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In this paper, the asymptotic stability of solutions is investigated for a class of nonlinear fractional neutral neural networks with
time-dependent delays which are unbounded. By constructing the appropriate Lyapunov functional, sufficient conditions for
asymptotic stability of neural networks are obtained with the help of LMI. An example is presented by using the LMI Toolbox

to demonstrate the effectiveness of the obtained results.

1. Introduction

Fractional calculus with a history of more than 300 years has
been proved to be valuable tools in modeling many phenom-
ena in the various fields of engineering, physics, control sys-
tems, diffusion, epidemic model, financial systems, and so
on [1-3]. Fractional derivative, which is a generalization of
the integer derivative, has different definitions such as
Caputo, Riemann-Liouville, Griinwald-Letnikov, and Hada-
mard, which were defined by different researchers [3]. Qual-
itative properties such as stability, asymptotic stability, and
exponential stability of the solutions of the equations with
delay or without delay of phenomena modeled in various
fields with fractional differential equations have been studied
by many authors. In most of these analyses, sufficient condi-
tions for qualitative properties have been obtained by using
the Lyapunov-Krasovskii functional known as the energy
function. Some of these studies used LMI because it is one
of the most useful tools for showing the derivative of the
Lyapunov functional to be less than zero [4]. In [5], making
use of the stability theorem of fractional-order systems with
multiple time delays, some fractional derivative inequalities,
and comparison theorem, several sufficient criteria are estab-
lished for confirming that the synchronization error of the
concerned system can reach zero within a limited time. In
[6-8], sufficient conditions are obtained for the stability of

solutions of certain fourth-order differential equations by
using Lyapunov’s second method. In [9-14], sufficient condi-
tions were searched for qualitative properties such as stability,
uniform stability, and asymptotic stability of solutions of frac-
tional order delayed, undelayed, or neutral differential
equations.

The other popular topic of recent times is neural net-
works, known as a part of the human brain, which has been
the subject of research for more than 1000 years. Artificial
neural networks are an information processing technology
inspired by the information processing technique of the
human brain. Researchers can refer to the references and
their references for detailed information on the work done
on fractional order modeled neural networks. In [15-38],
global asymptotic stability, global stability, and Mittag-
Leffler stability analyses of solutions of neural network equa-
tions modeled in fractional order are reported, and valuable
results are obtained.

When the existing literature is examined, it is seen that
the Riemann-Liouville derivative and Caputo derivative are
mostly used among the definitions of fractional derivatives
for fractional equations and systems of equations. A com-
parison between these two derivatives shows that the Caputo
derivative is used more often because the initial conditions
coincide with systems of integer order, which contributes
to describing some well-understood properties of the
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physical process and makes it more applicable to real phe-
nomena. On the other hand, the main advantage of the
Riemann-Liouville derivative lies in the composition proper-
ties of the Riemann-Liouville fractional derivative and inte-
gral. Furthermore, the Riemann-Liouville derivative is a
continuous operator of order g [1-3].

In this paper, our main goal is to build an appropriate
Lyapunov functional to discuss the asymptotic stability of
the Riemann-Liouville fractional-order neural networks with
time-varying delays, using the mentioned advantage of the
Riemann derivative. The acquired stability criteria are
expressed as the matrix inequalities, which are also suitable

and practicable to test the asymptotic stability of the
addressed neural networks. Specifically, the original contri-
bution of the present paper to literature is that by employing
the Lyapunov functional method, sufficient conditions, for
showing the asymptotic stability of solutions for a class of
nonlinear fractional neutral neural networks with time-
dependent unbounded delays, are derived. In order to indi-
cate the validation of the obtained results, an example is pre-
sented. Obtained results show that conditions proved in this
paper are sufficient for asymptotic stability of solutions of
nonlinear fractional neutral neural networks with time-
dependent unbounded delays.

2. Preliminaries

In this section, we introduce some fundamental definitions
of fractional calculus together with important lemmas.

Note that n-dimensional Euclidean space is denoted by
R". The set of entire nxn real matrices is indicated by
R™"._ The Euclidean norm of a real vector x is denoted by
|lx||- The spectral norm of matrix A is indicated by [|A]|.
When A <0 (or A > 0), the symmetric matrix A is negative
definite (or positive definite).

Definition 1. The Riemann-Liouville fractional derivative
and integral are described as the following, respectively,

tOD?x(t) =

1 4 Jt x(s)

—- ds(n—-1<a<n),
F(I’l—(x) dtn ) (t_s)a+1—n ( )

D;%x(t) = F(l(x)Jt (t—s)*"x(s)ds (> 0)

ty

(see [3]).

Lemma 2. If « > 3> 0, then
o DF (1, D7"x(t))=,, Df “x(t) )

holds for “sufficiently good” functions x(t). Particularly, if x
(t) is integrable, then this relation holds (see [2]).
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Lemma 3. If x(t) € R" is a vector of differentiable function,
then the following relationship satisfies

! Df (x" (t)Px(t)) <x"(t)P, Dix(t), Vae(0,1)¥t>1,

2, !
(3)

where P € R™" is a positive semidefinite, symmetric, square,
and constant matrix (see [35]).

