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In this paper, the asymptotic stability of solutions is investigated for a class of nonlinear fractional neutral neural networks with
time-dependent delays which are unbounded. By constructing the appropriate Lyapunov functional, sufficient conditions for
asymptotic stability of neural networks are obtained with the help of LMI. An example is presented by using the LMI Toolbox
to demonstrate the effectiveness of the obtained results.

1. Introduction

Fractional calculus with a history of more than 300 years has
been proved to be valuable tools in modeling many phenom-
ena in the various fields of engineering, physics, control sys-
tems, diffusion, epidemic model, financial systems, and so
on [1–3]. Fractional derivative, which is a generalization of
the integer derivative, has different definitions such as
Caputo, Riemann-Liouville, Grünwald-Letnikov, and Hada-
mard, which were defined by different researchers [3]. Qual-
itative properties such as stability, asymptotic stability, and
exponential stability of the solutions of the equations with
delay or without delay of phenomena modeled in various
fields with fractional differential equations have been studied
by many authors. In most of these analyses, sufficient condi-
tions for qualitative properties have been obtained by using
the Lyapunov-Krasovskii functional known as the energy
function. Some of these studies used LMI because it is one
of the most useful tools for showing the derivative of the
Lyapunov functional to be less than zero [4]. In [5], making
use of the stability theorem of fractional-order systems with
multiple time delays, some fractional derivative inequalities,
and comparison theorem, several sufficient criteria are estab-
lished for confirming that the synchronization error of the
concerned system can reach zero within a limited time. In
[6–8], sufficient conditions are obtained for the stability of

solutions of certain fourth-order differential equations by
using Lyapunov’s second method. In [9–14], sufficient condi-
tions were searched for qualitative properties such as stability,
uniform stability, and asymptotic stability of solutions of frac-
tional order delayed, undelayed, or neutral differential
equations.

The other popular topic of recent times is neural net-
works, known as a part of the human brain, which has been
the subject of research for more than 1000 years. Artificial
neural networks are an information processing technology
inspired by the information processing technique of the
human brain. Researchers can refer to the references and
their references for detailed information on the work done
on fractional order modeled neural networks. In [15–38],
global asymptotic stability, global stability, and Mittag-
Leffler stability analyses of solutions of neural network equa-
tions modeled in fractional order are reported, and valuable
results are obtained.

When the existing literature is examined, it is seen that
the Riemann-Liouville derivative and Caputo derivative are
mostly used among the definitions of fractional derivatives
for fractional equations and systems of equations. A com-
parison between these two derivatives shows that the Caputo
derivative is used more often because the initial conditions
coincide with systems of integer order, which contributes
to describing some well-understood properties of the
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physical process and makes it more applicable to real phe-
nomena. On the other hand, the main advantage of the
Riemann-Liouville derivative lies in the composition proper-
ties of the Riemann-Liouville fractional derivative and inte-
gral. Furthermore, the Riemann-Liouville derivative is a
continuous operator of order q [1–3].

In this paper, our main goal is to build an appropriate
Lyapunov functional to discuss the asymptotic stability of
the Riemann-Liouville fractional-order neural networks with
time-varying delays, using the mentioned advantage of the
Riemann derivative. The acquired stability criteria are
expressed as the matrix inequalities, which are also suitable

and practicable to test the asymptotic stability of the
addressed neural networks. Specifically, the original contri-
bution of the present paper to literature is that by employing
the Lyapunov functional method, sufficient conditions, for
showing the asymptotic stability of solutions for a class of
nonlinear fractional neutral neural networks with time-
dependent unbounded delays, are derived. In order to indi-
cate the validation of the obtained results, an example is pre-
sented. Obtained results show that conditions proved in this
paper are sufficient for asymptotic stability of solutions of
nonlinear fractional neutral neural networks with time-
dependent unbounded delays.

2. Preliminaries

In this section, we introduce some fundamental definitions
of fractional calculus together with important lemmas.

Note that n-dimensional Euclidean space is denoted by
Rn. The set of entire n × n real matrices is indicated by
Rn×n. The Euclidean norm of a real vector x is denoted by
kxk. The spectral norm of matrix A is indicated by kAk.
When A < 0 (or A > 0), the symmetric matrix A is negative
definite (or positive definite).

Definition 1. The Riemann-Liouville fractional derivative
and integral are described as the following, respectively,

t0
Dα
t x tð Þ = 1

Γ n − αð Þ
dn

dtn

ðt
t0

x sð Þ
t − sð Þα+1−n ds n − 1 ≤ α < nð Þ,

t0
D−α
t x tð Þ = 1

Γ αð Þ
ðt
t0

t − sð Þα−1x sð Þds α > 0ð Þ

ð1Þ

(see [3]).

Lemma 2. If α > β > 0, then

t0
Dβ
t t0

D−α
t x tð Þ� �

= t0
Dβ−α
t x tð Þ ð2Þ

holds for “sufficiently good” functions xðtÞ. Particularly, if x
ðtÞ is integrable, then this relation holds (see [2]).

Lemma 3. If xðtÞ ∈ Rn is a vector of differentiable function,
then the following relationship satisfies

1
2t0

Dα
t xT tð ÞPx tð Þ� �

≤ xT tð ÞPt0
Dα
t x tð Þ, ∀α ∈ 0, 1ð Þ,∀t ≥ t0,

ð3Þ

where P ∈ Rn×n is a positive semidefinite, symmetric, square,
and constant matrix (see [35]).

Lemma 4. For any positive definite matrix Q > 0, scalar β > 0,
vector function f ð·Þ: ½0, β�⟶ Rn such that the integrations
concerned are well defined, the following inequality holds:

ðβ
0
f sð Þds

� �T

Q
ðβ
0
f sð Þds

� �
≤ β

ðβ
0
f T sð ÞQf sð Þds

� �
ð4Þ

(see [27]).

3. Main Results

Now, we present the stability of solutions of nonlinear frac-
tional neutral neural networks having time-varying delays.
We further consider linear matrix inequality to determine
sufficient conditions on the asymptotical stability of solu-
tions of these systems.

Let the fractional nonlinear neutral neural system be
given by the following:

0D
α
t x tð Þ = Ax tð Þ + B1 f1 t, x tð Þð Þ + B2 f2 t, x t − τ1 tð Þð Þð Þ

+ C0D
α
t x t − τ2 tð Þð Þ + B3

ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds,

ð5Þ

where 0 < α < 1 is a real number, x = ½x1, x2,⋯,xn�T ∈ Rn is
the state vector, A, B1, B2, B3, C ∈ Rn×n are known constant
matrices, for all t > t0, τ1ðtÞ, τ2ðtÞ, τ3ðtÞ > 0 are time-
varying delays. f jðt, xÞðj = 1, 2, 3Þ are vector-valued time-
varying nonlinear functions with f jðt, 0Þ = 0 and satisfy the
following Lipschitz condition for all ðt, xÞ, ðt, x̂Þ ∈ R × Rn:

f j t, xð Þ − f j t, x̂ð Þ
��� ��� ≤ aj Mj x − x̂ð Þ�� ��, j = 1, 2, 3, ð6Þ

where Mj are constant matrices with appropriate dimension
and aj are positive numbers. Consequently, from (6), we
have

f j t, xð Þ
��� ��� ≤ aj Mjx

�� ��, j = 1, 2, 3: ð7Þ

Theorem 5. The trivial solution of system (5) is asymptotically
stable, if kCk < 1, for all t > t0, τi′ðtÞ ≤ di < 1 ði = 1, 2, 3Þ,
jτ3ðtÞj ≤ ε, and there exist positive and symmetric definite
matrices P, R, and S such that the following LMI satisfies:
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K =

K11 K12 K13 K14 K15

KT
12 K22 K23 K24 K25

KT
13 KT

23 K33 K34 K35

KT
14 KT

24 KT
34 K44 K45

KT
15 KT

25 KT
35 KT

45 K55

0
BBBBBBBB@

1
CCCCCCCCA

< 0, ð8Þ

where

K11 = ATP + PA + AT R +mSð ÞA + a21M
T
1M1

+ a22M
T
2M2 + ε2a23M

T
3M3,

K12 = PB1 + AT R +mSð ÞB1,
K13 = PB2 + AT R +mSð ÞB2,
K14 = PC + AT R +mSð ÞC,
K15 = PB3 + AT R +mSð ÞB3,
K22 = BT

1 R +mSð ÞB1 − I,
K23 = BT

1 R +mSð ÞB2,
K24 = BT

1 R +mSð ÞC,
K25 = BT

1 R +mSð ÞB3,
K33 = BT

2 R +mSð ÞB2 − 1 − d1ð ÞI,
K34 = BT

2 R +mSð ÞC,
K35 = BT

2 R +mSð ÞB3,
K44 = CT R +mSð ÞC − 1 − d2ð ÞR,
K45 = CT R +mSð ÞB3,
K55 = BT

3 R +mSð ÞB3 − 1 − d3ð ÞI,

ð9Þ

m and ε are positive constants and I unit matrix.

