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e development in the industries has necessitated the growth of transportation methods. Due to the variation in the trans-
portation systems, many problems seem to arise in the present times. One such problem is the stochastic fuzzy transportation
problem (SFTP).e SFTP is a chance-constrained programming (CCP) problem with probabilistic constraints where supply and
demand are randomness, and the objective function is in fuzzy nature. In this paper, we have developed threemodels for the SFTP,
where the constraints are mixed type following Weibull distribution (WD). e aim of the research work is to optimize the
transportation cost in FTP under probabilistic mixed constraints. In order to achieve this, the cost coe�cient of the fuzzy objective
function is converted to alpha cut representation, and the probabilistic mixed constraints are converted to deterministic form by
using the WD. e proposed models are illustrated by providing a numerical example, and the problem is solved using Lingo
software. It is worth pointing out that these models are constructed from di�erent points of view. e decision-maker’s (DM’s)
preference has the �nal say in the usage of the models. A sensitivity analysis (SA) is performed to explore the sensitivity of the
parameters in the proposed model.

1. Introduction

Decision-making plays a vital role in many domains, in-
cluding Economics, Psychology, Philosophy, Mathematics,
and Statistics. e importance of transportation needs to be
recognized as a necessary part of distribution networks. e
primary objective of the transportation problem (TP) is to
lower the cost of moving products and materials among
customers and producers to facilitate the manufacturer in
meeting the requirement of the customers. Cost, supply, and
demand are the parameters of the TP. Although several
modes of transportation are available for shipments of
commodities in a transportation system, we may convey
items from sources to destinations using distinct modes of
transportation to save money or ful�ll deadlines. e usual
transportation system is transformed into an unequal
transportation problem with mixed constraints (TPMC) if
the capacity of a supply is appreciably expanded/reduced
and the requirement of a demand is also appreciably

expanded/decreased. e special type of transportation
problem with mixed constraints has been meticulously
studied �rst by Brigden [1]. Di�erent approaches to solving
di�erent models of the TP with mixed constraints abound in
the literature [2–7]. Gupta et al. [8] extended multiobjective
capacitated TPMC in a fuzzy environment. In the real-world
situation, the two main factors of uncertainties are ran-
domness and fuzziness (or vagueness). e stochastic var-
iability of all possible outcomes of a situation is referred as
randomness, which may be completely and quantitatively
characterized by using a random variable (RV) in probability
theory. Fuzziness, on the other hand, arises from the im-
precision of subjective human knowledge and manifests
objectively in a range of contexts, including data gathering
and processing, hazy parameter limits, expertise applica-
tions, and a lack of accurate information. Stochastic
transportation problems (STP) and fuzzy transportation
problems (FTP) are the names given to TP that are modeled
in such conditions. It is observed that the randomness and
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fuzziness in information govern the decision-making
problems in the real world. *e information on weather
forecasting, predicting the stock market, the study of the
economic status of the industrial sector, etc., is not certain.
*e uncertainty in data is such that fuzzy programming
problems and stochastic programming problems cannot be
used in isolation to find the appropriate mathematical
model. Hence, we consider both fuzziness and randomness
while dealing with fuzzy stochastic programming problem.
Since most of the mathematical programming models are
governed by real-life decision-making problems having
multiple numbers of conflicting functions, in our study, we
have considered a fuzzy stochastic programming problem.

Decision-making in a fuzzy environment is first devel-
oped by Zadeh. *e fuzzy set theory has been used to handle
a number of real-world problems, such as financial engi-
neering and risk management. *e reason seems to be that
the strategy enables the DM to study and deal with the
unknown elements that are present. *en, employing fuzzy
quantities and/or fuzzy restrictions, the imperfect knowl-
edge of asset returns, and the uncertainty associated with
capital market behavior can be included. Fuzzy numbers,
which are fuzzy subsets of the real line, can be used to
represent fuzzy numerical data. Zimmermann [9] discussed
fuzzy programming and linear programming with a number
of different objective functions. Behera and Nayak [10] have
solved the multiobjective mathematical programming in the
fuzzy approach with the alpha cut. In stochastic models, the
random variables are considered for each problem parameter.

