in developing
new methodologies in MCDM in the past decade. In this context, this paper presents new MCDM tools which ranks
alternatives based on median similarity (RAMS) between optimal alternatives and other alternatives. RAMS is an extension to
the most recently developed technique that used perimeter similarity (RAPS). This paper also introduces a further tool that
combines the RAMS method with the multiple criteria ranking by alternative trace (MCRAT) methodology using a majority
index and the concept of the VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method. This tool is ranking
the alternatives based on the trace to median index (RATMI). An illustration of the use of RAMS and RATMI is given
through a case study of ranking different materials for the selection of break booster valve body in a vehicle. The validity of the
new two techniques was tested against seven well-known MCDM techniques (ARAS, SAW, TOPSIS, COPRAS, VIKOR,
WASPAS, and MOORA) using fifteen real problems data taken from the literature. The RATMI technique was more
promising than RAPS and RAMS for 87% and 93% of the fifteen difficulties, respectively, according to the results of the

correlation coefficient tests between the developed techniques and the selected seven techniques.

1. Introduction

Different aspects denote the progression of the multi-criteria
decision-making (MCDM) technique from old to new
methods. MCDM is a tool that can be used to support
decision-making in different spheres of business and science
[1]. The use of MCDM facilitates the selection process and
ensures that the decision will be based on reliable solutions
as it generates progressive solutions to a variety of decisions.
In order for the approach to be applied, the inclusion of
various alternatives and selection from predefined criteria
is essential [2]. The approach is used in the presence of con-
flicting criteria that require either maximizing or minimizing
values. Hence, the approach is helpful in finding the optimal
solution and the most appropriate settlement among the
various alternatives available [3].

There is a large amount of literature in relation to
the scientific background of MCDM methods, including
descriptions of their distinctions, classifications, and applica-
tions, and there is even more written every day, especially in
relation to their use within a professional setting. The devel-
opment of MCDM has been examined from a historical per-
spective, and its techniques have attracted high adaption
magnitude. MCDM was firstly introduced and become evi-
dent in the early eighteenth century, and the decision-
making systems have been advancing to take the modern
shape in the early 1970s by Howard Raiffa [4]. Despite the
fact that the MCDM concept has roots in the eighteenth cen-
tury, and possibly even before, however, the most widely
MCDM methods that are now used are ELimination et Choix
Traduisant la REalit¢ (ELECTRE), the analytic hierarchy
process (AHP), the technique for order of preference by


https://orcid.org/0000-0001-8806-2115
https://orcid.org/0000-0002-2586-7028
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6725318

similarity to ideal solution (TOPSIS), and preference ranking
organization method for enrichment evaluations (PRO-
METHEE) [5]. Numerous observed case studies indicate that
selecting the appropriate MCDM method for a given prob-
lem is a recurring issue because of the large number of
MCDM methods available. Methods can be selected accord-
ing to how they fit a specific situation; there are no good or
bad methods [5, 6].

A significant outlook of validating the development of
MCDM techniques is the description and analysis of their
peculiarities and potential applications. The main character-
istic of MCDM is dealing with uncertainty when it comes to
providing the most effective and optimal solution founded
on the rational decision [7]. From an exploration study that
determines the objectives characteristics relative to MCDM
approaches, its findings reveal the methods to assist in
exhibiting patterns or tendencies of the dual verification
mechanism [8]. This assertion manifests that the potential
of MCDM techniques is evident in terms of demonstrating
capabilities in evaluating as well as comparing different
results. The most notable categories encompass selection
between alternatives, alternative rating, alternatives classifi-
cation, and identifying alternatives [9].

In the past decade, there has been slow progress in devel-
oping new methodologies in MCDM [5]. One aspect to help
explain the slow progress is the degree of stakeholder involve-
ment. The development of new MCDM methods by scholars
does not seem to be the most prevalent research direction at
present, and a large number of existing MCDM methods
available may be a factor contributing to the lack of interest
among researchers. Within this scope, one of the new methods
that have been developed in the last decade and have been the
most popular and used are weighted aggregated sum product
assessment (WASPAS) and (total area based on orthogonal
vectors) TOV, as well as two very recent methods, ranking
the alternatives by perimeter similarity (RAPS) and multiple
criteria ranking by alternative trace (MCRAT).

Competitiveness in MCRAT and RAPS as recent addi-
tional MCDM processes ascertain reasons for their adoption
as well as their advantages. A paper confirms that these
novel approaches have demonstrated their effectiveness in
decision-making owing to their optimal design [5]. The
MCRAT and RAPS are an extension of solving a problem
using categories of ranking and problem choice. The devia-
tion in their resolving of an issue using a decision-making
model could be obvious in the criteria considered to reach
an optimal solution.

A major advantage of the two recently added methods
RAPS and MCRAT is their simplicity, logic, justification,
generality, and validity. However, as RAPS and MCRAT
are considered modern methods, both methods were only
tested and validated in a mining engineering setting only.
For this reason, this paper aims at developing and expanding
the two methods, RAPS and MCRAT, to include their uses
in all settings rather than the mining setting only. So, this
paper answers the question “How can the two RAPS and
MCRAT approaches be modified for use in a variety of situ-
ations, such as education, banking sector, construction
industry, housing, business, ...etc.?”
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The rest of this paper is organized as follows: Section 2
provides additional background relating to the history of
MCDM. Section 3 describes the new proposed methodolo-
gies. An illustrative numerical example of the proposed
methods appears in Section 4. In tabular and graphical
forms, Section 5 compares the proposed techniques to other
seven alternative techniques as well as the original one RAPS
using 15 different problems. The conclusion comprises in
Section 6.