Proof. Let the Lyapunov-Krasovskii functional be defined by

V tð Þ= t0
Dα−1
t xT tð ÞPx tð Þ� �

+
ð0
−τ2 tð Þ

t0
Dα
t x t + sð Þ� �T

� R t0
Dα
t x t + sð Þ� �

ds + a22

ðt
t−τ1 tð Þ

xT sð ÞMT
2M2x sð Þds

+
ðt
t−m

ðt
θ

t0
Dα
t x t + sð Þ� �TS t0

Dα
s x sð Þ� �

dsdθ

+ εa23

ð0
−τ3 tð Þ

ðt
t+s
xT ηð ÞMT

3M3x ηð Þdηds:

ð10Þ

Since P, R, and S matrices are positive definite, the
Lyapunov-Krasovskii functional VðtÞ is positive definite.

From (7) inequality,

f Tj t, x tð Þð Þf j t, x tð Þð Þ
≤ a2j Mjx

�� ��2 = a2j x
T tð ÞMT

j Mjx tð Þ, j = 1, 2, 3,
ð11Þ

can be written. Hence, according to Lemma 4 and (11), for
all fixed t, we can get

−εa23
ðt
t−τ3 tð Þ

xT sð ÞMT
3M3x sð Þds

≤ −τ3 tð Þa23
ðt
t−τ3 tð Þ

xT sð ÞMT
3M3x sð Þds

≤ −τ3 tð Þ
ðt
t−τ3 tð Þ

f T3 s, x sð Þð Þf3 s, x sð Þð Þds

≤ −
ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds
 !T

I
ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds:

ð12Þ

From (12) and Lemmas 2 and 3, the derivative of VðtÞ is
obtained along the trajectories of system (5) as follows:

_V tð Þ= t0
Dα
t xT tð ÞPx tð Þ� �

+ a21x
T tð ÞMT

1M1x tð Þ
− a21x

T tð ÞMT
1M1x tð Þ + t0

Dα
t x tð Þ� �TR t0

Dα
t x tð Þ� �

− 1 − τ2′ tð Þ
� �

t0
Dα

t x t − τ2 tð Þð Þ� �TR t0
Dα
t x t − τ2 tð Þð Þ� �

+ a22x
T tð ÞMT

2M2x tð Þ − 1 − τ1′ tð Þ
� �

a22x
T t − τ1 tð Þð Þ

�MT
2M2x t − τ1 tð Þð Þ +m t0

Dα
t x tð Þ� �TS t0

Dα
t x tð Þ� �

−
ðt
t−m

t0
Dα
s x tð Þ� �TS t0

Dα
s x tð Þ� �

ds + εa23τ3 tð ÞxT

� tð ÞMT
3M3x tð Þ − εa23 1 − τ3′ tð Þ

� �ðt
t−τ3 tð Þ

xT

� sð ÞMT
3M3x sð Þds ≤ 2xT tð ÞPDa

t x tð Þ + a21x
T

� tð ÞMT
1M1x tð Þ + a22x

T tð ÞMT
2M2x tð Þ + ε2a23x

T

� tð ÞMT
3M3x tð Þ + t0

Dα
t x tð Þ� �T R +mSð Þ t0

Dα
t x tð Þ� �

− 1 − d1ð Þf T2 t, x t − τ1 tð Þð Þð ÞI f2 t, x t − τ1 tð Þð Þð Þ
− f T1 t, x tð Þð ÞI f1 t, x tð Þð Þ − 1 − d2ð Þ
� t0

Dα
t x t − τ2 tð Þð Þ� �TR t0

Dα
t x t − τ2 tð Þð Þ� �

− 1 − d3ð Þ
ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds
 !T

I
ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds

= xT tð Þ ATP + PA + a21M
T
1M1 + a22M

T
2M2 + ε2a23M

T
3M3

�
+ AT R +mSð ÞAÞx tð Þ + 2xT tð ÞPB1 f1 t, x tð Þð Þ
+ 2xT tð ÞPB2 f2 t, x t − τ1 tð Þð Þð Þ
+ 2xT tð ÞPCt0

Dα
t x t − τ2 tð Þð Þ

+ 2xT tð ÞPB3

ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds + xT tð ÞAT

� R +mSð ÞB1 f1 t, x tð Þð Þ + xT tð ÞAT R +mSð Þ
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� B2 f2 t, x t − τ1 tð Þð Þð Þ + xT tð ÞAT R +mSð ÞCt0
Dα

t x t − τ2 tð Þð Þ

+ xT tð ÞAT R +mSð ÞB3

ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds

+ f1 t, x tð Þð Þð ÞTBT
1 R +mSð ÞAx tð Þ

+ f1 t, x tð Þð Þð ÞTBT
1 R +mSð ÞB1 f1 t, x tð Þð Þ

+ f1 t, x tð Þð Þð ÞTBT
1 R +mSð ÞB2 f2 t, x t − τ1 tð Þð Þð Þ

+ f1 t, x tð Þð Þð ÞTBT
1 R +mSð ÞCt0

Dα
t x t − τ2 tð Þð Þ

+ f1 t, x tð Þð Þð ÞTBT
1 R +mSð ÞB3

ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds

+ f2 t, x t − τ1 tð Þð Þð Þð ÞTBT
2 R +mSð ÞAx tð Þ

+ f2 t, x t − τ1 tð Þð Þð Þð ÞTBT
2 R +mSð ÞB1 f1 t, x tð Þð Þ

+ f2 t, x t − τ1 tð Þð Þð Þð ÞTBT
2 R +mSð ÞB2 f2 t, x t − τ1 tð Þð Þð Þ

+ f2 t, x t − τ1 tð Þð Þð Þð ÞTBT
2 R +mSð ÞCt0

Dα
t x t − τ2 tð Þð Þ

+ f2 t, x t − τ1 tð Þð Þð Þð ÞTBT
2 R +mSð ÞB3

ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds

+ t0
Dα
t x t − τ2 tð Þð Þ� �TCT R +mSð ÞAx tð Þ

+ t0
Dα
t x t − τ2 tð Þð Þ� �TCT R +mSð ÞB1 f1 t, x tð Þð Þ

+ t0
Dα
t x t − τ2 tð Þð Þ� �TCT R +mSð ÞB2 f2 t, x t − τ1 tð Þð Þð Þ

+ t0
Dα
t x t − τ2 tð Þð Þ� �TCT R +mSð ÞCt0

Dα
t x t − τ2 tð Þð Þ

+ t0
Dα
t x t − τ2 tð Þð Þ� �TCT R +mSð ÞB3

ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds

+
ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds
 !T

BT
3 R +mSð ÞAx tð Þ

+
ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds
 !T

BT
3 R +mSð ÞB1 f1 t, x tð Þð Þ

�
ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds
 !T

BT
3 R +mSð ÞB2 f2 t, x t − τ1 tð Þð Þð Þ

+
ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds
 !T

BT
3 R +mSð ÞCt0

Dα
t x t − τ2 tð Þð Þ

+
ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds
 !T

BT
3 R +mSð ÞB3

ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds

− f T1 t, x tð Þð ÞI f1 t, x tð Þð Þ − 1 − d1ð Þf T2 t, x t − τ1 tð Þð Þð Þ
� I f2 t, x t − τ1 tð Þð Þð Þ − 1 − d2ð Þ t0