Lemma 4. For any positive definite matrix Q > 0, scalar 3> 0,
vector function f(-): [0, f] — R" such that the integrations
concerned are well defined, the following inequality holds:

([Froas) o ['soas) <( [ o) 0

(see [27]).
3. Main Results

Now, we present the stability of solutions of nonlinear frac-
tional neutral neural networks having time-varying delays.
We further consider linear matrix inequality to determine
sufficient conditions on the asymptotical stability of solu-
tions of these systems.

Let the fractional nonlinear neutral neural system be
given by the following:

oDix(t) = Ax(t) + B, f, (1, x(t)) + Bof, (£ x(t = 74(1)))

(s

t=75(1)

+CoDix(t —7,(t)) + B3J
(5)

where 0 <a <1 is a real number, x =[x, X,,--x,]” € R" is
the state vector, A, B, B,, B;, C € R™" are known constant
matrices, for all t>t, 7,(t),7,(t),73(t)>0 are time-
varying delays. f,(t,x)(j=1,2,3) are vector-valued time-
varying nonlinear functions with f;(t,0) = 0 and satisfy the
following Lipschitz condition for all (¢, x), (t,%) € Rx R™

Hfj(t,x)-fj(t,x)HSajHMj(x—x), i=1,2,3, (6)

where M are constant matrices with appropriate dimension
and a; are positive numbers. Consequently, from (6), we
have

Hfj(t,x)HSajHij . j=1,2,3. (7)

Theorem 5. The trivial solution of system (5) is asymptotically
stable, if ||C||<1, for all t>t, 7,(t)<d;<1(i=1,23),
|75(t)| <& and there exist positive and symmetric definite
matrices P,R, and S such that the following LMI satisfies:
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K,, K, K;; K, K From (7) inequality,
K, Ky Ky Ky K

£ (6 x(0)f;(tx(1))
K=|Kj; Kj Ky Kiy K [<0 (8) ) 2 T T . (11)
o on <a HMxH =aix' (M Mx(t), j=1,2,3,
Ky Ky Ky Ky Ky

K1T5 K2T5 K3T5 KZ5 Ks;s can be written. Hence, according to Lemma 4 and (11), for
all fixed t, we can get

2

—ea; x"(s)M3 M,x(s)ds

where Jt

t=15(t)

K, =A"P+PA+AT(R+mS)A+alMI M,

t
<-1.(t)a? xL(s)MT M, x(s)ds
MM, + 22T (0] MM

‘ (12)
K,,=PB, + AT(R+mS)B,, < —13(1‘)J 13 (5, x(5))f5 (s, x(s))ds
K,;=PB, +A"(R+mS)B,, () .
t t
K,,=PC+AT(R+mS)C, <- (J f5(s, x(s))ds) IJ f3(s,x(s))ds.
K5 = PB, + AT(R + mS)B,, el ol
Ky, =B (R+mS)B; ~ 1, From (12) and Lemmas 2 and 3, the derivative of V(¢) is
K5 =BT (R+mS)B obtained along the trajectories of system (5) as follows:
©)
_nT .
K =B; (R+mS)C, V(t)=, Df (xT(t)Px(t)) +alx" (H)MT M, x(t)
_pT
Ky5 = B; (R+mS)B;, - alx" (MM, x(t) + (tODfx(t))TR( W Dix(t))
_gT _(1—
Ky =B;(R+mS8)B, = (1-d,)I, - (1 - T;(t)) (1, Dix(t = 1,(£))) "R(, Dix(t ~7(t)))
Ky, =B (R+mS)C,
s Do) v (OMIMyx(t) - (1-74(0)) a3 (¢ =7, (1)
K5 = BI(R+mS)B,,
- My Myx(t =1y (1)) + m(, Dix(t)) " S(,, Dix(1))
Ky=C'(R+mS)C—(1-d,)R, X ! ’
(04 T (09
K= CT(R + mS)B, - J (tOsz(t>) S( ,Osz(t))ds +eajTs (t)x"
> t—-m
t
Ks5= B3 (R+mS)B; ~ (1-d)I, (OMIM,x(t) - ea> (1 - r;(t))J X
t=75(t)
- ($)M3 Myx(s)ds < 2x" (t)PD{x(t) + ajx"
m and € are positive constants and I unit matrix. (S)M; Max(s)ds < 27 ()PDx(t) +a3x
(MM x(t) + a3x” ()M Myx(t) + e a3x”
Proof. Let the Lyapunov-Krasovskii functional be defined by (1) M; Mix(t) + (to D‘fx(t))T( R+mS) ( o DS x(t))
= (L= d)f; (6x(t = (D) I (6 x(t = 7,(1)))
0 T
V(t): tOD‘:_l (xT(t)Px(t)> +J (tOD?x(t‘FS))T _fl (t’x(t))lfl(t’xgt))_(l_dz)
’TZ(:) : (tDD?x(t_ 7,(1))) R(tDD?x(t_ 7,(t)))
“R(, Dfx(t+s ds+a2J xT (s)MI M, x(s)ds t T
(WPt dsra) | EOMMA) ~a-ay( [ pexends) 1 peaos
¢ ¢ . t=75(t) t=15(t)
+ J J (1, Dfx(t+5))" S, Dix(s))dsdo =xT(t)(ATP+ PA+ a?MTM, + 2MIM, + €a2MI M,
-mdJ 0
tz o . + AT(R+mS)A)x(t) + 2x" (t)PB,f, (t, x(t))
+ £a3J_T3(t)Jt+5x (M3 M;x(n)dnds. + 21T (H)PB,f, (1, x(t - 1, (£)))
(10) + 2xT(t)PCtUD‘t"x(t - 1,(1))

t
+ 2xT(t)PB3J fil(s,x(s))ds + xT (£)AT
Since P,R, and S matrices are positive definite, the )