2. Literature Review

A literature analysis assists in validating different MCDM
methods and concepts behind their innovation. The devel-
opment history of some of the most commonly MCDM
techniques utilized is listed based on their development his-
tory from oldest to newest. Firstly, ELECTRE, the technique
was first introduced in 1965 by a research team affiliated to
the European consultancy firm [10]. The intention of this
initiation was clear as a decision-making approach to formu-
lating solutions characterized by multi-criteria problems. Its
expansion is evident displayed in the development from
ELECTRE I to ELECTRE II. According to Akram et al.
[11], ELECTRE I is a model introduced with the consider-
ation of incorporating a set of different concepts to enhance
the sets of Pythagorean fuzzy concordance and discordance
from the perspective of outranking when exposed to various
alternatives. The application of ELECTRE I has extended
from staff selection and intuitionistic fuzzy environment
[11]. The justification for this application is flexibility while
making a decision involving comparative analysis. For the
other extensions, the literature provides the ELECTRE II,
ELECTRE III, ELECTRE IV, ELECTRE IS, and ELECTRE
TRI as the other models [12]. These details establish this
approach to decision-making framework to respond to situ-
ations, especially situations that are relative to a complex
algorithm. The limitation cited is insufficient performance
on a single criterion, which may disregard some of the alter-
natives [5]. Based on this limitation, it was certain that other
models with multi-criteria consideration were to be initiated.

In MCDM, AHP is an old but popular technique that
was developed in the 1980s by L. Saaty [13]. This framework
quantifies the criteria and alternative possibilities for a nec-
essary decision and links them to its overall purpose. AHP
generates weights from pairwise comparison metrics based
on mathematically defined structures [14]. The process of
evaluating alternatives involves evaluating relative values,
judging relative importance, grouping judgments, and ana-
lyzing inconsistencies between judgments [15]. Following
the calculation of the criteria’s weights, alternatives’ priori-
ties, and sensitivity analysis results, decision-makers select
optimal alternatives [16].

TOPSIS is represented from the viewpoint of its proce-
dures and validation. Hwang and Yoon are credited to the
proposal of this method and its use in 1981, although Yoon
is accredited for its extension in 1987 [17]. The concept that
is mostly associated with this approach is provision of most
viable solution amongst a set of alternatives. Specificity is
noted in the form of delivering the positive ideal solution,
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which is a hypothetical alternative with maximum benefit
coupled with maximization of cost criteria [17]. This
description implies that this method has strengths and
drawbacks. Its advantages include clear logic through the
demarcation of best and worst possible alternatives and the
representation of performance evaluations with a minimum
of two dimensions. These aspects of the model do not elim-
inate its weaknesses. These disadvantages encompass the
failure to account correlation of attributes and deviation
from ideal solution, which could be interpreted as a high
probability to alter final outcomes [5].

A multianalysis decision framework that accounted for
qualitative and quantitative data was fundamental in extend-
ing solving of complex problems. Preference ranking organi-
zation method for enrichment evaluation (PROMETHEE)
was developed in 1986 [5]. Functionality of the method is
in its exceptionality in guiding a multi-criteria analysis des-
ignating characteristics of simplicity and clarity not forget-
ting stability as well as value in outranking [18]. The idea
of maximal utilization of data cannot be forgotten in affirm-
ing efficiency in the course of its operation. The results asso-
ciated with the PROMETHEE are its possibility to report
great outcomes as a necessary standard portraying the
improvement it has made accounting additional set of alter-
natives [19]. The usefulness of PROMETHEE in different
fields attributed to its efficiency could have proved other
novelties in the subsequent 21st century.

During the twenty-first century, a series of multi-criteria
models have been developed and their concepts expanded as
a demonstration of their ineffectiveness or building proto-
types with additional features. Of great mention in this
category is the multiobjective optimization on the basis of
ration analysis (MOORA) and the complex proportional
assessment (COPRAS). MOORA was developed in 2006 as
a robust method and consisting of independent attributed,
and MOORA is a relatively simple process but with a com-
plex calculation procedure [5]. Another vital element of this
technique is its wider application, especially in the produc-
tion environment, and other processes assumed to be having
conflicting objectives [20]. These applications contrast the
practicality of the COPRAS method despite their successful
use in solving problems comprising multiobjective criteria
and needing optimization. The peculiar concept of COPRAS
is its utilization to rank safe regions and its preference for
deterministic data [21]. COPRAS is crucial given the period
of its invention. COPRAS was introduced in 2007 as a suit-
able method for evaluating single alternative, although this
use denotes its limitation of lower stability in the context
of data variation and its sensitivity to data variations eve at
the slightest change [5].

In the literature, there are numerous numbers of MCDM
methods. For instance, the MCDM method simple additive
weighting (SAW) aims to evaluate the effectiveness of
various solutions [22]. Decision-makers are crucial to the
implementation of SAW since they must select the preferred
weights for each criterion.

MCDM includes, also, stepwise weight assessment ratio
analysis (SWARA). The SWARA method gives decision-
makers the chance to select the optimum course of action based

on many circumstances. The criteria needs are ranked in order
of significance when employing the SWARA approach. The
given criteria will be ranked by experts according to their
importance [23]. For example, the most important criterion
will be listed first, and the least important criterion will be
included last. The SWARA technique mostly relies on experts.

Rezaei [24] introduced the MCDM technique known as
the best worst method (BWM). The BWM approach has
been applied by several researchers in a wide range of indus-
tries and fields [25]. It can be used to evaluate alternatives in
light of the criteria and examine the applicability of the cri-
teria that are applied when coming up with a solution to
reach the main goal(s) of the problem. In comparison to
other MCDM techniques, the BWM uses fewer paired com-
parisons and fewer data points, and it is distinguished by its
reference pairwise comparison.

Another MCDM technique is called VlseKriterijuska
Optimizacija I Komoromisno Resenje (VIKOR). The VIKOR
method’s name, which is Serbian, can be roughly translated
as “multi-criteria optimization and compromise solution”
[26]. The development of this methodology was a response
to Yu’s [27] first public appeal for the creation of tools for
reaching a compromise solution. By outlining in detail how
near each alternative is to the “ideal” hypothetical solution,
the strategy implies weighing and selecting alternatives based
on competing criteria.