A stochastic programming (SP) problem arises when the
probability is present in a mathematical programming
problem. It is concerned with decision-making in which
some or all parameters are traced as RVs to represent un-
certainty. Researchers such as Kataoka, Williams, and
Agarwal [5–7] have undertaken numerous studies on the
topic of random transportation. Moreover, DMs are con-
fronted with scenarios in which theymust select a value from
a group of options. In this case, mathematical programming
comes to the DMs assistance. *e chance-constrained
technique is one of the most effective methods to handle
optimization problems (OP) with numerous uncertainties. It
is the formulation of an OP that ensures that the probability
of satisfying a given constraint is greater than a certain
benchmark. In other words, it restricts the feasible region so
that the solution has a high level of confidence. Although the
chance-constrained technique is a rather robust strategy, it
can be challenging to implement. If the linear constraints of
a TP are probabilistic, it becomes a CCP problem.*is paper
discusses the parameters used to address uncertainty using
both probability theory and fuzzy set theory.

1.1. Literature Review. *is section contains a survey of the
literature on TP and FTP in SP. Charnes and Copper [11]
established TP, and Kataoka [12] discussed the SP method
for a TP. Spoerl and Wood [13] analysed the stochastic
generalized assignment problem. Williams [14] defined a
stochastic variable for demand using a joint cumulative
distribution function and then investigated a stochastic TP

with a supply and a demand. Agrawal and Ganesh [15]
proposed a TP solution incorporating stochastic demand
and nonlinear multichoice costs. Powell and Topaloglu
[16] studied SP in transportation and logistics. Anholcer
[17] proposed a stochastic generalized TP with a discrete
distribution of demand. Ojha et al. [18] designed a sto-
chastic discounted multiobjective STP with demand as a
stochastic parameter, converting stochastic variables to
deterministic ones using the expected value criteria.
Holmberg and Tuy [19] demonstrated a branch-and-
bound method for solving the TP when demand is sto-
chastic and production costs are concave. However, in
real-world situations, both supply and demand are sto-
chastic. Mahapatra et al. [20] focused their efforts on inequality
constraints in a multiobjective STP, where all supply and de-
mand are log-normal RVs, and the objectives are incommen-
surable and contradictory. Agrawal [21] solved the STP by using
an artificial intelligence approach in a stochastic environment.
*e following authors discussed articles that involve both
fuzziness and randomness. A fuzzy goal programming method
for STPs with restricted resources was discussed by Aruna
Chalam [22]. Giri et al. [23] proposed fuzzy stochastic solid TP
using a fuzzy goal programming approach. Acharya et al. [24]
demonstrated how to compute a multiobjective fuzzy STP.
Gessesse [25] developed a fuzzy programming approach based
on a genetic algorithm for multiobjective linear fractional sto-
chastic TP employing a four-parameter Burr distribution. Maity
et al. [26]studied the optimal intervention in transportation
networks using fuzzy stochastic multimodal systems.

In this paper, the WD function could be employed to
define the stochastic variable. We express supply and demand
as stochastic variables. Weibull [27], a Swedish researcher,
invented the WD in the 1950s, and it has since become a
helpful and informative data treatment tool in reliability
studies of components and electronic systems.*eWD is both
theoretically and practically pertinent to Fok’s [28] studies of
future probability estimates under a given loading. Since the
WDhas flexibility in location, shape, and scale, it can design an
extensive range of failure rates. *e WD is defined mathe-
matically as follows: the probability density function of an RV
y is described by f � (χ/λ)((y − ξ)/(λ))

χ − 1
e− (((y− ξ)/(λ))

χ
),

where χ > 0, λ > 0, y≥ ξ andξ, χ and λ are the location, shape,
and scale parameters, and then, random variable y is called
WD. In dependability applications, theWDhas been shown to
be beneficial for characterizing cost times and lifetimes.
Distribution has received the greatest attention in recent
decades. Although theWD is a good choice for describing data
on lifespan or strength, its performance falls below its com-
petitors in several practical situations. Furthermore, the WD
has applications in geosciences and transportation among
other fields. Klakattawi [29] investigated the features and uses
of the Weibull-gamma distribution. Mahapatra [30] investi-
gated the characteristics and applications of the Weibull-
gamma distribution.