Lyapunov-Krasovskii functional V(t) is positive definite. - (R+mS)Byf, (t,x(t)) + x" () AT (R+ mS)



By (6 x(t -, (1)) + 2T

tT3(t)
+ (f1(6:x(1))) " Bf (R+ mS)Ax(t)
+ (fi(6:x(1)))"B{ (R+ mS)Byf, (t, (1))
+ (fi(6x(1)))'Bf (R+ mS)Bzfz(t)X(t -7(1)))
+ (f1(6:x(1)))"B{ (R+ mS)C, Dix(t — 7,(t)

+(fi(t,x(t))) Bl (R + m$) B3J

t-15(t

+ (b x(t=7,(1)))) By (R + mS)AX( )

+ (ot x(t=7,())) ' B; (R + mS)B, f, (1, x(t))

+ (b x(t=7,()))) By (R +mS)Bofy (£ x(t =7 (1))
+ (b x(t=7,(1)))) ' B; (R + mS)C, Dix(t = 15(t))

t

f3(s,x(s))ds

=75(t)

+ ({6 x(t — 7,(1)))) "B (R + mS)BJ

+ (4, Dix(t - 7,(t))) CT(R+ mS)Ax(t)
+ (, Dix(t=15(t))) " C"(R+ mS)B,f, (£, x(t))
+ (1, Dix(t=15(t))) " C"(R+ mS)Byf, (£ x(t - 7,(t)))
+ (4, Dix(t = 75(1))) " CT (R + mS)C, Dfx(t = 7,(1)
+ (,Dx(t - (1)) CT(R + mS)BSJt fy(5.x(5))ds
t=75(t)
. T
+ (J f3(s,x(s))ds> BI(R+mS)Ax(t)
t=15(t)
. T
: (j 5 (sx(s))ds) B (R-+ m)Bf (1. (1)

(t)AT (R+mS)C, Dix(t —1,(t))

(Jt fs(S,x(S))dS> By (R+mS)Byf, (1, x(t = 7(t)))

t=75(t)

jt £ <>>ds) BI (R4 mS)C,, Dix(t - 1,(1))

-fi (t’x(t))lfl(t’x(t)) —(1-d)f; (bx(t-7,(1))

Ify (6 x(E =7y ()) = (1= dy) (o, Dfx(t = 7a(1))"
R(, Dix{t=a(t)) - (1-d) (J S (sm(s))ds)
i t 5(s,x(s))ds
J,. o)
Therefore, we can write
V(t) <E'KE,

s) BI (R+mS) B3Jt7 (t>f3(s,x(s))ds

(13)
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where

KIZ
K22
K
K;4 K44
Ky K35 Kis
K, =A"P+PA+AT(R+mS)A
+aM{ M, + aM) M, + €ai M1 M;,
K,,=PB, + AT(R+mS)B,,
K,;=PB, + AT(R+mS)B,,
K, =PC+AT(R+mS)C,
K5 =PB;+AT(R+mS)B;,
K,, =Bl (R+mS)B, -1,
K,; = BI (R+mS)B,,
K,y =Bl (R+mS)C,
K,5 =B (R +mS)B;,
Ky =Bl (R+mS)B, - (1-d,)I,
K, =B; (R+mS)C,
K;5 = BI (R +mS)B,,
Ky =C'(R+mS)C~ (1-d,)R,
Ky =C"(R+mS)B;,
Ky =Bl (R+mS)B; — (1-dy)I,

(15)

£= (xT<t>,f?<r,x<r>>,f§ (8, x(t = (), Dix

.(t—rz(t))T <J:_ (t)f3(s,x(s))ds) ) .

From axiom (8) of the theorem V(t) is negative definite.
The trivial solution of system (5) is asymptotically stable.
This completes the proof. O

Theorem 6. The trivial solution of system (5) is asymptoti-
cally stable, if |C|| < L forall t > t, T/(t) <d, < 1(i=1,2,3),
|75(t)| < € and there exist positive and symmetric define matri-
ces P, Q, and R such that the following LMI satisfies:

Ly Ljs

Li, Ly Ly Ly Ly
L=|Lj Ly Ly Ly Ly | <0 (16)

Ly Ly Ly Ly Ly

Lis Ly Lis Ly Lss
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where

L, =PA+A"P+alMIM, +a2MIM,
+&2alMIM; + Q, + mATRA,
L,,=PB, + mA'RB,,
L,;=PB,+mATRB,,
L,,=-ATPC,
L,s=PB;+ mATRB,,
L,,=mBIRB, -1,
L,;=mBIRB,,
L,,=-BTPC,
L,s = mBIRB;,
Ly;=mBIRB, - (1-d,)I,
L;,=-BIPC,
L;s = mBIRB;,
Lyy==(1-d5)Q,
L,s=—C"PB,,
Lss=mBIRB; - (1-d;)I,

m and & are positive constants and I unit matrix.