Deng [28] developed the grey relational analysis (GRA)
method for issues that needed to be resolved in a situation
with a lot of uncertainty. GRA demonstrated its effectiveness
in systems with insufficient information when compared to
other strategies [29]. Similar to VIKOR, GRA evaluates both
positive and negative ideal solutions, comparing them to
various alternatives based on their “degree of grey connec-
tion” [30]. The major benefits of GRA are their reliance on
actual data and their ease of use in computations [29]. The
method offers a versatile procedure that could be combined
with other MCDM methods.

To sum up, MCDM techniques are employed to solve com-
plex real-world problems because of its ability to examine vari-
ous alternatives and choose the best option. For instance, Kalita
et al. [31] presented a comprehensive literature review on the
applications of MCDM techniques for parametric optimization
of nontraditional machining (NTM) processes. Kalita et al. [32]
applied six popular MCDM techniques to identify the most
appropriate combination of milling parameters, leading to a
compromise solution with a higher material removal rate and
a lower average surface roughness. Using the combined com-
promise solution (CoCoSo) method and the MCDM tool, Pan-
chagnula et al. [33] investigated the ideal combination of
drilling parameters by employing MCDM tool. To assess the
benchmarking process of active queue management (AQM)
methods of internet network congestion control, Albahri et al.
[34] presented an extension of the MCDM approach called
fuzzy decision by opinion score (FDOSM). An integrated
MCDM tool was created by Krishnan et al. [35] for benchmark-
ing and assessing smart e-tourism data management solutions.
The integrated tool used VIKOR approach and interval type 2
trapezoidal-fuzzy weighted with zero inconsistency (IT2TR-
FWZIC). The sensitivity analysis of ranking the management
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Step 8:
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I
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! order by alternatives
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]

Step 9:
Extend MCRAT (RATMI technique)

Rank in descending order using by alternatives
trace to median index E;. Use the strategy index
notion that is employed in VIKOR methodology.

FIGURE 1: Steps of RAMS and RATMI methodologies.

of e-tourism data was evaluated using 12 intelligent criteria
and 31 scenarios of modifying the weight of the criterion.
The researchers were interested in more current studies of
how to use MCDM approaches to attack COVID-19. Com-
prehensive review of the integration of MCDM applications
for coronavirus disease 2019 was presented by Alsalem
et al. [36]. They divided the examined studies into develop-
ment- and evaluation-based categories. The bulk of studies
in the assessment category were medical in nature, whereas
studies in the development category were more concerned

with developing fresh approaches to dealing with COVID-
19-related decision-making problems that were either
patient- or service-based. They also discussed the shortcom-
ings of the recent studies and their recommendations for
improvements in future research. In this context, Albahri
et al. [37] have extended two MCDM methods the fuzzy-
weighted zero-inconsistency (FWZIC) method and fuzzy deci-
sion by opinion score method (FDOSM) under the fuzzy
environment. The intriguing case study of the COVID-19
vaccination dose distribution was used to test the proposed
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FIGURE 2: Geometric interpretation of the median M = (1/Q} + Q2)/2.

extension of these two approaches. Albahri et al. [38] provide
another extended two MCDM methods for a case study of
sign language. The two methods, Pythagorean mm-polar
fuzzy-weighted  zero-inconsistency  (Pm-PFWZIC) and
Pythagorean mm-polar fuzzy decision by opinion score (Pm-
PFDOSM), are designed to weigh the assessment of sign lan-
guage criteria and to determine alternate rankings in a pro-
gressive manner.

3. The Proposed Methodologies

This paper proposes an extension to the two most recent
MCDM techniques, MCRAT and RAPS [5]. The first pro-
posed technique is associated with the RAPS methodology.
Instead of ranking the alternatives based on the perimeter
similarity that represents the ratio between the perimeter
of each alternative and the optimal alternative as is the case
with RAPS, the newly proposed method uses the median
similarity. Thus, the proposed extension to RAPS will be
named RAMS. The letter “M” refers to the word median
instead of letter “P” that referred to word perimeter. RAMS
scrutinizes the search space preciously towards the best
rankings. Following that, the properties of both RAMS and
MCRAT approaches will then be combined using the strat-
egy index notion that is employed in VIKOR methodology.
As a result, the second newly proposed technique uses the
trace to median index to rank the alternatives and will be
named RATMI. Figure 1 illustrates the RAMS and RATMI
steps, which are further detailed as follows:

Step 1: Preparation of problem data

Construct the problem data in the form of decision-
making matrix Xj;:

AlC C, G, C,
Al Xy X X1n
D= [xij]mxn = Ay X Xp Xon |> (1)
L Am xml xm2 xmn_

TasLE 1: Input decision-making matrix.

. I C C C C
Alternative/criteria Malx M ;X an Mi4n
A, 80 80 1.37 1.0
A, 185 222 1.66 1.5
A, 36 53 0.90 1.6
A, 110 150 1.10 2.3
Ag 62 132 1.20 20
Ag 128 143 143 28
A, 84 63 1.13 1.5
Ag 180 205 1.37 2.1
Ay 46 85 1.06 1.3
A 70 96 1.29 1.8
A, 28 44 0.96 11
A, 52 121 1.17 1.6
A 54 71 1.41 1.1
Ay, 103 78 1.62 1.6
A 59 86 1.05 1.3
A 110 135 1.35 1.8
Weight 0.5405 0.1802 0.0688 0.2015

where A=[A}, A, ---, A,,] is a given set of alternatives and m
is the total number of alternatives, C=[C;,C,,---,C,] is a
given set of criteria and n is the total number of criteria,
and [x;] s the assessment of alternative A; with respect

to a set of criteria.

Some of the criteria should be maximized, while some
should be minimized.

Step 2: Normalization of problem data

The problem data is multidimensional since each crite-
rion is described by its dimension. Making judgments in
this situation is incredibly challenging. To avoid such
complications, the multidimensional decision space must
be transformed into a nondimensional decision space.
For the max criteria, determine the normalization in the
following way:
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TaBLE 2: Normalized decision-making matrix.