1.2.ResearchGap,Motivation,and theProposedContribution.
*e incidence of mixed constraint in TPs is a common
phenomenon that may be seen in reality. *e mixed
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constraint paradox in a TP occurs when it is possible to ship
more total goods for less (or equal) total cost, while
transporting the same amount or more from each origin and
to each destination and keeping all the shipment costs
nonnegative. However, there may be situations where cost
coefficients, availability, and demand quantities are uncer-
tain due to some uncontrollable factors. Uncertainty can be
mainly classified into two types, namely fuzzy TP and
stochastic TP. *e TP in which the transportation cost,
supply, and demand are fuzzy quantities is called fuzzy TP.
*e objective of the FTP is to determine the shipping
schedule that minimizes the total fuzzy transportation cost
while satisfying fuzzy supply and fuzzy demand limits. *e
situation where the parameters are imprecise in a stochastic
sense and described by random variables with known
probability distributions is called stochastic TP. *e main
benefits of fuzziness and randomness techniques are that
they do not require prior predictable regularities and can
deal with imprecise input information incorporating feelings
and emotions quantified based on the DM’s subjective
evaluation. *e STP and stochastic fuzzy transportation
problems (SFTP) with equality constraints have recently
received significant attention, with various models and so-
lution methods applied to stochastic environments. *e
literature search (Table 1) reveals no systematic model for
addressing stochastic fuzzy transportation problem with
mixed constraints (SFTPMC). But in reality, imprecise
mixed constraints that supply at origins may be uncertain,
since any trouble or delay may occur for various reasons and
demand requirement uncertainty cannot be avoided often
due to inexact forecasting or requirement volatility. *is has
motivated us to develop the model for FTP mixed constraint
under a stochastic environment.

Based on this motivation, the main contribution of this
study is summarized as follows: the goal of this paper is as
follows: (1) to propose a mathematical model that deals with
fuzziness and randomness under one roof, (2) to consider
the fuzzy objective value and probabilistic constraints, and
(3) to present a simplified computation conversion of
probabilistic constraints to their equivalent deterministic
constraint using WD. In order to achieve this, the fuzzy
objective is converted to alpha cut representation, and
probabilistic constraints are converted to deterministic form
by using the WD and then solved using Lingo software. To
investigate the sensitivity of the parameters in the proposed
model, a sensitivity analysis is performed.

1.3. Managerial Insights Based on the Research. *e last
decade has seen the growth in various fields such as
economics, trade, health care, transportation, cultivation,
army, engineering, and technology. It has increased the
importance of stochastic fuzzy optimization in solving
scientific managerial decision-making problems in every
field. *e uncertainty factors which make the problem
more complex have not spared the transportation process.
*e objective of this paper is to optimize the total
transportation cost under uncertain conditions by utiliz-
ing the SFTPMC model. Generally, uncertainty is

described using fuzzy or probability theory. However, it is
not always reasonable to use fuzzy theory or probability
theory to illustrate all the indeterminacies, as it requires
adequate information. So, we prefer to describe the un-
certainty with both fuzzy and probability parameters. In
fact, low-frequency events occur in our daily lives causing
the uncertainty theory to take effect. Under these cir-
cumstances, scheduling a proper transportation plan to
lower the total costs becomes a challenge. *is study
provides an applicable model for the DM to deal with some
uncertain factors without losing reliability from cus-
tomers. *is research could also be extended to other
aspects, in which a decision/plan needs to be made in
uncertain conditions.

*e rest of this article is structured as follows. Section 2
presents the preliminaries that are related to this article.
Section 3 deals with the assumptions and notation used in
this paper. Section 4 investigates and converts the
mathematical programming models of SFTPMC and its
variants to the comparable deterministic models. Section 5
presents the proposed solution method with an illustra-
tion. Section 6 presents and analyses the computational
experiences of SA. Finally, Section 7 summarizes the re-
search outcome and limitations and suggests future
directions.

2. Some Preliminaries

Definition 1 (Fuzzy set, Zadeh., [38]). Let R be a collection of
sets and μR(x) be a membership function from R to [0, 1]. A
fuzzy set R with the membership function μR(x) is defined
by R � (x, μR(x))/ x ∈ R and μR(x) ∈ [0, 1]}.