Dα
t x t − τ2 tð Þð Þ� �T

� R t0
Dα
t x t − τ2 tð Þð Þ� �

− 1 − d3ð Þ
ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds
 !T

� I
ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds:

ð13Þ

Therefore, we can write

_V tð Þ ≤ ξTKξ, ð14Þ

where

K =

K11 K12 K13 K14 K15

KT
12 K22 K23 K24 K25

KT
13 KT

23 K33 K34 K35

KT
14 KT

24 KT
34 K44 K45

KT
15 KT

25 KT
35 KT

45 K55

0
BBBBBBBB@

1
CCCCCCCCA
,

K11 = ATP + PA + AT R +mSð ÞA
+ a21M

T
1M1 + a22M

T
2M2 + ε2a23M

T
3M3,

K12 = PB1 + AT R +mSð ÞB1,
K13 = PB2 + AT R +mSð ÞB2,
K14 = PC + AT R +mSð ÞC,
K15 = PB3 + AT R +mSð ÞB3,
K22 = BT

1 R +mSð ÞB1 − I,
K23 = BT

1 R +mSð ÞB2,
K24 = BT

1 R +mSð ÞC,
K25 = BT

1 R +mSð ÞB3,
K33 = BT

2 R +mSð ÞB2 − 1 − d1ð ÞI,
K34 = BT

2 R +mSð ÞC,
K35 = BT

2 R +mSð ÞB3,
K44 = CT R +mSð ÞC − 1 − d2ð ÞR,

K45 = CT R +mSð ÞB3,
K55 = BT

3 R +mSð ÞB3 − 1 − d3ð ÞI,

ξ = xT tð Þ, f T1 t, x tð Þð Þ, f T2 t, x t − τ1 tð Þð Þð Þ,t0Dα
t x

0
@

� t − τ2 tð Þð ÞT
ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds
 !T

1
A

T

:

ð15Þ

From axiom (8) of the theorem _VðtÞ is negative definite.
The trivial solution of system (5) is asymptotically stable.
This completes the proof.

Theorem 6. The trivial solution of system (5) is asymptoti-
cally stable, if kCk < 1, for all t > t0, τi′ðtÞ ≤ di < 1 ði = 1, 2, 3Þ,
jτ3ðtÞj ≤ ε and there exist positive and symmetric define matri-
ces P,Q2 and R such that the following LMI satisfies:

L =

L11 L12 L13 L14 L15

LT12 L22 L23 L24 L25

LT13 LT23 L33 L34 L35

LT14 LT24 LT34 L44 L45

LT15 LT25 LT35 LT45 L55

0
BBBBBBBB@

1
CCCCCCCCA

< 0, ð16Þ
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where

L11 = PA + ATP + a21M
T
1M1 + a22M

T
2M2

+ ε2a23M
T
3M3 +Q2 +mATRA,

L12 = PB1 +mATRB1,
L13 = PB2 +mATRB2,

L14 = −ATPC,
L15 = PB3 +mATRB3,
L22 =mBT

1 RB1 − I,
L23 =mBT

1 RB2,
L24 = −BT

1 PC,
L25 =mBT

1 RB3,
L33 =mBT

2 RB2 − 1 − d1ð ÞI,
L34 = −BT

2 PC,
L35 =mBT

2 RB3,
L44 = − 1 − d2ð ÞQ2,
L45 = −CTPB3,

L55 =mBT
3 RB3 − 1 − d3ð ÞI,

ð17Þ

m and ε are positive constants and I unit matrix.

Proof. Let the Lyapunov-Krasovskii function be defined by

V tð Þ= t0
Dα−1
t x tð Þ − Cx t − τ2 tð Þð Þð ÞTP x tð Þ − Cx t − τ2 tð Þð Þð Þ
� �

+
ðt
t−τ2 tð Þ

xT sð ÞQ2x sð Þds + a22

ðt
t−τ1 tð Þ

xT sð ÞMT
2M2x sð Þds

+ εa23

ð0
−τ3 tð Þ

ðt
t+s
xT ηð ÞMT

3M3x ηð Þdηds

+
ðt
t−m

ðt
θ

t0
Dα
s x sð Þ − Cx s − τ2 sð Þð Þð Þ� �TR t0

Dα
s x sð Þð�

− Cx s − τ2 sð Þð ÞÞÞdsdθ:
ð18Þ

Since P,Q2, and R matrices are positive definite, the
functional VðtÞ is positive definite. From (12) and Lemmas
2 and 3, the derivative of V ðtÞ is obtained along the trajec-
tories of system (5) as follows:

_V tð Þ = t0
Dα
t x tð Þ − Cx t − τ2 tð Þð Þð ÞTP x tð Þ − Cx t − τ2 tð Þð Þð Þ
� �

+ a21x
T tð ÞMT

1M1x tð Þ − a21x
T tð ÞMT

1M1x tð Þ
+ a22x

T tð ÞMT
2M2x tð Þ − 1 − τ1′ tð Þ

� �
a22x

T t − τ1 tð Þð Þ
�MT

2M2x t − τ1 tð Þð Þ + xT tð ÞQ2x tð Þ
− 1 − τ2′ tð Þ
� �

xT t − τ2 tð Þð ÞQ2x t − τ2 tð Þð Þ

+ εa23τ3 tð ÞxT tð ÞMT
3M3x tð Þ − εa23 1 − τ3′ tð Þ

� �
�
ðt
t−τ3 tð Þ

xT sð ÞMT
3M3x sð Þds

+m t0
Dα
t x tð Þ − Cx t − τ2 tð Þð Þð Þ� �T

� R t0
Dα
t x tð Þ − Cx t − τ2 tð Þð Þð Þ� �

−
ðt
t−m

t0
Dα
s x tð Þ − Cx t − τ2 tð Þð Þð Þ� �T

� R t0
Dα
s x tð Þ − Cx t − τ2 tð Þð Þð Þ� �

ds

≤ 2 x tð Þ − Cx t − τ2 tð Þð Þð ÞTPt0
Dα
t x tð Þ − Cx t − τ2 tð Þð Þð Þ

+ a21x
T tð ÞMT

1M1x tð Þ + a22x
T tð ÞMT

2M2x tð Þ
+ ε2a23x

T tð ÞMT
3M3x tð Þ + xT tð ÞQ2x tð Þ

+m t0
Dα
t x tð Þ − Cx t − τ2 tð Þð Þð Þ� �T

� R t0
Dα
t x tð Þ − Cx t − τ2 tð Þð Þð Þ� �T

− f T1 t, x tð Þð ÞI f1 t, x tð Þð Þ − 1 − d1ð Þ
� f T2 t, x t − τ1 tð Þð Þð ÞI f2 t, x t − τ1 tð Þð Þð Þ
− 1 − d2ð ÞxT t − τ2 tð Þð ÞQ2x t − τ2 tð Þð Þ

− 1 − d3ð Þ
ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds
 !T

I
ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds

= xT tð Þ PA + ATP + a21M
T
1M1 + a22M

T
2M2

�
+ ε2a23M

T
3M3 +mATRA +Q2Þx tð Þ

− 2xT t − τ2 tð Þð ÞCTPAx tð Þ + 2xT tð ÞPB1 f1 t, x tð Þð Þ
− 2xT t − τ2 tð Þð ÞCTPB1 f1 t, x tð Þð Þ
+ 2xT tð ÞPB2 f2 t, x t − τ1 tð Þð Þð Þ
− 2xT t − τ2 tð Þð ÞCTPB2 f2 t, x t − τ1 tð Þð Þð Þ
+ 2xT tð ÞPB3

ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds − 2xT t − τ2 tð Þð Þ

� CTPB3

ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds +mxT tð ÞATRB1 f1 t, x tð Þð Þ

+mxT tð ÞATRB2 f2 t, x t − τ1 tð Þð Þð Þ +mxT tð ÞATRB3

�
ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds +mf T1 t, x tð Þð ÞBT
1 RAx tð Þ