. o C C C C
Alternative/criteria M;x M;x an Mi4n
A, 0.4324 0.3604 0.6569 1.0000
A, 1.0000 1.0000 0.5422 0.6667
A 0.1946 0.2387 1.0000 0.6250
A, 0.5946 0.6757 0.8182 0.4348
Ag 0.3351 0.5946 0.7500 0.5000
Ag 0.6919 0.6441 0.6294 0.3571
A, 0.4541 0.2838 0.7965 0.6667
Ag 0.9730 0.9234 0.6569 0.4762
A,y 0.2486 0.3829 0.8491 0.7692
A 0.3784 0.4324 0.6977 0.5556
Ay 0.1514 0.1982 0.9375 0.9091
A, 0.2811 0.5450 0.7692 0.6250
A 0.2919 0.3198 0.6383 0.9091
A, 0.5568 0.3514 0.5556 0.6250
A 0.3189 0.3874 0.8571 0.7692
A 0.5946 0.6081 0.6667 0.5556

TaBLE 3: Weighted normalized decision-making matrix.

. o C C C C
Alternative/criteria Meix Mazx an Mi4n
A, 0.2337 0.0649 0.0452 0.2015
A, 0.5405 0.1802 0.0373 0.1343
A, 0.1052 0.0430 0.0688 0.1259
A, 0.3214 0.1218 0.0563 0.0876
Ag 0.1811 0.1071 0.0516 0.1008
Ag 0.3740 0.1161 0.0433 0.0720
A, 0.2454 0.0511 0.0548 0.1343
Ag 0.5259 0.1664 0.0452 0.0960
A,y 0.1344 0.0690 0.0584 0.1550
Ao 0.2045 0.0779 0.0480 0.1119
Ay 0.0818 0.0357 0.0645 0.1832
A, 0.1519 0.0982 0.0529 0.1259
A 0.1578 0.0576 0.0439 0.1832
A, 0.3009 0.0633 0.0382 0.1259
Ais 0.1724 0.0698 0.0590 0.1550
A 0.3214 0.1096 0.0459 0.1119

TaBLE 4: Decomposition of the optimal alternative.
C, C, c, C,
Optimal alternative/criteria Max Max Min Min
4 e 43 44
QM 0.2921 0.0325 — —

Qmin — — 0.0047 0.0406




Journal of Mathematics 7

TaBLE 5: Decomposition of alternatives.

C, C, C3 C,
Alternative/criteria Max Max Min Min

U, ) U3 Uy
A U™ 0.0546 0.0042 — —
A U™ — — 0.0020 0.0406
A, U™ 0.2921 0.0325 — —
A,u™n — — 0.0014 0.0180
A U™ 0.0111 0.0019 — —
A, U™ — — 0.0047 0.0159
AU 0.1033 0.0148 — —
A, U™ — — 0.0032 0.0077
A U™ 0.0328 0.0115 — —
AU™n — — 0.0027 0.0102
AU™ 0.1399 0.0135 — —
A U™ — — 0.0019 0.0052
A, U™ 0.0602 0.0026 — —
A, U™ — — 0.0030 0.0180
AU 0.2766 0.0277 — —
AgUm™n — — 0.0020 0.0092
A U™ 0.0181 0.0048 — —
A U™ — — 0.0034 0.0240
A U™ 0.0418 0.0061 — —
A U™ — — 0.0023 0.0125
A, U™ 0.0067 0.0013 — —
A, um™n — — 0.0042 0.0336
A, U™ 0.0231 0.0096 — —
A,Umn — — 0.0028 0.0159
A U™ 0.0249 0.0033 — —
A U™ — — 0.0019 0.0336
A, U™ 0.0906 0.0040 — —
A, um™n — — 0.0015 0.0159
A, U™ 0.0297 0.0049 — —
A U™ — — 0.0035 0.0240
A U™ 0.1033 0.0120 — —
A U™ — — 0.0021 0.0125

1y = L,Vi €[L,2, -, mNAES 0 (2) AIC G G C,
max; (xij) A . . .
1 11 12 1n
R= [rij] = | A2 T T Ty |- (4)
while for the min criteria
min L Am "m1 Tm2 "mn n
ry = #,\ﬁ €[1,2, -, m| Aj € Sppins (3)

Step 3: Weighted normalization
Do the weighted normalization as follows for each nor-

. I - malized assessment r;;:
where: S, is a set of criteria that should be maximized ij

and S, is a set of criteria that should be minimized.
As a result, the normalized decision matrix will have the . )
following form: Uy = WirpVi € [1,2, o, ml, Vi€ [1,2, -, 1], (5)



where w; is a weight of criterion j that can be determined

either from a group of experts or from using one of the
MCDM tools such as the AHP technique. The sum of the
weights must equal one: Z;':le =1.

Then, the weighted normalization matrix can be formed
as follows:

[A/C ¢, ¢, - C,
Ay Uy Uy e Uy,
U= [uij]mxn = Ay Uy Uy Uy, |- (6)
L Am uml um2 umn_

Step 4: Determination of optimal alternative
Determine each component of the optimal alternative
as follows:

q;=max (uy|l <j<n)Vie[l,2, -, m] (7)
The optimal alternative is represented by the following set:
Q={‘h’%""’qj}’j:1’2""’”- (8)

Step 5: Decomposition of the optimal alternative
Decompose the optimal alternative in the two sets or two
components.

Q — Qmax U Qmin, (9)

Q={q91 % %y Y{q 9 >} k+h=j, (10)

where k represents the total number of criteria that should
be maximized and h represents the total number of criteria
that should be minimized.

Step 6: Decomposition of the alternative

Similarly, to step 5, decompose each alternative.

U,=UMuUmMyYiel(l,2,,m, (11)

Ui = {uips gy -ty } U {tyys g, = thyy Vi = [1,2, 00, ).

Step 7: Magnitude of component
For each component of the optimal alternative, calculate
the magnitude defined by

Q=1\/qi + B+ qp (13)

Q=\/ai + a5+ g5 (14)

Journal of Mathematics

TaBLE 6: Magnitude of optimal alternative and alternatives.