Definition 2 (Fuzzy number, Zadeh., [38]). A real fuzzy
number r � (r1, r2, r3) is a fuzzy subset of the real line Rwith
the membership function μr(r) satisfying the following
conditions:

(i) μr(r): R⟶ [0, 1] is continuous
(ii) μr(r) � 0 for all (− ∞, r1]∪ [r3,∞)

(iii) μr(r) is strictly increasing on [r1, r2] and strictly
decreasing on [r2, r3]

(iv) μr(r) � 1 for all r ∈ r2 where r1 ≤ r2 ≤ r3

Definition 3 (Triangular fuzzy number, Zadeh., [38]).A
fuzzy number R is denoted as a triangular fuzzy number by
(r1, r2, r3) where a1, a2, and a3 are real numbers, and its
membership function μA

(x) is given as follows:

μR(x) �

x − r1

r2 − r1
, r1 ≤ x≤ r2,

x − r3

r2 − r3
, r2 ≤ x≤ r3,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)
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Definition 4 (Alpha cut, Zadeh., [38]). *e alpha cut of a
fuzzy number R(x) is defined as
R(α) � ((x)/μ(x)) ≥ α, α ∈ [0, 1] .

Definition 5 (Linear membership function, [10]). A linear
membership function can be defined as

μR(X) �

0 if xij <xij

((xij − xij)/xij − xij) if xij <xij <xij

1 if xij >xij

.
⎧⎪⎨

⎪⎩

In order to transform the fuzzy system to a deterministic
set, the alpha cut representation using linear membership
function is ((xij − xij)/(xij − xij)) � α such that xij � (1 −

α)xij + αxij for all α ∈ [0, 1].

Definition 6 (Feasible solution). Any set of { xij ≥ 0,i� 1,2, ...,
m; j� 1,2,. . .n} that satisfies all the constraints is called a
feasible solution to the problem.

Definition 7 (Optimal solution). A feasible solution to the
problem which minimizes the total shipping cost is called an
optimal solution to the problem.

3. Assumptions and Notations

An SFTPMC is associated with costs, supply, and demand.
*e direct value is the cost of transportation per unit
amount. *e mixed constraint occurs for the transportation
activity between a source and a destination. *e following
notations are introduced in order to develop the mathe-
matical model for the SFTPMCs:

ai: the amount of homogeneous product availability at
the source i
bj: the amount of homogeneous product demand at the
destination j
cij: fuzzy transportation cost per unit for carrying one
unit of goods from source i to destination j
xij: the amount shipped from source i to destination j
pai

: probabilities for ai

pbj
: probabilities for bj

χai
: shape parameter for ai

χbj
: shape parameter for bj

λai
: scale parameter for ai

λbj
: scale parameter for bj

ξai
: location parameter for ai

ξbj
: location parameter for bj

4. Problem Formulation and Solution Concepts

*e objective value and constraints play an important role
for SFTPMC. Minimizing the total transportation costs is
our main objective. In different real-life situations, pa-
rameters (cost, supply, and demand) become uncertain in
nature; then, DM faces difficulty to make the optimal de-
cision. *is situation can be handled with fuzzy and random
variables. In this model, we consider cost as triangular fuzzy
variables and constraints as random variables. *e uncer-
tainty in supply or demand constraints may or may not
occur, depending on the situation of DM. *erefore, we
formulate three SFTPMC models based on the uncertainty

Table 1: Comparison of the approach to the present models.