+mf T1 t, x tð Þð ÞBT
1 RB1 f1 t, x tð Þð Þ +mf T1 t, x tð Þð Þ

� BT
1 RB2 f2 t, x t − τ1 tð Þð Þð Þ +mf T1 t, x tð Þð ÞBT

1 RB3

�
ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds +mf T2 t, x t − τ1 tð Þð Þð ÞBT
2 RAx tð Þ

+mf T2 t, x t − τ1 tð Þð Þð ÞBT
2 RB1 f1 t, x tð Þð Þ

+mf T2 t, x t − τ1 tð Þð Þð ÞBT
2 RB2 f2 t, x t − τ1 tð Þð Þð Þ

+mf T2 t, x t − τ1 tð Þð Þð ÞBT
2 RB3

ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds

+m
ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds
 !T

BT
3 RAx tð Þ
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+m
ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds
 !T

BT
3 RB1 f1 t, x tð Þð Þ

+m
ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds
 !T

BT
3 RB2 f2 t, x t − τ1 tð Þð Þð Þ

+m
ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds
 !T

BT
3 RB3

ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds

− f T1 t, x tð Þð ÞI f1 t, x tð Þð Þ − 1 − d1ð Þf T2 t, x t − τ1 tð Þð Þð Þ
� I f2 t, x t − τ1 tð Þð Þð Þ − 1 − d2ð ÞxT t − τ2 tð Þð ÞQ2x t − τ2 tð Þð Þ

− 1 − d3ð Þ
ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds
 !T

I
ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds:

ð19Þ
Therefore, we can write

_V tð Þ ≤ ξTLξ, ð20Þ
where

L =

L11 L12 L13 L14 L15

LT12 L22 L23 L24 L25

LT13 LT23 L33 L34 L35

LT14 LT24 LT34 L44 L45

LT15 LT25 LT35 LT45 L55

0
BBBBBBBB@

1
CCCCCCCCA
,

L11 = PA + ATP + a21M
T
1M1 + a22M

T
2M2

+ ε2a23M
T
3M3 +Q2 +mATRA, L12

= PB1 +mATRB1,

L13 = PB2 +mATRB2,
L14 = −ATPC,

L15 = PB3 +mATRB3,
L22 =mBT

1 RB1 − I,
L23 =mBT

1 RB2,
L24 = −BT

1 PC,
L25 =mBT

1 RB3,
L33 =mBT

2 RB2 − 1 − d1ð ÞI,
L34 = −BT

2 PC,
L35 =mBT

2 RB3,
L44 = − 1 − d2ð ÞQ2,
L45 = −CTPB3,

L55 =mBT
3 RB3 − 1 − d3ð ÞI,

ξ = xT tð Þ, f T1 t, x tð Þð Þ, f T2 t, x t − τ1 tð Þð Þð Þ,
�

� xT t − τ2 tð Þð Þ,
ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds
 !T

1
A

T

:

ð21Þ

From the axiom (16) of the theorem _VðtÞ is negative def-
inite. The trivial solution of system (5) is asymptotically sta-
ble. This completes the proof.

4. Corollary

In this section, some results for the asymptotic stability of
the solutions of various variations of the fractional neutral
neural network (5) are expressed as a convex optimization
problem. Two examples are given to show that the results
obtained are applicable. The effectiveness of the results
obtained with the help of these examples is discussed.

Corollary 7. The trivial solution of system (5) is asymptoti-
cally stable, if kCk < 1, for all t > t0, τi′ðtÞ ≤ di < 1 ði = 1, 2, 3Þ,
jτ3ðtÞj ≤ ε and there exist a21, a

2
2, and a

2
3 numbers and symmet-

ric matrices P, R, and S such that the following convex optimi-
zation problem on a21 number and P, R, and S matrices is
solvable:

minimize −a21
subject to P > 0, R > 0, S > 0, K < 0,

ð22Þ

where K matrix defined by (8), m and ε are positive constants
and I unit matrix.

Corollary 8. The trivial solution of system (5) is asymptoti-
cally stable, if kCk < 1, for all t > t0, τi′ðtÞ ≤ di < 1 ði = 1, 2, 3Þ
, jτ3ðtÞj ≤ ε and there exist a21, a

2
2, and a23 numbers and sym-

metric matrices P,Q2, and R such that the following convex
optimization problem on a21 number and P,Q2, and R matri-
ces is solvable:

minimize − a21

subject to P > 0,Q2 > 0, R > 0, L < 0,
ð23Þ

where L matrix defined by (16), m and ε are positive con-
stants and I unit matrix.

If f2ðt, xðt − τ1ðtÞÞÞ = xðt − τ1ðtÞÞ, then the nonlinear
fractional neutral neural system (5) can be written as the fol-
lowing:

t0
Dα
t x tð Þ = Ax tð Þ + B1f1 t, x tð Þð Þ + B2x t − τ1 tð Þð Þ

+ C0D
α
t x t − τ2 tð Þð Þ + B3

ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds,

ð24Þ

where 0 < α < 1 is a real number, x = ½x1, x2,⋯,xn�T ∈ Rn is
the state vector, A, B1, B2, B3, C ∈ Rn×n are known constant
matrices, for all t > t0, τ1ðtÞ, τ2ðtÞ, τ3ðtÞ > 0 are time-
varying delays. f jðt, xÞðj = 1, 3Þ are vector-valued time-
varying nonlinear functions with f jðt, 0Þ = 0 and satisfy the
following Lipschitz condition for all ðt, xÞ ∈ R × Rn:

6 Journal of Mathematics



f j t, xð Þ
��� ��� ≤ aj Mjx

�� ��, ð25Þ

where Mj are constant matrices with appropriate dimension
and aj are positive numbers.

Corollary 9. The trivial solution of system (24) is asymptoti-
cally stable, if kCk < 1, for all t > t0, τi′ðtÞ ≤ di < 1ði = 1, 2, 3Þ,
jτ3ðtÞj ≤ ε and there exist a21 and a23 numbers and symmetric
matrices P,Q1, R, and S such that the following convex opti-
mization problem on a21 number and P,Q1, R, and S matrices
is solvable:

minimize − a21

subject to P > 0,Q1 > 0, R > 0, S > 0,

Δ =

Δ11 Δ12 Δ13 Δ14 Δ15

ΔT
12 Δ22 Δ23 Δ24 Δ25

ΔT
13 ΔT

23 Δ33 Δ34 Δ35

ΔT
14 ΔT

24 ΔT
34 Δ44 Δ45

ΔT
15 ΔT

25 ΔT
35 ΔT

45 Δ55

0
BBBBBBBB@

1
CCCCCCCCA

< 0,
ð26Þ

where

Δ11 = ATP + PA + AT R +mSð ÞA + a21M
T
1M1

+Q1 + ε2a23M
T
3M3,

Δ12 = PB1 + AT R +mSð ÞB1,
Δ13 = PB2 + AT R +mSð ÞB2,
Δ14 = PC + AT R +mSð ÞC,
Δ15 = PB3 + AT R +mSð ÞB3,
Δ22 = BT

1 R +mSð ÞB1 − I,
Δ23 = BT

1 R +mSð ÞB2,
Δ24 = BT

1 R +mSð ÞC,
Δ25 = BT

1 R +mSð ÞB3,
Δ33 = BT

2 R +mSð ÞB2 − 1 − d1ð ÞQ1,
Δ34 = BT

2 R +mSð ÞC,
Δ35 = BT

2 R +mSð ÞB3,
Δ44 = CT R +mSð ÞC − 1 − d2ð ÞR,
Δ45 = CT R +mSð ÞB3,
Δ55 = BT

3 R +mSð ÞB3 − 1 − d3ð ÞI,

ð27Þ

m and ε are positive constants and I unit matrix.