Max Min
Alternative/Q 0_5Q6k97 0.2Q 1h29

Ui Uin
A, 0.2426 0.2065
A, 0.5697 0.1394
A, 0.1136 0.1435
A, 0.3437 0.1041
A, 0.2105 0.1132
A 0.3916 0.0840
A, 0.2507 0.1451
Ag 0.5516 0.1061
A, 0.1511 0.1656
Ay, 0.2189 0.1218
A, 0.0893 0.1942
A, 0.1809 0.1366
A 0.1680 0.1884
Ay, 0.3075 0.1316
As 0.1860 0.1658
A 0.3395 0.1210

—_
[}

TaBLE 7: Alternatives ranked according to MCRAT method.

Alternative Trace Value Rank
A, tr(T,) 0.1822 7
A, tr(T,) 0.3543 1
A, tr(T5) 0.0953 15
A, tr(T,) 0.2180 5
As tr(Ts) 0.1440 10
A, tr(T,) 0.2410

A, tr(T) 0.1737

Aq tr(Ty) 0.3369

A, tr(T,) 0.1213 14
Ay tr(T,o) 0.1506 9
Ay tr(T,,) 0.0922 16
A, tr(T,,) 0.1322 13
A, tr(T5) 0.1358 12
A, tr(T,,) 0.2032 6
A tr(T,s) 0.1413 11
A tr(T,e) 02192 4

The same approach is applied for each alternative.

Uy =/ uh +ub+---us, Vi=[1,2, -, m], (15)
Uy = /U + b+, Vi=[1,2, -+, m]. (16)

From this point, the following two methods were devel-
oped to create the rank of alternatives:
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TaBLE 8: Alternatives ranked according to RAPS method.

Max Min Perimeter Perimeter Similarity
p
0.5Q6k97 0.§1h29 1.3909 PS, = P/P, Rank
Ui Ui P;
A, 0.2426 0.2065 0.7677 0.5519 7
A, 0.5697 0.1394 1.2957 0.9316
A, 0.1136 0.1435 0.4402 0.3165 16
A, 0.3437 0.1041 0.8069 0.5801 5
Ag 0.2105 0.1132 0.5626 0.4045 12
Ag 0.3916 0.0840 0.8760 0.6298
A, 0.2507 0.1451 0.6854 0.4928
Ag 0.5516 0.1061 1.2193 0.8767
A,y 0.1511 0.1656 0.5409 0.3889 14
Ao 0.2189 0.1218 0.5911 0.4250 11
Ay 0.0893 0.1942 0.4972 0.3575 15
A, 0.1809 0.1366 0.5442 0.3913 13
A 0.1680 0.1884 0.6087 0.4376
Ay, 0.3075 0.1316 0.7736 0.5562
A 0.1860 0.1658 0.6010 0.4321 10
A 0.3395 0.1210 0.8210 0.5902 4
TaBLE 9: Alternatives ranked according to RAMS method.
Max Min Median Perimeter Similarity
M
0.%97 0.2Q1h29 0.3041 MS; = M,/ M Rank
Ui Ui M;
A, 0.2426 0.2065 0.1593 0.5238 7
A, 0.5697 0.1394 0.2933 0.9644
A, 0.1136 0.1435 0.0915 0.3010 16
A, 0.3437 0.1041 0.1795 0.5904 5
Ag 0.2105 0.1132 0.1195 0.3929 12
Ag 0.3916 0.0840 0.2002 0.6584
A, 0.2507 0.1451 0.1448 0.4762
Ag 0.5516 0.1061 0.2808 0.9235
A,y 0.1511 0.1656 0.1121 0.3686 14
A 0.2189 0.1218 0.1252 0.4118 10
A, 0.0893 0.1942 0.1069 0.3514 15
A, 0.1809 0.1366 0.1133 0.3727 13
A 0.1680 0.1884 0.1262 0.4149
Ay 0.3075 0.1316 0.1672 0.5499
A 0.1860 0.1658 0.1246 0.4097 11
A 0.3395 0.1210 0.1802 0.5926 4
Step 7.1: Ranking by alternatives trace (MCRAT) Create the matrix G; composed of alternative components:
Create the matrix F composed of optimal alternative
components:
Ug O
G;= 1,Vi=[l,2,~--,m]. (18)
0 Uy

F:lQ" 0 ] (17) 1

0 Q Create the matrix T as follows:
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TaBLE 10: Alternatives ranked according to RATMI method.

MCRAT RAMS Majority Index
tr*=0.0922 MS*=0.3010 Rank
tr=0.3543 MS=0.9644
tr; MS; E;
A, 0.1822 0.5238 0.3396 7
A, 0.3543 0.9644 1.0000
Ay 0.0953 0.3010 0.0059 16
A, 0.2180 0.5904 0.4581 5
Ag 0.1440 0.3929 0.1681 12
Ag 0.2410 0.6584 0.5532
A, 0.1737 0.4762 0.2876
Ag 0.3369 0.9235 0.9359
Ay 0.1213 0.3686 0.1066 14
A 0.1506 0.4118 0.1950 9
A, 0.0922 0.3514 0.0380 15
A, 0.1322 0.3727 0.1303 13
Ais 0.1358 0.4149 0.1691 11
Ay 0.2032 0.5499 0.3995 6
A5 0.1413 0.4097 0.1755 10
A 0.2192 0.5926 0.4621 4
TaBLE 11: Ranking materials of break booster valve body by different MCDM methods.
MCRAT RAPS ARAS SAW TOPSIS COPRAS VIKOR WASPAS MOORA
A, 7 7 7 6 7 7 7 6 7
A, 1 1 1 1 1 1 1 1 1
A, 15 16 16 16 16 16 15 15 15
A, 5 5 4 5 5 5 5 5 5
Ag 10 12 10 12 10 11 11 11 11
A, 3 3
A, 8
Aq 2 2
Ay 14 14 14 14 14 14 14 14 14
A 9 11 9 11 9 9 9 9 9
Ay, 16 15 15 15 15 15 16 16 16
A, 13 13 13 13 13 12 12 13 12
A, 12 9 12 10 12 13 13 12 13
A, 6 6 6 6 6 7 6
Ais 11 10 11 9 11 10 10 10 10
A 4 4 5 4 4 4 4 3

th, O Alternatives are now ranked according to the descending
Ti:FXGjZ l ' ],Vi: [1,2,”',}’}1}. (19) order oftr(Ti)‘
0ty Step 7.2: Ranking by alternatives perimeter similarity
(RAPS)

Perimeter of the optimal alternative is expressed as the
perimeter of the right angle. Components Q, and Q, rep-
resent the base and perpendicular side of this triangle,
respectively.