Authors Problem
type

Stochastic
parameters Distribution Methodology

Gessesse [31] Fractional
TP

Demand &
supply Normal distribution Simulation-based genetic algorithm

Jerbi [32] TP Demand &
supply *e power law distribution Fuzzy programming approach

Al Qahtani
et al. [33] TP Demand &

supply Extreme value distribution Goal programming approach

Nasseri and
Bavandi [34] TP Demand &

supply Expectation value model Fuzzy programming approach

Dutta et al. [35] Fuzzy TP Demand &
supply

Fuzzy lognormal distribution and
the confidence levels are treated as

fuzzy numbers
Genetic algorithm approach

Mahapatra et al.
[36] TP Demand &

supply Logistic distribution

A transformation technique is presented for
manipulating cost coefficients involving

multichoice for binary variables with auxiliary
constraints and solved by Lingo software

Agrawal and
Ganesh [15] TP Demand Galton distribution

Parameters are replaced by Newton’s divided
difference interpolating polynomial and solved by

Lingo software
Das and Lee
[37] Solid TP Demand, supply,

and capacity Weibull distribution Global criterion method and fuzzy goal
programming approach

*is article SFTPMC Demand &
supply Weibull distribution Alpha cut representation for cost function and WD

for constraints and then solved by Lingo software
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in constraints. *e model explained below shows the for-
mulation of an SFTPMC model with m sources and n
destinations.

4.1. Chance-Constrained Programming Model for SFTPMC.
To obtain the quantiles of a probability distribution function
in a closed form, it is necessary to apply the constraints in the
suggested SP model to the deterministic constraints. An-
other reason to adopt theWD is that it has the closed form of
the quantiles. *e CCP paradigm for SFTPMC is described
in this paper as follows:

(P)Minimize z � 
m

i�1

n

j�1
cij xij. (2)

Subject to

P 
n

j�1
xij ≥ ai

⎛⎝ ⎞⎠≥pai
, i ∈ q1, (3)

P 
n

j�1
xij � ai

⎛⎝ ⎞⎠≥pai
, i ∈ q2, (4)

P 
n

j�1
xij ≤ ai

⎛⎝ ⎞⎠≥pai
, i ∈ q3, (5)

P 
m

i�1
xij ≥ bj

⎛⎝ ⎞⎠≥pbj
, j ∈ r1, (6)

P 
m

i�1
xij � bj

⎛⎝ ⎞⎠≥pbj
, j ∈ r2, (7)

P 
m

i�1
xij ≤ bj

⎛⎝ ⎞⎠≥pbj
, j ∈ r3, (8)

xij ≥ 0, i � 1, 2, . . . , m, j � 1, 2, . . . , n, (9)

where pai
and pbj

are probabilities given. It is observed that
RVs ai and bj represent supply and demand, following the
WD, respectively. *e WD for ai has three parameters ξai

,
χai

, and λai
which serve as location, scale, and shape pa-

rameters. Similarly, the parameters for bj are defined as ξbj
,

χbj
, andλbj

. Constraints (3)–(5) are the probabilistic con-
straint for the quantity of supply at origin i, which ensures
with a given probability pai

, the sum of quantities of
shipments from supply source i must distribute exactly ai

units of supply or it must distribute at least ai units of supply
or it must distribute at most ai units of supply which {q1, q2,
and q3} are partitions of i= {1, 2, 3, . . ., m}. In a similar
manner, constraints (6)–(8) can be construed for the de-
mand at destination j, must receive exactly bj units, or it
must receive at least bj units or it receives at most bj units of
demand which {r1, r2, and r3} are partitions of j= {1, 2, 3, . . .,

n}. cij is the fuzzy transportation cost (1) per unit for car-
rying one unit of goods from sources i to destination j. *e
aim is to describe the quantity xij transported from origin i to
destination j while minimizing the total transport cost when
satisfying mixed type supply and demand constraints. For
the general cases of TPMC type, in which a single random
variable among ai and bj is uncertain, the transformation of
the probabilistic parameter into a deterministic parameter is
studied in Case I and II.

4.1.1. Case (I) Only ai is Uncertain

(i) For P(
n
j�1 xij ≥ ai) ≥pai

, i ∈ q1 the proof is
shown below
It is considered that ai (i ∈ q1 =1, 2, m1) are inde-
pendent RVs with the WD and three known pa-
rameters, ξai

, χai
, andλai

. Equation (3) can therefore
be transformed as follows:

P ai ≤ 
n

j�1
xij

⎛⎝ ⎞⎠≥pai
, i ∈ q1. (10)

Let us consider 
n
j�1 xij � δai

P(ai ≤ δai
)≥pai

, i ∈ q1, by using WD for the
probabilistic function,


δai

− ∞

χai

λai

ai − ξai

λai

 

χai
− 1

e
− ai − ξai

/λai
 

χai
 dai ≥pai

, i ∈ q1.