Corollary 10. The trivial solution of system (24) is asymptot-
ically stable, if kCk < 1, for all t > t0, τi′ðtÞ ≤ di < 1ði = 1, 2, 3Þ,
jτ3ðtÞj ≤ ε and there exist a21 and a23 numbers and symmetric
matrices P,Q1,Q2, and R such that the following convex opti-

mization problem on a21 number and P,Q1,Q2, and R matri-
ces is solvable:

minimize − a21

subject to P > 0,Q1 > 0,Q2 > 0, R > 0,

Z =

Z11 Z12 Z13 Z14 Z15

ZT
12 Z22 Z23 Z24 Z25

ZT
13 ZT

23 Z33 Z34 Z35

ZT
14 ZT

24 ZT
34 Z44 Z45

ZT
15 ZT

25 ZT
35 ZT

45 Z55

0
BBBBBBBB@

1
CCCCCCCCA

< 0,
ð28Þ

where

Z11 = PA + ATP + a21M
T
1M1 + ε2a23M

T
3M3

+Q1 +Q2 +mATRA,

Z12 = PB1 +mATRB1,
Z13 = PB2 +mATRB2,
Z14 = −ATPC,
Z15 = PB3 +mATRB3,
Z22 =mBT

1 RB1 − I,
Z23 =mBT

1 RB2,
Z24 = −BT

1 PC,
Z25 =mBT

1 RB3,
Z33 =mBT

2 RB2 − 1 − d1ð ÞQ1,
Z34 = −BT

2 PC,
Z35 =mBT

2 RB3,
Z44 = − 1 − d2ð ÞQ2,
Z45 = −CTPB3,
Z55 =mBT

3 RB3 − 1 − d3ð ÞI,

ð29Þ

m and ε are positive constants and I unit matrix.
If f3ðt, xðtÞÞ = xðtÞ, then the nonlinear fractional neutral

neural system (5) can be written as the following:

t0
Dα
t x tð Þ = Ax tð Þ + B1f1 t, x tð Þð Þ + B2f2 t, x t − τ1 tð Þð Þð Þ

+ Ct0
Dα
t x t − τ2 tð Þð Þ + B3

ðt
t−τ3 tð Þ

x sð Þds,

ð30Þ

where 0 < α < 1 is a real number, x = ½x1, x2,⋯,xn�T ∈ Rn is
the state vector, A, B1, B2, B3, C ∈ Rn×n are known constant
matrices, for all t > t0, τ1ðtÞ, τ2ðtÞ, τ3ðtÞ > 0 are time-
varying delays. f jðt, xÞðj = 1, 2Þ is vector-valued time-
varying nonlinear function with f jðt, 0Þ = 0 and satisfies the
following Lipschitz condition for all ðt, xÞ ∈ R × Rn:
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f j t, xð Þ
��� ��� ≤ aj Mjx

�� ��, ð31Þ

where Mj are constant matrices with appropriate dimension
and aj are positive numbers.

Corollary 11. The trivial solution of system (30) is asymptot-
ically stable, if kCk < 1, for all t > t0, τi′ðtÞ ≤ di < 1 ði = 1, 2, 3Þ,
jτ3ðtÞj ≤ ε and there exist a21 and a22 numbers and symmetric
matrices P,Q3, R, and S such that the following convex opti-
mization problem on a21 number and P,Q3, R, and S matrices
is solvable:

minimize −a21
subject to P > 0,Q3 > 0, R > 0, S > 0,

O =

O11 O12 O13 O14 O15

OT
12 O22 O23 O24 O25

OT
13 OT

23 O33 O34 O35

OT
14 OT

24 OT
34 O44 O45

OT
15 OT

25 OT
35 OT

45 O55

0
BBBBBBBB@

1
CCCCCCCCA

< 0,
ð32Þ

where

O11 = ATP + PA + AT R +mSð ÞA
+ a21M

T
1M1 + a22M

T
2M2 + ε2Q3,

O12 = PB1 + AT R +mSð ÞB1,
O13 = PB2 + AT R +mSð ÞB2,
O14 = PC + AT R +mSð ÞC,
O15 = PB3 + AT R +mSð ÞB3,
O22 = BT

1 R +mSð ÞB1 − I,
O23 = BT

1 R +mSð ÞB2,
O24 = BT

1 R +mSð ÞC,
O25 = BT

1 R +mSð ÞB3,
O33 = BT

2 R +mSð ÞB2 − 1 − d1ð ÞI,
O34 = BT

2 R +mSð ÞC,
O35 = BT

2 R +mSð ÞB3,
O44 = CT R +mSð ÞC − 1 − d2ð ÞR,
O45 = CT R +mSð ÞB3,
O55 = BT

3 R +mSð ÞB3 − 1 − d3ð ÞQ3,

ð33Þ

m and ε are positive constants and I unit matrix.

Corollary 12. The trivial solution of system (30) is asymptot-
ically stable, if kCk < 1, for all t > t0, τi′ðtÞ ≤ di < 1 ði = 1, 2, 3Þ,
jτ3ðtÞj ≤ ε and there exist a21 and a22 numbers and symmetric
matrices P,Q2,Q3, and R such that the following convex opti-

mization problem on a21 number and P,Q2,Q3, and R matri-
ces is solvable:

minimize −a21
subject to P > 0,Q2 > 0,Q3 > 0, R > 0,

Π =

Π11 Π12 Π13 Π14 Π15

ΠT
12 Π22 Π23 Π24 Π25

ΠT
13 ΠT

23 Π33 Π34 Π35

ΠT
14 ΠT

24 ΠT
34 Π44 Π45

ΠT
15 ΠT

25 ΠT
35 ΠT

45 Π55

0
BBBBBBBB@

1
CCCCCCCCA

< 0,
ð34Þ

where

Π11 = PA + ATP + a21M
T
1M1 + a22M

T
2M2

+ ε2Q3 +Q2 +mATRA,

Π12 = PB1 +mATRB1,
Π13 = PB2 +mATRB2,
Π14 = −ATPC,
Π15 = PB3 +mATRB3,
Π22 =mBT

1 RB1 − I,
Π23 =mBT

1 RB2,
Π24 = −BT

1 PC,
Π25 =mBT

1 RB3,
Π33 =mBT

2 RB2 − 1 − d1ð ÞI,
Π34 = −BT

2 PC,
Π35 =mBT

2 RB3,
Π44 = − 1 − d2ð ÞQ2,
Π45 = −CTPB3,
Π55 =mBT

3 RB3 − 1 − d3ð ÞQ3,

ð35Þ

m and ε are positive constants and I unit matrix.
If f2ðt, xðt − τ1ðtÞÞ = xðt − τ1ðtÞ and f3ðt, xðtÞÞ = xðtÞ,

then the nonlinear fractional neutral neural system (5) can
be written as the following:

t0
Dα
t x tð Þ = Ax tð Þ + B1f1 t, x tð Þð Þ + B2x t − τ1 tð Þð Þ

+ Ct0
Dα
t x t − τ2 tð Þð Þ + B3

ðt
t−τ3 tð Þ

x sð Þds, ð36Þ

where 0 < α < 1 is a real number, x = ½x1, x2,⋯,xn�T ∈ Rn is
the state vector, A, B1, B2, B3, C ∈ Rn×n are known constant
matrices, for all t > t0, τ1ðtÞ, τ2ðtÞ, τ3ðtÞ > 0 are time-
varying delays. f1ðt, xÞ is vector-valued time-varying nonlin-
ear function with f1ðt, 0Þ = 0 and satisfies the following
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Lipschitz condition for all ðt, xÞ ∈ R × Rn:

f1 t, xð Þk k ≤ a1 M1xk k, ð37Þ

where M1 is a constant matrix with appropriate dimension
and a1 is a positive number.