Proof. Let the Lyapunov-Krasovskii function be defined by

V()= D (((t) = Cx(t = o (1))) "P(x(t) - Cx(t = 7y(1))))
t xT(5)Qux(s)ds + a3 t
' Jt—rz(t) ) (s)ds + J

=7, (t)

xT(s)M3 M,x(s)ds
0 t

+ ea%J J xT(q)M3TM3x(11)d71ds
~75(t)J t+s

t t
o] ] (D819 = Ot~ 3() R(, D3t
t—-m
— Cx(s—1,(s))))dsd0.
(18)
Since P,Q,, and R matrices are positive definite, the
functional V(t) is positive definite. From (12) and Lemmas

2 and 3, the derivative of V (¢) is obtained along the trajec-
tories of system (5) as follows:

V(1) =, Dt ((x(1) = Cx(t = 12(0)) "P(x(t) = Cx(t = (1)) )
+aix" ()M M x(t) — alx" (H)M] M, x(t)
+alx (OMIMyx(t) - (1-7)(1) ) ade (£ -7 (1)
- My Mox(t =7, (1)) +x7 (£)Qux(t)
~ (1=750)%" (1 = 1a(1)Qux(t = (1))

<2(x

+ealty (1)xT (H)MI Myx(t) — e (1 - Té(t))

: r x"(s)M3 M;x(s)ds
t-15(t)
m( D (x(t) = Cx(t = 7,(1)))) "
R( D“(x(t)—Cx(t—‘rz(t))))
| (Dt - exte )
- R(;, DE(x(t) = Cx(t = 7,(1))))ds
(t) = Cx(t = 7,(1)))"P, D¥(x(t) - Cx(t - 7,(t)))
+a’xT (H)MT M, x(t) + a2x" (£) M2 M,x(t)
+e2a§ T(6)M] Myx(t) +x7 (1) Qux(1)
+m(, Df(x(t) - Cx(t - 1,(1)))) "
- R(, DY (x(t) - Cx(t = 7,(1)))) "
— fL (6 X(O)If, (6 x() - (1-dy)
- f3 (6 x(t =Ty (O)If (6 x(t = 7,(1)))
= (L=dy)x"(t = 1,(1)) Qux(t — T,(t))
—(1—d3><j fg(S»x<S))d5> Ij £(5,%(5))ds

1=75(1) t=75(1)

=x"(t)(PA+A"P+alM{ M, + a;M; M,

+ 2 alMIM, + mATRA + Q,)x(t)

—2xT(t = 7, (t))CTPAx(t) + 2x" (t)PB, f, (t, x(t))
—2x" (¢~ 7,(t))C"PB, f, (1, x(t))

+2x" (£)PByfy (1, x(t = 7,(1)))
—2x"(t = 7,(1))C"PB,f, (. x(t = 7,(t)))

+2x (t)PB3Jt Fo(s,x(s))ds = 2xT (t = ,(t))
1=75(1)

: chng f3(s,x(s))ds + mx" (t)ATRB, f, (t, x(t))

t-75(t)

+mx" (t)ATRB,f, (t, x(t — 7,(t))) + mx" (t)ATRB,

[ s s o BT RAR()

t-15(t)

+mfy (tx(1))B{RB,f, (1, x(1)) + mfy (1, x(t))

- BIRB,f,(t, x(t — 7,(t))) + mf (1, x(t))B{ RBy

. J BRI mfT (8, x(t - 7,(t))) B RAX(t)

7y()))By RB,f, (£, x(1))

+mf] (¢ x(t -
+mfy (6x(t = 7,())) By RBofy (1, x(t = 71 (1)))

emfT (6 x(t— 7, (1)) BT Rst f(5x(s))ds

t=75(t)

+m <J f3(s, x(s))ds) BIRAx(t)

t=75(t)



+
3

—<1—d3><j

Therefore, we can write

T
fa(s’x(s))ds> BiRB, f, (t, x(1))
fz(S’x(S))dS> By RB,f, (1, x(t = 7,(1)))

T
(s x(s))ds) B3TRB3J

Sx(O)If (62(1)) = (1= dy)f (6 x(t = 74(t))
2x(t=1y(8)) = (L= dy)x’ (=15 () Qx(t — 75(1))

T
fils x(s))ds) 1|

V() <E'LE,

T
L34

T
L35

L, =PA+A"P+alM{M, +a3M, M,
+e?aMIM, + Q, + mATRA, L,
=PB, + mA"RB,,
Ly;=PB, + mA"RB,,
L,,=-A"PC,
L,s=PB; + mA"RB;,
Ly, =mBIRB, 1,
Ly; =mB{RB,,
L,,=-BlPC,
Lys = mB] RB;,
Ly;=mBIRB, - (1-d,)I,
T
Ly, =-BIPC,
Lys = mBJ RB;,
Ly=-(1-d,)Q,,
L, =-C'PB,,
Lss =mBIRB; — (1 -d;)I,

£= (<" f1 (L x(0),S3 (b x(t =7, (1)),

A (- 1y(1)), (j

t-1,

f3(s,x(s))ds

f(5,x())ds.

T
(t)fa(s,x(S))dS) ) :
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From the axiom (16) of the theorem V/(¢) is negative def-
inite. The trivial solution of system (5) is asymptotically sta-
ble. This completes the proof. O

4. Corollary

In this section, some results for the asymptotic stability of
the solutions of various variations of the fractional neutral
neural network (5) are expressed as a convex optimization
problem. Two examples are given to show that the results
obtained are applicable. The effectiveness of the results
obtained with the help of these examples is discussed.