Then, the trace of the matrix T is as follows:

tr(Ty) =ty + tpVi=[1,2, -, m]. (20)
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RAM RATM  MCRA RAP ARA

TOPSI  COPRA  VIKO WASPA MOOR
S I T S N S S R N A
0.98
0.975 - 0.976 0.965

RATMI 0.988 0.988  0.988

MCRAT = 0.975 0.988

ARAS 0.976

0.971

SAW 0.988

TOPSIS = 0.979 0.974

COPRA

0.971
S

0.968

VIKOR 0.968 0.965 ~ 0.988

WASPA

0.97

0.97

0.97

0.98

0.96

0.982

0.968

0.988

S 0.976 0974  0.988
MOOR

A 0.965 0.985 0.962 0.982
Color

Code

Other colors are
greater than 0.965 and less than 0.997 0.965

Less than or equal to

F1GURk 3: The density of the correlation between the compared techniques is displayed on a heatmap. Greater significance of the correlation
factor is shown by denser colour than by lighter colour. That is shown by the table’s colour code.

P=Qu+Q,+1/Qi + Q. (21)

Perimeter of each alternative is calculated the same way

P;=Uy + Uy + /U + U, (22)

Perimeter similarity represents the ratio between the
perimeter of each alternative and the optimal alternative:

P.
PS; = ZVi=[L,2, -, m). (23)

Alternatives are now ranked according to the descending
order of PS,.

Step 8: Ranking by alternatives median similarity
(RAMS)

The median of the optimal alternative is expressed as the
median of the right angle used for the RAPS technique, as

portrayed in Figure 2.
(x [ Qi+ Qi)

2

M= (24)

Median of each alternative is calculated the same way.

. (VUE+T3)

, . (25)

Median similarity represents the ratio between the
perimeter of each alternative and the optimal alternative:

M.
MSi — —I,VI - [1’ 2,0 m] (26)
M

Alternatives are now ranked according to the descending
order of MS,.

Step 9: Ranking the alternatives using the trace to
median index (RATMI)

If v is the weight of MCRAT’s strategy and the (1 —v) is
the weight of RAMS’s strategy, then, the majority index E;
between the two strategies is as follows:

o (try—trT) (MS; — MS™)
i—Vm“‘(l )my (27)
where

tr; =tr(T,),Vi=[1,2, -+, m],

tr* = min (tr;,Vi= [ , M),

tr” = max (tr;,Vi=[1,2 --,m]), (28)

*=min (MS;,Vi=[1,2,---, m]),

MS™ =max (MS;,Vi=[1,2, -, m]),

where v is a value from 0 to 1. Here, v=0.5
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FIGURE 4: Relative comparison between the two RAMS and RATMI technique and RAPS technique.

4. Illustrative Numerical Example

This section applied the two proposed RAMS and RATMI
methods using the data-driven by Moradian et al. [39] for
material selection of break booster valve body in a vehicle.
The criteria of selecting the materials were C1 (tensile
strength), C2 (deflection temperature of the material), C3
(material’s density), and C4 (cost of the product). Table 1
shows the input decision matrix, while Tables 2 and 3 show
the normalized and weighted normalized input data based
on steps 1, 2, and 3, respectively, and Equations (2)-(6).

Step 4 determined the optimal alternative by applying
Equations (7) and (8). Followed this step, steps 5 and 6
defined the decomposition of the optimal alternative and
the decomposition of each of the alternatives by using
Equations (9)-(12). The decomposition results are shown
in Tables 4 and 5.

Step 6 calculates the magnitude of the optimal alterna-
tive and other alternatives using Equations (13)-(16). Values
obtained within this step are shown in Table 6. The steps 7.1
and 7.2 ranked the alternatives by applying MCRAT and
RAPS techniques using the Equations (17)-(23). Tables 7
and 8 show the ranking by the trace of the matrix (MCRAT)
and perimeter similarity (RAPS) methods.

The two new methods RAMS and RATMI were illus-
trated in steps 8 and 9, respectively. From step 8, the alterna-
tives are ranked based on the median similarity between the
optimal alternatives and other alternatives by applying
Equations (24)-(26). This is followed by step 9, which
focuses on the majority index between MCRAT and RAMS
methods by using Equation (27) with v=0.5. The results
of these two steps are shown in Tables 9 and 10.

5. Testing the Validity of the RAMS and
RATMI Methods

For the same numerical example, Table 11 demonstrates the
ranking by a variety of other MCDM methods. Figure 3 illus-
trates the correlation coefficient between the RAMS and
RATMI methods and other methods in heat map format.
From the figure, it can be concluded that the best correlation
of the RAMS method is 99.7% with the RAPS method and
over 96.5% with other methods. The best correlation of the
RATMI method is 99.1% with each of the TOPSIS, COPRAS,
and WASPAS methods, while it is over 98.5% with other
methods. The correlation between RAMS and RAPS is
99.7%, and the correlation between RATMI and both MCRAT
and RAMS are 98.8% and 99.1%, respectively. Figure 4 shows
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TaBLE 13: Comparative results between the two new techniques RAMS and RATMI and the original technique RAPS with the other seven
MCDM techniques.