Corollary 13. The trivial solution of system (36) is asymptot-
ically stable, if kCk < 1, for all t > t0, τi′ðtÞ ≤ di < 1 ði = 1, 2, 3Þ,
jτ3ðtÞj ≤ ε and there exist a21 number and symmetric matrices
P,Q1,Q3, R, and S such that the following convex optimiza-
tion problem on a21 number and P,Q1,Q3, R, and S matrices
is solvable:

minimize −a21
subject to P > 0,Q1 > 0,Q3 > 0, R > 0, S > 0,

Σ =

Σ11 Σ12 Σ13 Σ14 Σ15

ΣT
12 Σ22 Σ23 Σ24 Σ25

ΣT
13 ΣT

23 Σ33 Σ34 Σ35

ΣT
14 ΣT

24 ΣT
34 Σ44 Σ45

ΣT
15 ΣT

25 ΣT
35 ΣT

45 Σ55

0
BBBBBBBB@

1
CCCCCCCCA

< 0,
ð38Þ

where

Σ11 = ATP + PA + AT R +mSð ÞA
+ a21M

T
1M1 +Q1 + ε2Q3,

Σ12 = PB1 + AT R +mSð ÞB1,
Σ13 = PB2 + AT R +mSð ÞB2,
Σ14 = PC + AT R +mSð ÞC,
Σ15 = PB3 + AT R +mSð ÞB3,
Σ22 = BT

1 R +mSð ÞB1 − I,
Σ23 = BT

1 R +mSð ÞB2,
Σ24 = BT

1 R +mSð ÞC,
Σ25 = BT

1 R +mSð ÞB3,
Σ33 = BT

2 R +mSð ÞB2 − 1 − d1ð ÞQ1,
Σ34 = BT

2 R +mSð ÞC,
Σ35 = BT

2 R +mSð ÞB3,
Σ44 = CT R +mSð ÞC − 1 − d2ð ÞR,
Σ45 = CT R +mSð ÞB3,
Σ55 = BT

3 R +mSð ÞB3 − 1 − d3ð ÞQ3,

ð39Þ

m and ε are positive constants and I unit matrix.

Corollary 14. The trivial solution of system (36) is asymptot-
ically stable, if kCk < 1, for all t > t0, τi′ðtÞ ≤ di < 1 ði = 1, 2, 3Þ,
jτ3ðtÞj ≤ ε and there exist a21 number and symmetric matrices

P,Q1,Q2,Q3, and R such that the following convex optimiza-
tion problem on a21 number and P,Q1,Q2,Q3, and R matrices
is solvable:

minimize −a21
subject to P > 0,Q1 > 0,Q2 > 0,Q3 > 0, R > 0,

Y =

Y11 Y12 Y13 Y14 Y15

YT
12 Y22 Y23 Y24 Y25

YT
13 YT

23 Y33 Y34 Y35

YT
14 YT

24 YT
34 Y44 Y45

YT
15 YT

25 YT
35 YT

45 Y55

0
BBBBBBBB@

1
CCCCCCCCA

< 0,
ð40Þ

where

Y11 = PA + ATP + a21M
T
1M1 + ε2Q3

+Q1 +Q2 +mATRA,

Y12 = PB1 +mATRB1,
Y13 = PB2 +mATRB2,
Y14 = −ATPC,
Y15 = PB3 +mATRB3,
Y22 =mBT

1 RB1 − I,
Y23 =mBT

1 RB2,
Y24 = −BT

1 PC,
Y25 =mBT

1 RB3,
Y33 =mBT

2 RB2 − 1 − d1ð ÞQ1,
Y34 = −BT

2 PC,
Y35 =mBT

2 RB3,
Y44 = − 1 − d2ð ÞQ2,
Y45 = −CTPB3,
Y55 =mBT

3 RB3 − 1 − d3ð ÞQ3,

ð41Þ

m and ε are positive constants and I unit matrix.

5. Numerical Examples

Example 1. Let the nonlinear fractional neutral neural sys-
tem be given by

t0
Dα
t x tð Þ = Ax tð Þ + B1 f1 t, x tð Þð Þ + B2 f2 t, x t − τ1 tð Þð Þð Þ

+ Ct0
Dα
t x t − τ2 tð Þð Þ + B3

ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds,

ð42Þ
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where

A =
−40 5 3
4 −20 1
1 2 −20

2
664

3
775,

B1 = B2 = B3 =
5 0 0
0 5 0
0 0 5

2
664

3
775,

C =
0:1 0 0
0 0:2 0
0 0 0:3

2
664

3
775,

f1 t, x tð Þð Þ = a1

sin x2 tð Þð Þ
sin x1 tð Þð Þ
sin x3 tð Þð Þ

0
BB@

1
CCA,

f2 t, x t − τ1 tð Þð Þð Þ = 0:4
e−0:5t sin x1 t − τ1 tð Þð Þð Þ
e−0:3t sin x2 t − τ1 tð Þð Þð Þ
e−0:4t sin x3 t − τ1 tð Þð Þð Þ

0
BB@

1
CCA,

f3 t, x tð Þð Þ = 0:6

1ffiffiffi
2

p sin x1 tð Þ + x3 tð Þð Þ

sin x2 tð Þð Þ
1ffiffiffi
2

p sin x1 tð Þ − x3 tð Þð Þ

0
BBBBBB@

1
CCCCCCA
,

ð43Þ

α ∈ ð1, 0Þ, τ1ðtÞ = 0:4t + 0:2 sin ðtÞ, τ2ðtÞ = 0:2t + 0:3 cos ðtÞ,
and τ3ðtÞ = 0:5 + 0:04 sin ðtÞ.

For f1ðt, xðtÞÞ, we have

f1 t, x tð Þð Þk k2 = a21 sin2 x2 tð Þð Þ + sin2 x1 tð Þð Þ + sin2 x3 tð Þð Þ� �
≤ a21 x21 tð Þ + x22 tð Þ + x23 tð Þ� �
= a21x

T tð ÞMT
1M1x tð Þ,

ð44Þ

where M1 = I3. For f2ðt, xðt − τ1ðtÞÞÞ, we have

f2 t, x t − τ1 tð Þð Þð Þk k2
= 0:16 e−t sin2 x2 t − τ1 tð Þð Þð Þ + e−0:6tsin2 x1 t − τ1 tð Þð Þð Þ�
+e−0:8tsin2 x3 t − τ1 tð Þð Þð Þ�

≤ 0:16 x21 tð Þ + x22 tð Þ + x23 tð Þ� �
= 0:16xT t − τ1 tð Þð ÞMT

2M2x t − τ1 tð Þð Þ,
ð45Þ

where M2 = I3. For f3ðt, xðtÞÞ, we have

f3 t, x tð Þð Þk k2

= 0:36
� 1
2 sin

2 x1 tð Þ + x3 tð Þð Þ

+ sin2 x1 tð Þð Þ + 1
2 sin

2 x1 tð Þ − x3 tð Þð Þ
�

≤ 0:36 1
2 x1 tð Þ + x3 tð Þð Þ2 + x22 tð Þ + 1

2 x1 tð Þ − x3 tð Þð Þ2
� �

= 0:36 x21 tð Þ + x22 tð Þ + x23 tð Þ� �
= 0:36xT tð ÞMT

3M3x tð Þ,
ð46Þ

where M3 = I3.
Let us choose d1 = 0:6, d2 = 0:5, d3 = 0:04, ε = 0:54, m =

0:001. Let the P,Q1,Q2,Q3, R, S matrices be defined by

P = p × I3,
Q1 = q1 × I3,
Q2 = q2 × I3,
Q3 = q3 × I3,
R = r × I3,
S = s × I3,

ð47Þ

for positive numbers p, q1, q2, q3, r, s. amax is the solution of
the convex optimization problem in the corresponding
result; λmax is the largest eigenvalue of the matrix in the cor-
responding result, which must be negative definite.

Table 1: Numerical solutions for Example 1.

Corollaries p q1 q2 q3 r s amax λmax

Corollary 7 0.1249 — — — 0.0040 0.0283 1.3360 −7:7393 × 10−7

Corollary 8 0.1515 — 0.5198 — 0.0817 — 1.3832 −0:0059
Corollary 9 0.1337 1.1361 — — 0.0043 0.0141 0.9778 −4:7656 × 10−7

Corollary 10 0.1676 1.2112 0.5721 — 0.0467 — 1.0479 −4:4837 × 10−5

Corollary 11 0.1326 — — 1.3443 0.0043 0.0125 1.2761 −1:1118 × 10−6

Corollary 12 0.1626 — 0.5569 1.4256 0.0641 — 1.3285 −2:0478 × 10−4

Corollary 13 0.1715 1.4609 — 1.7441 0.0056 0.0088 0.9214 −1:2880 × 10−6

Corollary 14 0.2225 1.6103 0.7581 1.9257 0.0473 — 1.0168 −4:6914 × 10−5
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The solutions to the convex optimization problems in the
conclusions obtained for the variations of the (42) system
are presented in Table 1 to make it easier to compare the
conclusions. Matlab-LMI Toolbox has been used to calculate
the numerical solutions in this table.