(11)

Simultaneously, ai ≥ ξai
i ∈ q1, and the integration of

equation (11) gives the following form:


δai

ξai

χai

λai

ai − ξai

λai

 

χai

− 1

e
− ai− ξai

/λai
 

χai
 dai ≥pai

. (12)

After integrating equation (12), we get

1 − e
− δai

− ai/λai
 

χai
  ≥pai

. (13)

Equation (13) can be further simplified by applying
the logarithm as,
δai
≥ ξai

+ λai
− 1n(1 − pai

) 
1/χai , i ∈ q1. Lastly, this

can be stated as a deterministic constraint in the
equivalent terms: 

n
j�1 xij ≥ ξai

+λai
− 1n(1 − pai

) 
1/χai , i ∈ q1.

(ii) For P(
n
j�1 xij ≤ ai)≥pai

, i ∈ q3 (i�m2+1,
m2+2,. . ., m) the proof of converting the probabi-
listic values into deterministic values by using WD is
obtained in [37].

4.1.2. Case (II) Only bj is Uncertain

(i) For P(
m
i�1 xij ≥ bj) ≥pbj

, j ∈ r1, (j� 1,2,. . ., n1)
the proof is shown in [37].

(ii) For P(
m
i�1 xij ≤ bj)≥pbj

, j ∈ r3 the proof is shown
as follows.
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It is considered that bj (j� n2+1, n2+2,. . .,n) are inde-
pendent RVs with the WD and three known parameters ξbj

,
χbj

, and λbj
. Equation (8) can therefore be transformed as

follows:

P bj ≥ 
m

i�1
xij

⎛⎝ ⎞⎠≥p
bj

, j ∈ r3. (14)

Let us consider 
m
i�1 xij � δbj

,

P bj ≥ δbj
 ≥pbj

, j ∈ r3, (15)


∞

δbj

χbj

λbj

bj − ξbj

λbj

⎛⎝ ⎞⎠

χbj

− 1

e
− bj − ξbj

/λbj
 

χbj dbj ≥pbj
, j ∈ r3.

(16)

Simultaneously, bj ≥ ξbj
j ∈ r3, and the integration of

equation (16) gives the following form:


ξbj

δbj

χbj

λbj

bj − ξbj

λbj

⎛⎝ ⎞⎠

χbj

− 1

e
− bj− ξbj

/λbj
 

χbj dbj ≥pbj
. (17)

After integrating equation (17), we get

1 − e
− δbj

− ξbj
/λbj

 
χbj  ≥pbj

. (18)

Equation (18) can be further simplified by applying the

logarithm as δbj
≤ ξbj

+ λbj
− 1n(pbj

) 
(1/χbj

)

, j ∈ r3. Lastly,

this can be stated as a deterministic constraint in equivalent

terms 
m
i�1 xij ≤ ξbj

+ λbj
− ln(pbj

) 
(1/χbj

)

, j ∈ r3.

4.1.3. Remarks. Let P(
n
j�1 xij � ai)≥pai

,

i ∈ q2 � m1 + 1, m1 + 2, . . . , m2, and P(
m
i�1 xij � bj)

≥pbj
, j ∈ r2 � n1 + 1, n1 + 2, . . . , n2 be the equality type

supply and demand constraints. *en, change equality type
to inequality type for the supply constraint as
P(

n
j�1 xij ≤ ai)≥pai

and P(
n
j�1 xij ≥ ai)≥pai

for the de-
mand constraint as P(

m
i�1 xij ≤ bj)≥pbj

and
P(

m
i�1 xij ≥ bj)≥pbj

. Choosing the probability value at 50%
level in the supply and demand inequality constraint by
using WD, we obtain the same deterministic value for both
inequality types for supply and demand constraints. So, the
deterministic values of equality constraint for the supply as


n
j�1 xij � ξai

+ λai
− ln (1 − pai

)(1/χai
)