Corollary 7. The trivial solution of system (5) is asymptoti-
cally stable, if |C|| < L, forall t > t, T/(t) <d; < 1(i=1,2,3),
|75(t)| < € and there exist a?, a3, and a3 numbers and symmet-
ric matrices P, R, and S such that the following convex optimi-
zation problem on a3 number and P,R, and S matrices is
solvable:

minimize —af
(22)
subjectto P>0,R>0,8>0,K<0,

where K matrix defined by (8), m and € are positive constants
and I unit matrix.

Corollary 8. The trivial solution of system (5) is asymptoti-

cally stable, if |C|| < 1, for all t > ty, 7)(t) <d; < 1(i=1,2,3)

, |75(t)| < € and there exist a3, a3, and a3 numbers and sym-

metric matrices P, Q,, and R such that the following convex
optimization problem on a3 number and P, Q,, and R matri-

ces is solvable:

minimize — a;
(23)
subjecttoP>0,Q,>0,R>0,L <0,

where L matrix defined by (16), m and € are positive con-
stants and I unit matrix.

If fL(t,x(t—7,(t))=x(t—7,(t)), then the nonlinear
fractional neutral neural system (5) can be written as the fol-
lowing:

, Dix(t) = Ax(t) + B f (£ x(1)) + Byx(t = 7,(t))

+CoDix(t —,(t)) + B3J f3(8,x(s))ds,

1=75(t)
(24)

where 0<a <1 is a real number, x =[x}, X,--x,|" €R" is
the state vector, A, B;,B,, B;,C € R™" are known constant
matrices, for all t>t, T,(t),7,(t),75(t)>0 are time-
varying delays. f(t,x)(j=1,3) are vector-valued time-
varying nonlinear functions with fj(t, 0) =0 and satisfy the
following Lipschitz condition for all (t,x) € Rx R":
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£y <, (25)
where M; are constant matrices with appropriate dimension
and a; are positive numbers.

Corollary 9. The trivial solution of system (24) is asymptoti-
cally stable, if ||C|| < 1, for all t > to, T/(t)<d;<1(i=1,2,3),
|75(t)| < € and there exist a3 and a3 numbers and symmetric
matrices P, Q,, R, and S such that the following convex opti-
mization problem on af number and P, Q,, R, and S matrices

is solvable:

minimize — a;
subjecttoP >0,Q; >0,R>0,5> 0,
Ay A A Ay Ags

AL Ay Ay Ay Ay (26)
A=| AL, Ay Ay Ay Ay | <0,

Ay By Ay Ay A

Als D Ai5 A Ass

where

A, =ATP+PA+AT(R+mS)A+alMIM,
+Q; + 82a§M3TM3,

A, =PB,+AT(R+mS)B,,
A3 =PB,+ A" (R+mS)B,,
A, =PC+A"(R+mS)C,
Ays=PB; + A"(R+mS)B;,
A, =B} (R+mS)B, -
A, =BT (R+mS)B,,
A, =Bl (R+mS)C,
As =B (R+mS)B;,
Ay =B3(R+m8)B,~ (1-d;)Qy,
A3 =B (R+mS)C,
A5 =B} (R+mS)B;,
Ay =C'(R+mS)C— (1-d,)R,
Ags=CT(R+mS)B;,

Ass = B3 (R+mS)B; — (1-d;)I,

m and € are positive constants and I unit matrix.

Corollary 10. The trivial solution of system (24) is asymptot-
ically stable, if ||C|| < 1, for all t > tO, T/(t)<d; < 1(i=1,23),
|75(t)| <€ and there exist a3 and a3 numbers and symmetric
matrices P, Q;, Q,, and R such that the following convex opti-

mization problem on a? number and P, Q;, Q,, and R matri-
ces is solvable:

minimize — a;

subjecttoP > 0,Q; >0,Q, > 0,R> 0,

Z]I ZIZ ZI3 ZI4 ZIS
ZTZ Z22 ZZ3 ZZ4 Z (28)
Z=\|Zl; 73 Zsy Zsy Zs | <0,
ZT4 Z§4 Z§4 Z44 Z
Zis Zy Zy Zi Z
where
Z,=PA+A"P+alM[M, +€a Mi M,
+Q, +Q,+mATRA,
Z,,=PB, + mATRB,,
Z,;=PB,+mATRB,,
Z,,=-ATPC,
Z,s=PB;+ mATRB;,
Z,,=mBIRB, — 1,
Z,;=mBIRB,, 29)

Z,,=-BTPC,

Z,s =mBIRB;,
Z3=mByRB, ~ (1-d,)Q,,
Z,,=-BIPC,
Z;;=mBIRB;,
Zy=-(1-d,)Q,
Z,=-C"PB;,

Zss=mBIRB; — (1-d;)I,

m and € are positive constants and I unit matrix.
If f5(t,x(t)) = x(t), then the nonlinear fractional neutral
neural system (5) can be written as the following:

, Dix(t) = Ax(t) + Bif (6 x(1)) + Bof (6 x(t = 7,(1)))
+C, Dix(t—1,(t)) + B3Jt x(s)ds,
17t
® o
where 0<a <1 is a real number, x =[x}, X,--x,|" €R" is

the state vector, A, B;,B,, B;,C € R™" are known constant
matrices, for all t>t, T,(t),7,(t),75(t)>0 are time-
varying delays. f;(t,x)(j=1,2) is vector-valued time-
varying nonlinear function with fj(t, 0) = 0 and satisfies the
following Lipschitz condition for all (t,x) € Rx R":



o] w

where M; are constant matrices with appropriate dimension
and a; are positive numbers.