Method Problem #1 n=6m=14 Ref. [40]
ARAS SAW TOPSIS COPRAS VIKOR WASPAS MOORA
RATMI 0.956 0.996 0.930 0.952 0.969 0.969 0.950
RAMS 0.952 1.000 0.934 0.956 0.956 0.965 0.950
RAPS 0.947 0.881 0.956 0.960 0.798 0.947 0.950
Problem #2 n=13, m=5 Ref. [41]
RATMI 0.800 0.900 1.000 0.800 0.900 0.800 0.800
RAMS 0.600 0.800 0.900 0.600 0.700 0.600 0.600
RAPS 0.800 0.900 1.000 0.800 0.900 0.800 0.800
Problem #3 n=>5m=12 Ref. [5]
RATMI 0.993 0.993 1.000 0.972 0.972 0.993 0.972
RAMS 0.993 0.993 1.000 0.972 0.972 0.993 0.972
RAPS 0.993 0.993 1.000 0.972 0.972 0.993 0.972
Problem #4 n=8 m=11 Ref. [42]
Method ARAS SAW TOPSIS COPRAS VIKOR WASPAS MOORA
RATMI 0918 0.945 0.991 — 0.991 0918 0918
RAMS 0.918 0.945 0.991 — 0.991 0.918 0.918
RAPS 0918 0.945 0.991 — 0.991 0918 0.918
Problem #5 n=20,m=10 Ref. [43]
RATMI 0.576 0.988 0.442 0.612 0.564 0.721 0.709
RAMS 0.576 0.988 0.442 0.612 0.564 0.721 0.709
RAPS 0.576 0.988 0.442 0.612 0.564 0.721 0.709
Problem #6 n=4,m=17 Ref. [44]
RATMI 0.914 0.907 0.919 — 0.564 0.895 0.914
RAMS 0.914 0.907 0.919 — 0.564 0.895 0.914
RAPS 0.914 0.907 0.919 — 0.564 0.895 0.972
Problem #7 n=>5m=4 Ref. [45]
RATMI 0.800 1.000 0.400 — 1.000 1.000 1.000
RAMS 0.800 1.000 0.400 — 1.000 1.000 1.000
RAPS 0.800 1.000 0.400 — 1.000 1.000 1.000
Problem #8 n=6m=38 Ref. [45]
RATMI 1.000 0.976 0.952 0.976 0.976 0.976 0.976
RAMS 1.000 0.976 0.952 0.976 0.976 0.976 0.976
RAPS 1.000 0.976 0.952 0.976 0.976 0.976 0.976
Problem #9 n=10,m=7 Ref. [46]
RATMI 0.679 0.964 0.357 0.429 0.786 0.607 0.571
RAMS 0.679 0.964 0.357 0.429 0.786 0.607 0.571
RAPS 0.679 0.964 0.357 0.429 0.786 0.607 0.571
Problem #10 n=10,m=7 Ref. [46]
RATMI 0.964 0.964 0.607 0.607 0.429 0.964 0.500
RAMS 0.929 0.929 0.536 0.643 0.464 0.929 0.571
RAPS 0.929 0.929 0.536 0.643 0.464 0.929 0.571
Problem #11 n=10,m=7 Ref. [46]
RATMI 0.286 -0.321 -0.179 -0.143 -0.250 -0.321 -0.143
RAMS 0.286 -0.321 -0.179 -0.143 -0.250 -0.321 -0.143
RAPS 0.286 -0.321 -0.179 -0.143 -0.250 -0.321 -0.143
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Problem #12 n=10,m=7 Ref. [46]
RATMI 0.107 -0.500 0.536 0.500 0.536 -0.500 0.429
RAMS 0.107 -0.500 0.536 0.500 0.536 -0.500 0.429
RAPS 0.107 -.0500 0.536 0.500 0.536 -0.500 0.429
Problem #13 n=10,m=7 Ref. [46]
RATMI -0.179 -0.179 0.214 0.143 0.036 -0.179 0.143
RAMS -0.179 -0.179 0.214 0.143 0.036 -0.179 0.143
RAPS -0.179 -0.179 0.214 0.143 0.036 -0.179 0.143
Problem #14 n=4,m=5 Ref. [47]
RATMI 1.000 0.800 0.900 0.900 0.900 0.900 0.900
RAMS 0.900 0.900 0.800 0.800 0.800 0.800 0.800
RAPS 1.000 0.800 0.900 0.900 0.900 0.900 0.900
Problem #15 n=10, m=26 Ref. [48]
Method ARAS SAW TOPSIS COPRAS VIKOR WASPAS MOORA
RATMI 0913 0.954 0.675 0.716 0.685 0.884 0.732
RAMS 0.899 0.941 0.661 0.700 0.665 0.871 0.717
RAPS 0.921 0.951 0.670 0.707 0.681 0.878 0.726

TaBLE 14: Comparative percentage between the three methods RAPS, RAMS, and RATMI.

Rule of comparison

Percentage of rule satisfaction out of 15 problems
RAMS vs RAPS ~ RATMI vs RAMS ~ RATMI vs RAPS

(a) Number of problems the correlation coefficient degrees between the

first method and the other seven MCDM techniques are better than the

second method

(b) Number of problems the correlation coefficient degrees of the two

methods and the other seven MCDM techniques are identical
(c) Number of problems the correlation coeflicient degrees of the

second method and the other seven MCDM techniques are better than

the first method
(d) Combined (a) + (b)

1 (6.7%) 4 (26.7%) 2 (13.3%)

10 (66.6%) 10 (66.6%) 11 (73.3%)

4 (26.7%) 1 (6.7%) 2 (13.3%)

11 (73%) 14 (93%) (87%)

a comparison between the two new methods RAMS and
RATMI with RAPS method. RATMI method has a strong cor-
relation degree over the other methods, RAPS and RAMS.