 , i ∈ q2 or


n
j�1 xij � ξai

+ λai
− ln(pai

) 
(1/χai

)
, i ∈ q2 and the demand

as 
m
i�1 xij � ξbj

+ λbj
− 1n(pbj

 
(1/χbj

)

, j ∈ r2 or


m
i�1 xij � ξbj

+ λbj
− 1n(1 − pbj

) 
(1/χbj

)

, j ∈ r2.
Deterministic mathematical programming models for

SFTPMC are presented in this part, which use the quantiles
of the WD as constraints and the fuzzy linear membership
function for the cost function. In a real scenario, only some
aspects of supply and demand may be uncertain, while
others are certain. As a result, SFTPMC deterministic can be

modified as needed according to the situation. *ree
models, in which any one of the parameters are ai or bj are
uncertain, are studied in Model 1 and 2, respectively.
Model 3 presents a general model in which all RVs are
uncertain. Commercially available solvers can be used to
solve this deterministic mathematical programming for
the optimal solution.

Model 1. For deterministic modeling of SFTPMC, a linear
membership function [10] is used for the cost function, a
quantile of the Weibull distribution is used for probabilistic
supply constraint, and demand constraint remains certain.

D1( Minimize z � 
m

i�1

n

j�1
cij (1 − α)xij + αxij . (19)

Subject to



n

j�1
xij ≥ ξai

+ λai
− 1n 1 − pai

  
1/χai

 
, i ∈ q1, (20)



n

j�1
xij � ξai

+ λai
− 1n 1 − pai

  
1/χai

 
, i ∈ q2, (21)



n

j�1
xij ≤ ξai

+ λai
− 1n pai

  
1/χai

 
, i ∈ q3, (22)



m

i�1
xij ≥ bj     , j ∈ r1 , (23)



m

i�1
xij � bj     , j ∈ r2 , (24)



m

i�1
xij ≤ bj     , j ∈ r3 , (25)

xij ≥ 0.   (26)

Model 2. For deterministic modeling of SFTPMC, a linear
membership function [10] is used for the cost function, a
quantile of the Weibull distribution is used for demand
constraint, and supply constraint remains certain.

D2( Minimize z � 
m

i�1

n

j�1
cij (1 − α)xij + αxij . (27)

Subject to



n

j�1
xij ≥ ai, i ∈ q1, (28)



n

j�1
xij � ai, i ∈ q2, (29)
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n

j�1
xij ≤ ai, i ∈ q3, (30)



m

i�1
xij ≥ ξbj

+ λbj
− 1n 1 − pbj

  
1/χbj

 
, j ∈ r1, (31)



m

i�1
xij � ξbj

+ λbj
− 1n pbj

  
1/χbj

 
, j ∈ r2, (32)



m

i�1
xij ≤ ξbj

+ λbj
− 1n pbj

  
1/χbj

 
, j ∈ r3, (33)

xij ≥ 0. (34)

Model 3. For deterministic modeling of SFTPMC, a linear
membership function [10] is used for the cost function, and a
quantile of the Weibull distribution is used for supply and
demand constraints.

D3 Minimize z � 
m

i�1

n

j�1
cij (1 − α)xij + αxij . (35)

Subject to



n

j�1
xij ≥ ξai

+ λai
− 1n 1 − pai

  
1/χai

 
, i ∈ q1, (36)



n

j�1
xij � ξai

+ λai
− 1n 1 − pai

  
1/χai

 
, i ∈ q2, (37)



n

j�1
xij ≤ ξai

+ λai
− 1n pai

  
1/χai

 
, i ∈ q3, (38)



m

i�1
xij ≥ ξbj

+ λbj
− 1n 1 − pbj

  
1/χbj

 
, j ∈ r1, (39)



m

i�1
xij � ξbj

+ λbj
− 1n pbj

  
1/χbj

 
, j ∈ r2, (40)



m

i�1
xij ≤ ξbj

+ λbj
− 1n pbj

  
1/χbj

 
, j ∈ r3, (41)

xij ≥ 0. (42)

5. Solution Method

*e solution method for the model SFTPMC is given as
follows:

Step 1. Convert the given triangular fuzzy cost of problem
(P) into an equivalent deterministic cost (17) by using alpha
cut.

Step 2. *en, problem (P) is transformed into 3 models
depending on its constraint.