The tolerable bounds (amax) of the results obtained from
Theorem 6 are greater than the tolerable bounds of the
results obtained from Theorem 5, as shown in Table 1.

Example 2. Let the nonlinear fractional neutral neural sys-
tem be given by

t0
Dα
t x tð Þ = Ax tð Þ + B1 f1 t, x tð Þð Þ + B2 f2 t, x t − τ1 tð Þð Þð Þ

+ Ct0
Dα
t x t − τ2 tð Þð Þ + B3

ðt
t−τ3 tð Þ

f3 s, x sð Þð Þds,

ð48Þ

where

A =
−65 5 1
2 −25 1
3 1 −80

2
664

3
775,

B1 =
1 0 0
0 2 0
0 0 3

2
664

3
775,

B2 =
4 0 0
0 5 0
0 0 6

2
664

3
775,

B3 =
7 0 0
0 8 0
0 0 9

2
664

3
775,

C =
0:1 0 0
0 0:2 0
0 0 0:1

2
664

3
775,

f1 t, x tð Þð Þ = a1

1ffiffiffi
2

p sin x1 tð Þ + x2 tð Þð Þ

sin x3 tð Þð Þ
1ffiffiffi
2

p sin x1 tð Þ − x2 tð Þð Þ

0
BBBBBB@

1
CCCCCCA
,

f2 t − τ1 tð Þð Þð Þ = 0:5
e−0:6t sin x1 t − τ1 tð Þð Þð Þ
e−0:5t sin x2 t − τ1 tð Þð Þð Þ
e−0:8t sin x3 t − τ1 tð Þð Þð Þ

0
BB@

1
CCA,

f3 t, x tð Þð Þ = 0:15

1ffiffiffi
2

p sin x1 tð Þ + x3 tð Þð Þ

sin x2 tð Þ + x3 tð Þð Þ
1ffiffiffi
2

p sin x1 tð Þ + x2 tð Þð Þ

0
BBBBBB@

1
CCCCCCA
,

ð49Þ

α ∈ ð1, 0Þ, τ1ðtÞ = 30 + 0:2t + 0:1 cos ðtÞ, τ2ðtÞ = 10 + 0:3t +
0:2 sin ðtÞ, and τ3ðtÞ = 0:1 + 0:03 sin ðtÞ. For f1ðt, xðtÞÞ, we
have

f1 t, x tð Þð Þk k2

= a21

� 1
2 sin

2 x1 tð Þ + x2 tð Þð Þ + sin2 x3 tð Þð Þ

+ 1
2 sin

2 x1 tð Þ − x2 tð Þð Þ
�

≤ a21
1
2 x1 tð Þ + x2 tð Þð Þ2 + x23 tð Þ + 1

2 x1 tð Þ − x2 tð Þð Þ2
� �

= a21 x21 tð Þ + x22 tð Þ + x23 tð Þ� �
= a21x

T tð ÞMT
1M1x tð Þ,

ð50Þ

where M1 = I3. For f2ðt, xðt − τ1ðtÞÞÞ, we have

Table 2: Numerical solutions for Example 2.

Corollaries p q1 q2 q3 r s amax λmax

Corollary 7 0.2034 — — — 0.0037 0.0591 2.1212 −6:6719 × 10−6

Corollary 8 0.2347 — 0.4821 — 0.2406 — 2.2420 −0:0010
Corollary 9 0.2262 1.4181 — — 0.0042 0.0264 1.9674 −1:8412 × 10−6

Corollary 10 0.2649 1.5066 0.5382 — 0.1582 — 2.1105 −1:1406 × 10−4

Corollary 11 0.5133 — — 33.2800 0.0093 0.0929 3.3488 −1:6887 × 10−6

Corollary 12 0.5976 — 1.2075 36.0390 0.2756 — 3.5497 −1:8091 × 10−4

Corollary 13 3.5778 22.4603 — 277.0393 0.0608 0.2733 7.6140 −2:2252 × 10−6

Corollary 14 4.3805 25.1945 8.9098 265.5547 3.0956 — 8.3108 −1:1824 × 10−4

11Journal of Mathematics



f2 t, x t − τ1 tð Þð Þð Þk k2
= 0:25 e−1:2tsin2 x2 t − τ1 tð Þð Þð Þ + e−tsin2 x1 t − τ1 tð Þð Þð Þ� �

+ e−1:6tsin2 x3 t − τ1 tð Þð Þð Þ ≤ 0:25 x21 tð Þ + x22 tð Þ + x23 tð Þ� �
= 0:25xT t − τ1 tð Þð ÞMT

2M2x t − τ1 tð Þð Þ,
ð51Þ

where M2 = I3. For f3ðt, xðtÞÞ, we have

f3 t, x tð Þð Þk k2 = 0:0225 sin2 x1 tð Þ + x3 tð Þð Þ + sin2 x2 tð Þð�
+ x3 tð ÞÞ + sin2 x1 tð Þ + x2 tð Þð ÞÞ

= 0:0225 x1 tð Þ + x3 tð Þ½ �2 + � x2 tð Þ + x3 tð Þ½ �2�
+ x1 tð Þ + x2 tð Þ½ �2Þ = 0:09xT tð ÞMT

3M3x tð Þ,
ð52Þ

where

M3 =

4
6

1
6

1
6

1
6

4
6

1
6

1
6

1
6

4
6

2
6666664

3
7777775
: ð53Þ

Let us choose d1 = 0:3, d2 = 0:5, d3 = 0:03, ε = 0:13, m =
0:001. Let the P,Q1,Q2,Q3, R, S matrices be defined by

P = p × I3,
Q1 = q1 × I3,
Q2 = q2 × I3,
Q3 = q3 × I3,
R = r × I3,
S = s × I3,

ð54Þ

for positive numbers p, q1, q2, q3, r, s. amax is the solution of
the convex optimization problem in the corresponding
result; λmax is the largest eigenvalue of the matrix in the cor-
responding result, which must be negative definite.

The solutions to the convex optimization problems in
the conclusions obtained for the variations of the (48) sys-
tem are presented in Table 2 to make it easier to compare
the conclusions. Matlab-LMI Toolbox has been used to cal-
culate the numerical solutions in this table.

The tolerable bounds (amax) of the results obtained from
Theorem 6 are greater than the tolerable bounds of the
results obtained from Theorem 5, as shown in Table 2.

6. Conclusion

The asymptotic stability of solutions for a class of nonlinear
fractional neutral neural systems with time-dependent
delays is obtained using the Lyapunov-Krasovskii method

with linear matrix equation inequality. The obtained suffi-
cient conditions are expressed in terms of LMI to find the
less conservative criteria.
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Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] J. Hale, Theory of Functional Differential Equations, Springer-
Verlag, New York, NY, 1977.

[2] A. Kilbas, H. Srivastava, and J. Trujillo, Theory and Applica-
tions of Fractional Differential Equations, vol. 204, Elsevier,
New York, NY, 2006.

[3] I. Podlubny, Fractional Differential Equations of Mathematics
in Science and Engineering, Academic Press, San Diego, CA,
1999.

[4] S. Boyd, L. Ghaoui, E. Feron, and V. Balakrishnan, “Linear
matrix inequalities in system and control theory,” Society for
Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 1994.

[5] D. Ding, Z. You, Y. Hu, Z. Yang, and L. Ding, “Finite-time syn-
chronization for fractional-order memristor-based neural net-
works with discontinuous activations and multiple delays,”
Modern Physics Letters B, vol. 34, no. 15, p. 2050162, 2020.

[6] E. Korkmaz and C. Tunc, “Stability and boundedness to cer-
tain differential equations of fourth order with multiple
delays,” Univerzitet u Nišu, vol. 28, no. 5, pp. 1049–1058, 2014.

[7] E. Korkmaz and C. Tunc, “On some qualitative behaviors of
certain differential equations of fourth order with multiple
retardations,” Journal of Applied Analysis and Computation,
vol. 6, no. 2, pp. 336–349, 2016.