Corollary 11. The trivial solution ofsystem (30) is asymptot-
ically stable, if |C|| < 1, for all t > to, Ti(t)<d;<1(i=1,23),
|75(t)| < & and there exist a2 and a3 numbers and symmetric

matrices P, Q3, R, and S such that the following convex opti-

mization problem on af number and P, Q;, R, and S matrices

is solvable:

minimize -a’

subjectto P>0,Q;>0,R>0,5>0,
Oy O O Oy O
O, 0y O, Oy Oy (32)

O0=| 05 Oy 05 Oy O <0,

Op 03 03 Oy Oy
O Oy O3 O Oss

where

0,,=A"P+PA+A"(R+mS)A
+a?MIM, +aiMiM, + €Q;,,
O,,=PB, + AT(R+mS)B,,
O,;=PB,+ AT(R+mS)B,,
0,,=PC+A"(R+mS)C,
O,5=PB; + AT(R+mS)B;,
0,,=Bl(R+mS)B, -
O,; = B} (R+mS)B,,
0,,=BT (R+mS)C,
O,5 = B} (R+mS)B;,
O33=B;(R+mS)B, ~ (1-d,)L,
0,,= B} (R+mS)C,
O;5=BI(R+mS)B;,
0, =CT(R+mS)C~ (I1-d,)R,
0,5 =C"(R+mS)B;,
Os5 = B3 (R+mS)B; — (1-d;)Q;,

(33)

m and € are positive constants and I unit matrix.

Corollary 12. The trivial solution ofsystem (30) is asymptot-
ically stable, if |C|| < 1, for all t > to, T/(t)<d;<1(i=1,23),
|75(t)| < € and there exist a3 and a3 numbers and symmetric
matrices P, Q,, Q;, and R such that the following convex opti-
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mization problem on a? number and P, Q,, Q;, and R matri-

ces is solvable:

minimize -a2

subjectto P>0,Q,>0,Q;>0,R>0,

Iy, I, Iy I, I

Iy, I,, M Il I (34)
D=\ I, I Iy Iy I | <0,

Iy, M, I, I, I

Iy, Iy I I s

where

I, =PA+A"P+a’M"M, + aMI M,
+&2Q; + Q, + mATRA,

1,,=PB, + mA"RB,,

I1,; = PB, + mATRB,,

,,=-ATPC,

11,5 = PB; + mA"RB;,

I1,,=mBIRB, - I,

I1,; = mBTRB,,

I1,,=-BIPC,

I1,; = mBTRB;,

I3, =mB}RB, - (1-d,)I,

I1,,=-BIPC,

1,5 = mBIRB;,

My =~(1-4,)Q,

I1,;=-C"PB;,

1155 = mB3TRB3 -(1-4d;)Q;,

m and € are positive constants and I unit matrix.

If foltox(t—7,(0) =x(t=7,(t) and f(t,x(1)) = x(0),
then the nonlinear fractional neutral neural system (5) can
be written as the following:

, Dy x(t) = Ax(1) + B, f, (1, x(8)) + Byx(t —7,(1))
‘ (36)
+C, Dix(t = 7,(1)) +B3J x(s)ds,
t=75(t)
where 0<a <1 is a real number, x =[x}, X,--x,|" €R" is

the state vector, A, B}, B,,B;, C € R™" are known constant
matrices, for all t>t) T,(t),7,(t),75(t)>0 are time-
varying delays. f,(t, x) is vector-valued time-varying nonlin-
ear function with f,(t,0)=0 and satisfies the following
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Lipschitz condition for all (t,x) € Rx R":
1f1(6%)]| < ay | M x]], (37)

where M, is a constant matrix with appropriate dimension
and a; is a positive number.

Corollary 13. The trivial solution of system (36) is asymptot-
ically stable, if |C|| < 1, forall t > t,, T)(t) <d, < 1 (i= 1,2, 3),
|75(t)| < € and there exist a> number and symmetric matrices
P,Q;,Q;, R, and S such that the following convex optimiza-
tion problem on af number and P, Q;, Q;, R, and S matrices

is solvable:

minimize —af
subjectto P>0,Q;>0,Q;>0,R>0,5>0,
2 2 23 2y 25

2?2 Z22 Z23 Z24 Z25 (38)
T=| 2 2 Zh Zy 25 | <0
2?4 254 254 Z44 Z45
2?5 2;5 255 ZZS Z:55
where
3, =A"P+PA+AT(R+mS)A
+@MTM, +Q, + £Q;,

>,=PB,+A"(R+mS)B,,
>,;=PB,+AT(R+mS)B,,
>,=PC+A"(R+mS)C,
3,5=PB;+AT(R+mS)B;,
>, =Bl (R+mS)B, 1,
3,;=B](R+mS)B,, (39)

>,,=B] (R+mS)C,
3,s=B](R+mS)B;,

T3 =By (R+m8)B,~ (1-d;)Q;,
>, =Bl (R+mS)C,
3,=B}(R+mS)B;,

3, =CT(R+mS)C~ (1-d,)R,
3,5 = CT(R+mS)B;,

( )
55 = B3 (R+mS)B; — (1-d;)Q;,
m and € are positive constants and I unit matrix.