Validity tests were conducted using data taken from 15
additional problems in the literature. Some details of these
problems are demonstrated in Table 12. The number of cri-
teria (1) ranged from 4 to 20, and the number of alternatives
(m) ranged from 4 to 26. Table 13 compares the correlation
coefficient degrees between the original RAPS methodology,
the two new methods RAMS and RATMI, and seven other
MCDM techniques. The following findings obtained from
this comparison are as follows:

5.1. Comparison between RAMS and RAPS

(i) For problem 1, the correlection coefficient degrees
between RAMS and the other seven MCDM tech-

niques were better to RAPS correlation coefficient
degrees by, on average, 0.039

(ii) For problems 3-5 and 7-13, RAMS and RAPS
showed identical correlation coeflicient degrees with
the other seven techniques

(iii) For problems 2, 6, 14, and 15, the correlection coef-
ficient degrees between RAMS and the other seven
techniques were, on average, lower than RAPS cor-
relection coeflicient degrees by 0.171, 0.010, 0.071,
and 0.015, respectively

(iv) To sum up, in 11 out of 15 problems (73%), the
correlection coefficient degrees of RAMS with the
other seven MCDM approaches were superior to
or equal to the correlection coefficient degrees of
RAPS
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FIGURE 5: Relative comparison between RAPS, RAMS, and RATMI method for different problems.

5.2. Comparison between RATMI and RAMS

(i) For problems 2, 10, 14, and 15, the correlection
coefficient degrees between RATMI and the other
seven MCDM techniques were superior to RAMS
correlection coefficient degrees by, on average,
0.171, 0.012, 0.067, and 0.013, respectively

(ii) For problems 3-9 and 11-13, the RATMI and
RAMS exhibited identical correlection coefficient
degrees with the other seven techniques

(iii) For problem 1, RAMS outperformed RATMI with
an average correlection coefficient degree of 0.001

(iv) To sum up, in 14 out of 15 problems (93%), the cor-
relection coeflicient degrees of RATMI with the

5.3.

other seven approaches were superior to or on par
with the correlection coefficient degrees of RAMS

Comparison between RATMI and RAPS

(i) For problems 1 and 10, the correlection coefficient
degrees between RATMI and the other seven
MCDM techniques were, on average, better than
RAPS correlection coefficient degrees by 0.040 and
0.005, respectively

(ii) For problems 2-5, 7-9, and 11-14, the RATMI and
RAPS displayed identical correlection coeflicient
degrees with the other seven MCDM approaches

(iii) For problems 6 and 15, the correlection coefficient
degrees between RAPS and the other seven MCDM
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techniques were, on average, better than RATMI
correlection coefficient degrees by 0.010 and 0.004,
respectively

(iv) To sum up, in 13 out of 15 problems (87%), the cor-
relation coefficient degrees between RATMI and the
other seven approaches were superior to or on par
with the correlation coefficient degrees of RAPS

Table 14 summarizes the comparison results, reported in
the previous points, between the two new techniques RAMS
and RATMI and the original technique RAPS. Table 14
makes it obvious that the RATMI approach is a strong rival
to RAPS and RAMS. Figure 5 shows comparative results for
problems 1, 2, 10, 14, and 15 in a graphical form.

6. Conclusion

The practice of using multiple criteria decision-making
(MCDM) as a supporting tool is common in many branches
of science and business. In real-world scenarios, the goal of
MCDM tools is to assist decision-makers in selecting or
ranking alternatives based on assessing and contrasting cri-
teria. Ranking alternatives by perimeter similarity (RAPS)
and multiple criteria ranking by alternative trace (MCRAT)
are two current MCDM methods that are tested and used in
the mining engineering industry. In addition to this, the
development of new MCDM techniques is progressing
slowly. Therefore, the objectives of this paper were as
follows: (1) add two new MCDM techniques called RAMS
and RATMI, and (2) these techniques can be applied to a
variety of contexts, including education, the financial indus-
try, construction, housing, and business.

The RAMS technique ranks alternatives based on
median similarity, as an extension of RAPS. Another
method was proposed by integrating the RAMS technique
with the MRCAT methodology developed by Uro$evi¢
et al. [5], employing a majority index and the VIKOR
method’s premise. This process is known as RATMI or
ranking the alternatives based on the trace to median index.

Both methodologies (RAMS and RATMI) were fully pre-
sented using a numerical example from a real-world situa-
tion of evaluating materials for the body of a break booster
valve. In addition to 9 more MCDM techniques, these tech-
niques were evaluated alongside the original RAPS and
MCRAT procedures. It may be said that the best correlation
between the RAMS technique and the RAPS method was
99.7%, and that it was better than 96.5% with other
approaches. The best correlation of the RATMI method
was 99.1% with each of the TOPSIS, COPRAS, and WAS-
PAS methods, while it was over 98.5% with other methods.
There was a 99.7% correlation between RAMS and RAPS,
and 98.8% and 99.1% correlations between MCRAT and
RAMS and RATM]I, respectively.

The effectiveness of the proposed techniques RAMS and
RATMI was compared to the other seven well-known
MCDM tools, including additive ratio assessment (ARAS),
simple additive weighting (SAW), technique for order of
preference by similarity to ideal solution (TOPSIS), complex

Journal of Mathematics

proportional assessment (CORPAS), VlseKriterijumska
Optimizacija I Kompromisno Resenje (VIKOR), weighted
aggregates sum product assessment (WASPAS), and multi-
objective optimization on the basis of ratio analysis )MOOR-
A(as well as a more recent one RAPS using fifteen tested
MCDM problems taken from the literature with a number
of criteria ranging from 4 to 20 and number of alternatives
ranging from 4 to 26. Results revealed that for 13.3 percent
and 26.7 percent of the total 15 problems, respectively,
RATMI is more efficient than RAPS and RAMS. As a gen-
eral remark, the proposed technique RATMI had an equiva-
lent or better correlation coefficient degree with the RAMS
technique for 93% of the investigated problems. Future
research could focus on the sensitivity analysis of RATMI
within different problem sizes (nx m). The techniques can
be related, in future studies, by increasing the uncertainty
of problem data.
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