[8] E. Korkmaz, “Stability and boundedness of solutions of non-
linear fourth order differential equations with bounded delay,”
Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 21,
no. 6, pp. 1317–1324, 2017.

[9] L. P. Chen, Y. G. He, Y. Chai, and R. C. Wu, “New results on
stability and stabilization of a class of nonlinear fractional-
order systems,” Nonlinear Dynamics, vol. 75, no. 4, pp. 633–
641, 2014.

[10] M. Duarte-Mermoud, N. Aguila-Camacho, J. Gallegos, and
R. Castro-Linares, “Using general quadratic Lyapunov func-
tions to prove Lyapunov uniform stability for fractional order
systems,” Communications in Nonlinear Science and Numeri-
cal Simulation, vol. 22, no. 1-3, pp. 650–659, 2015.

[11] E. Korkmaz and A. Özdemir, “Lyapunov Fonksiyonları ile
Fraksiyonel Diferansiyel Denklemlerin Kararlılığı,” Muş
Alparslan Üniversitesi Fen Bilimleri Dergisi, vol. 7, no. 1,
pp. 635–638, 2019.

[12] Y. Li, Y. Chen, and I. Podlubny, “Stability of fractional-order
nonlinear dynamic systems: Lyapunov direct method and gen-
eralized Mittag-Leffler stability,” Computers and Mathematics
with Applications, vol. 59, no. 5, pp. 1810–1821, 2010.

12 Journal of Mathematics



[13] H. Li, S. Zhou, and H. Li, “Asymptotic stability analysis of
fractional-order neutral systems with time delay,” Advances
in Difference Equations, vol. 2015, 335 pages, 2015.

[14] M. Li and J. Wang, “Finite time stability of fractional delay dif-
ferential equations,” Applied Mathematics Letters, vol. 64,
pp. 170–176, 2017.

[15] N. Aguila-Camacho and M. Duarte-Mermoud, “Comments
on "fractional order Lyapunov stability theorem and its appli-
cations in synchronization of complex dynamical networks",”
Communications in Nonlinear Science and Numerical Simula-
tion, vol. 25, no. 1-3, pp. 145–148, 2015.

[16] S. Arik and V. Tavsanoglu, “On the global asymptotic stability
of delayed cellular neural networks,” IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications,
vol. 47, no. 4, pp. 571–574, 2000.

[17] L. P. Chen, C. Liu, R. C. Wu, Y. G. He, and Y. Chai, “Finite-
time stability criteria for a class of fractional-order neural net-
works with delay,” Neural Computing and Applications,
vol. 27, no. 3, pp. 549–556, 2016.

[18] X. Ding, J. Cao, X. Zhao, and F. Alsaadi, “Finite-time stability
of fractional-order complex-valued neural networks with time
delays,” Neural Processing Letters, vol. 46, no. 2, pp. 561–580,
2017.

[19] J. H. Park, “On global stability criterion for neural networks
with discrete and distributed delays,” Chaos, Solitons & Frac-
tals, vol. 30, no. 4, pp. 897–902, 2006.

[20] F. Ren, F. Cao, and J. Cao, “Mittag-Leffler stability and gener-
alized Mittag-Leffler stability of fractional-order gene regula-
tory networks,” Neurocomputing, vol. 160, pp. 185–190, 2015.

[21] M. Syed Ali, S. Saravanan, and Q. Zhu, “Finite-time stability of
neutral-type neural networks with random time-varying
delays,” International Journal of Systems Science, vol. 48,
no. 15, pp. 3279–3295, 2017.

[22] Z. Wang, Y. Liu, and X. Liu, “On global asymptotic stability of
neural networks with discrete and distributed delays,” Physics
Letters A, vol. 345, no. 4-6, pp. 299–308, 2005.

[23] X. Yang, Q. Song, Y. Liu, and Z. Zhao, “Finite-time stability
analysis of fractional-order neural networks with delay,” Neu-
rocomputing, vol. 152, pp. 19–26, 2015.

[24] S. Zhang, Y. Yu, and J. Yu, “LMI conditions for global stability
of fractional-order neural networks,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 28, no. 10,
pp. 2423–2433, 2017.

[25] H. Zhang, R. Ye, J. Cao, and A. Alsaedi, “Delay-independent
stability of Riemann-Liouville fractional neutral-type delayed
neural networks,” Neural Processing Letters, vol. 47, no. 2,
pp. 427–442, 2018.

[26] H. Zhang, R. Ye, S. Liu, J. Cao, A. Alsaedi, and X. Li, “LMI-
based approach to stability analysis for fractional-order neural
networks with discrete and distributed delays,” International
Journal of Systems Science, vol. 49, no. 3, pp. 537–545, 2018.

[27] K. Gu, “An integral inequality in the stability problem of time-
delay systems,” in Proceedings of the 39th IEEE Conference on
Decision and Control, pp. 2805–2810, Los Alamitos, CA, 2000.

[28] D. Qian, C. Li, R. P. Agarwal, and P. J. Y. Wong, “Stability
analysis of fractional differential system with Riemann-
Liouville derivative,” Mathematical and Computer Modelling,
vol. 52, no. 5-6, pp. 862–874, 2010.

[29] Y. Altun and C. Tunç, “On the asymptotic stability of a nonlin-
ear fractional-order system with multiple variable delays,”

Applications and Applied Mathematics, vol. 15, pp. 458–468,
2020.

[30] W. H. Deng, C. P. Li, and J. H. Lu, “Stability analysis of linear
fractional differential system with multiple time delays,” Non-
linear Dynamics, vol. 48, no. 4, pp. 409–416, 2007.

[31] J. Wang, L. Lv, and Y. Zhou, “New concepts and results in sta-
bility of fractional differential equations,” Communications in
Nonlinear Science and Numerical Simulation, vol. 17, no. 6,
pp. 2530–2538, 2012.

[32] O. Kwon, J. Park, S. Lee, and E. Cha, “New augmented
Lyapunov-Krasovskii functional approach to stability analysis
of neural networks with time-varying delays,” Nonlinear
Dynamics, vol. 76, no. 1, pp. 221–236, 2014.

[33] T. H. Lee, J. H. Park, M. J. Park, O. M. Kwon, and H. Y. Jung,
“On stability criteria for neural networks with time-varying
delay using Wirtinger-based multiple integral inequality,”
Journal of the Franklin Institute, vol. 352, no. 12, pp. 5627–
5645, 2015.

[34] S. Liu, X. Li, X. F. Zhou, and W. Jiang, “Lyapunov stability
analysis of fractional nonlinear systems,” Applied Mathematics
Letters, vol. 51, pp. 13–19, 2016.

[35] S. Liu, X. Zhou, X. Li, and W. Jiang, “Asymptotical stability of
Riemann-Liouville fractional nonlinear systems,” Nonlinear
Dynamics, vol. 86, no. 1, pp. 65–71, 2016.

[36] S. Liu, X. Wu, Y. J. Zhang, and R. Yang, “Asymptotical stability
of Riemann-Liouville fractional neutral systems,” Applied
Mathematics Letters, vol. 69, pp. 168–173, 2017.

[37] J. Jia, X. Huang, Y. Li, J. Cao, and A. Alsaedi, “Global stabiliza-
tion of fractional-order memristor-based neural networks with
time delay,” IEEE transactions on neural networks and learning
systems, vol. 31, no. 3, pp. 997–1009, 2020.

[38] Z. Wang, X. Wang, J. Xia, H. Shen, and B. Meng, “Adaptive
sliding mode output tracking control based-FODOB for a class
of uncertain fractional-order nonlinear time-delayed systems,”
Science China Technological Sciences, vol. 63, no. 9, pp. 1854–
1862, 2020.

13Journal of Mathematics


	Asymptotical Stability of Riemann-Liouville Nonlinear Fractional Neutral Neural Networks with Time-Varying Delays
	1. Introduction
	2. Preliminaries
	3. Main Results
	4. Corollary
	5. Numerical Examples
	6. Conclusion
	Data Availability
	Conflicts of Interest