Corollary 14. The trivial solution of system (36) is asymptot-
ically stable, if |C|| < 1, forall t > t,, T)(t) <d, < 1 (i=1, 2, 3),
|75(t)| < € and there exist a> number and symmetric matrices

P, Q,, Q,, Q;, and R such that the following convex optimiza-
tion problem on a2 number and P, Q,, Q,, Q;, and R matrices
is solvable:

minimize -a?
subjectto P>0,Q,>0,Q,>0,Q;>0,R>0,
Y]l Y12 Y13 Y14 Y15

Y{Z Y22 Y23 Y24 Y25 (40)
Y=| Y Y, Yy Yy Yi[<0
Y}; Y§4 Y§4 Y44 Y45
T T T T
Y15 Y25 Y35 Y45 Y55
where
Y, =PA+A"P+alMTM, + £Q,
+Q, +Q, + mATRA,

Y,,=PB, + mATRB,,
Y,; = PB, + mATRB,,
Y, =-ATPC,
Y,s = PB; + mATRB;,
Y,,=mBIRB, -1,
Y,; = mBIRB,,

23 1 2 (41)

Y,,=-BIPC,

Y ,5 = mBIRB;,
Y;5=mByRB, ~ (1-d;)Q;,
Y, =-BIPC,
Y,;=mBlRB;,
Yy=-(1-4d,)Q
Y,s=-CTPB,,

Y55 =mB3RB; — (1-d3)Q;,

m and € are positive constants and I unit matrix.

5. Numerical Examples

Example 1. Let the nonlinear fractional neutral neural sys-
tem be given by

, Dy x(t) = Ax(t) + Byf, (1 x(1)) + Bofy (1, x(t = 7,(1)))

s x(s)ds

t=75(t)

+ CtOD‘t"x(t —T,(t)) + B3J

(42)



10

Journal of Mathematics

TaBLE 1: Numerical solutions for Example 1.

Corollaries P q a4, a5 r s Apax Amax
Corollary 7 0.1249 — — — 0.0040 0.0283 1.3360 ~7.7393 x 1077
Corollary 8 0.1515 — 0.5198 — 0.0817 — 1.3832 —0.0059
Corollary 9 0.1337 1.1361 — — 0.0043 0.0141 0.9778 —4.7656 x 10”7
Corollary 10 0.1676 1.2112 0.5721 — 0.0467 — 1.0479 —4.4837 x 107°
Corollary 11 0.1326 — — 1.3443 0.0043 0.0125 1.2761 -1.1118x10°°
Corollary 12 0.1626 — 0.5569 1.4256 0.0641 — 1.3285 -2.0478 x 1074
Corollary 13 0.1715 1.4609 — 1.7441 0.0056 0.0088 0.9214 —1.2880 % 107°
Corollary 14 0.2225 1.6103 0.7581 1.9257 0.0473 — 1.0168 —4.6914 % 107°
where where M, =I;. For f,(t,x(t — 7,(t))), we have
—0s 3 TACECGAGNI
A=| 4 =20 1 |, =0.16(e ™" sin® (x, (¢ — 7, (1)) + & **'sin® (x, (£ — 7,(1)))
1 2 -2 e MHsin’ (x (£ = 7(1))))
5 0 0 <0.16(x7(t) +x5(t) +x3(1))
T T
B,=B,=B,=|0 5 0/, =0.16x" (£ =7, (1)) My Myx(t = 7,(t)),
45
0 0 5 (4)
01 0 0 where M, = I;. For f;(t, x(t)), we have
C=(0 02 0|, 2
13 (& x(®)]]
0 0 03
=0.36 —sin”(x;(t) +x5(¢t
) (3o 4500
1
Siltx(t)) =a, | sin (x,(1)) |, +sin’ (x (1)) + 5 sin (3, (1) —x3(t))>
sin (x5(t)) 1 . 1 ,
95 s (1 5.(6) <036 3 04() +(0)° +50) + 5 (200 -0
fr(tx(t=1,(t) =04 % sin (x,(t - 7,(1))) | =0.36(x7(t) +x5(t) + x3(t)) = 0.36x" (t)M1I M,x(t),
&% sin (x(t -1, (1)) (46)
1 h —
— sin (x;(¢) + x5(t where M; =1I;.
V2 Gat) + x3(0)) Let us choose d; =0.6, d, =0.5, d; =0.04, e =0.54, m =
f4(tx(t)) =0.6 sin (x,(t)) ’ 0.001. Let the P, Q;, Q,, Q5, R, S matrices be defined by
1 -
5 Sin (0 (0 = x,(0) P=pxls
Qi =q, xI,
(43)
Q =g, X1, (47)
€(1,0), 7,(¢t) = 0.4t + 0.2 sin (¢), 7,(¢) = 0.2t + 0.3 cos (¢), Q=g x1
and 7,(t) = 0.5 + 0.04 sin (¢). BT
For f,(t,x(t)), we have R=rx1I;,
S=sx1Is,

[y (6 x(8))[|* = aq (sin® (xy(£)) + sin® (x, (£)) + sin® (x3(t)))
<aj (xf(t) +x5(t) + x%(t))
= aix" ()M M,x(t),
(44)

for positive numbers p, q;, q,, g3, 1> 5. dy,y is the solution of
the convex optimization problem in the corresponding
result; A is the largest eigenvalue of the matrix in the cor-
responding result, which must be negative definite.
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TaBLE 2: Numerical solutions for Example 2.

Corollaries P a4, q, a5 r s Amax Amax
Corollary 7 0.2034 — — — 0.0037 0.0591 2.1212 —6.6719x107°
Corollary 8 0.2347 — 0.4821 — 0.2406 — 2.2420 —0.0010
Corollary 9 0.2262 1.4181 — — 0.0042 0.0264 1.9674 -1.8412x10°°
Corollary 10 0.2649 1.5066 0.5382 — 0.1582 — 2.1105 ~1.1406 x 107*
Corollary 11 0.5133 — — 33.2800 0.0093 0.0929 3.3488 -1.6887 x 10°°
Corollary 12 0.5976 — 1.2075 36.0390 0.2756 — 3.5497 -1.8091 x 107
Corollary 13 3.5778 22.4603 — 277.0393 0.0608 0.2733 7.6140 -2.2252%107°
Corollary 14 4.3805 25.1945 8.9098 265.5547 3.0956 — 8.3108 -1.1824x 107

The solutions to the convex optimization problems in the

conclusions obtained for the variations of the (42) system 0.1 0 0
are presented in Table 1 to make it easier to compare the c=|0 02 o/,
conclusions. Matlab-LMI Toolbox has been used to calculate
the numerical solutions in this table. 0 0 0.1

The tolerable bounds (a,,,,) of the results obtained from ]
Theorem 6 are greater than the tolerable bounds of the — sin (x,(t) +x,(1))
results obtained from Theorem 5, as shown in Table 1. V2

filtbx(t)=a, sin (x5(t)) ,

Example 2. Let the nonlinear fractional neutral neural sys-

tem be given b R sin (x. (£) — x
given by 75 Sin () =% (1))
WDix(t) = Ax(t) + Byf (1, X(1)) + Bofy (6 (£ - 7 (1)) O sin (x, (1 - (1))
+Ct0D‘t"x(t—‘rz(t))+B3Jt fy(5,x(s))ds, fz((tn(t)))OB(e” sin (x,(t = 7,(t))) |>
o " e sin (x3(t =7, (1))
I
where N (x1(1) +x5(1))
f3(t,x(t))=0.15 sin (x,(t) + x5(t)) ,
R : L sin (x;(¢) + x,(t))
acl s s 1 | 5 5 (1 (8)
3 1 -80 (49)
a€(1,0), 7,(t)=30+0.2t+0.1 cos (t), 7,(t) =10+ 0.3t +
1 0 0] 0.2 sin (t), and 74(f) =0.1+ 0.03 sin (¢). For f,(t, x(t)), we
have
Bi=|0 2 o,
0 0 3 1y (& x(6))1°
1
=a}( =sin?(x; (t) +x,(t)) + sin’ (x, (¢
o o (25 x x,(t)) +sin”(x5(1))
B=lo 5 of - (e (0= 5(0)
0 0 6
SR sa (500 -2 + 50+ (10 - ()
(7 0 0] =a; (x}(t) +x5(t) + x3(t)) = arx” ()M M, x(t),
B,=|0 8 0], (50)
[0 0 9] where M, =I,. For f,(t,x(t — 7,(t))), we have
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1 fa(tx(t = 7,())|*

=0.25(e”"¥'sin® (x, (£ — 7,(t))) + € 'sin® (x, (£ — 7,(1))))
+e M Osin® (x5 (£ - 7, (1))) £ 0.25(x7 (1) + x5 (t) + x3(1))
= 0.25x" (1 — 7, (1)) MI M, (t - 7, (1)),
(51)

where M, = I;. For f;(t, x(t)), we have

||f5(6 x(t))||* = 0.0225(sin’ x3(t)) + sin® (x, (t)
+x3(t)) + sin ( ( ) +x,(1)))
=0.0225([x (£) + %3 (£)]* + ) [ (£) + x3(£)]
+ [x1 (1) +x,(1)] )=0-09XT(f)M3TM3x(t)>
(52)
where
(53)

=

|
Dl = A= |
Al = Al A=

A = N =

Let us choose d; =0.3, d, =0.5, d; =0.03, e=0.13, m =
0.001. Let the P, Q;, Q,, Q;, R, S matrices be defined by

P=pxlI;,
Q =g, %1
Qy =g, %1,
2= 4 x s (54)
Q3 =q5 %1,
R=rxI;,
S=sx1Is,

for positive numbers p, q;, q,, g5, 7> 5. dyqy is the solution of
the convex optimization problem in the corresponding
result; A, is the largest eigenvalue of the matrix in the cor-
responding result, which must be negative definite.

The solutions to the convex optimization problems in
the conclusions obtained for the variations of the (48) sys-
tem are presented in Table 2 to make it easier to compare
the conclusions. Matlab-LMI Toolbox has been used to cal-
culate the numerical solutions in this table.

The tolerable bounds (a,,,,) of the results obtained from
Theorem 6 are greater than the tolerable bounds of the
results obtained from Theorem 5, as shown in Table 2.

6. Conclusion

The asymptotic stability of solutions for a class of nonlinear
fractional neutral neural systems with time-dependent
delays is obtained using the Lyapunov-Krasovskii method

Journal of Mathematics

with linear matrix equation inequality. The obtained suffi-
cient conditions are expressed in terms of LMI to find the
less conservative criteria.
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