Step 3. (i) For model 1, ai is an uncertain probabilistic
supply constraint, and bj remains precise values. For ai, we
use WD to reduce the probabilistic supply constraint into an
equivalent deterministic supply constraint (20)–(22). *en,
construct the problem (D1) with the reduced deterministic
cost (17), deterministic supply constraint (20)–(22), and
precise demand constraint (23)–(25). (ii) At alpha level 0,
solve the problem (D1) to obtain the optimal transportation
cost and unit flow, using the Lingo software.

Step 4. (i) For model 2, only bj is uncertain, and ai remains
precise values. For bj, we use WD to reduce the probabilistic
demand constraint into an equivalent deterministic demand
constraint (31)–(33). *en, construct the problem (D2) with
the reduced deterministic cost (17), deterministic demand
constraint (31)–(33), and precise supply constraint
(28)–(30). (ii) At alpha level 0, solve the problem (D2) to
obtain the optimal transportation cost and unit flow, using
the Lingo software.

Step 5. (i) For model 3, ai and bj are uncertain values, and
we use WD to reduce the probabilistic supply and demand
constraint into an equivalent deterministic supply (36)–(41).
*en, construct the problem (D3) with the reduced deter-
ministic cost (17) and deterministic constraint (36)–(41). (ii)
At alpha level 0, solve the problem (D3) to obtain the optimal
transportation cost and unit flow, using the Lingo software.

Step 6. Repeat the above steps (3–5) to obtain the optimal
transportation cost and unit flow for different alpha levels.

5.1. Numerical Experiment and Discussions. *is segment
provides an illustration to demonstrate the efficacy and
applicability of SFTPMC and its variants. *e coal plant
generates a homogeneous product, and there are three plants
and four repositories. Coal plant A has a manufacturing
capacity of exactly a1 units, coal plant B has a production
capacity of at least a2 units, and coal plant C has a
manufacturing capacity of the most a3 units. Likewise, re-
pository 1 has a capacity of demands at least b1 units; re-
pository 2 has a capacity of demands at the most b2 units;
repository 3 has a capacity of demands of at least b3 units.
Repository 4 has a capacity of demands exactly b4 units. If
transporting per unit cost from each coal plant to each
repository is cij, it is given in triangular fuzzy cost data as
shown in Table 2.

In the numerical experiment, nominal values of certain
constants are supplied as a1 � 20, a2 � 16a3 � 25, and de-
mand as b1 � 11, b2 � 13, b3 � 17, b4 � 14 in the following
sections. Furthermore, the following arbitrary probabilities
are given as Pa1

� 0.50, Pa2
� 0.96, Pa3

� 0.95, Pb1
� 0.26,

Pb2
� 0.29, Pb3

� 0.25, Pb4
� 0.28. Since ai and bj are pre-

sumed to follow WD, the distinct values for the parameters
are ξa1

� 19, ξa2
� 13, ξa3

� 24, ξb1
� 10, ξb2

� 11, ξb3
� 16,
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ξb4
� 13, χai

� χbj
� 2, λai

� λbj
� 2. *e probabilistic con-

straints can simply be transformed to deterministic forms by
utilizing equations (36)–(41). By using Step 1, we have to
convert the given triangular fuzzy cost of the problem (P)
into deterministic cost using the linear membership func-
tion. Table 3 shows the alpha cut representation for the cost
function of a given problem (P).

Now, using Step 2, problem (P) is transformed into 3
models depending on its constraint. By Step 3, only supply
constraints are uncertain, and demand remains certain for
model 1. At alpha level 0 on the cost function, WD is used
for the probabilistic supply constraint. Here, supply is
a1 � 20.67, a2 � 16.59, and a3 � 24.45, and demand is
b1 � 11, b2 � 13, b3 � 17, and b4 � 14. By using the Lingo
software, we obtain the optimal transportation cost as 93.67
and x11 � 11, x14 � 9.67, x23 � 17, x34 � 4.33 and unit flow as
42.

By Step 4, only demand constraints are uncertain, and
supply remains at certain values for model 2. At alpha level 0
on the cost function, WD is used for the demand constraint.
Here, supply is a1 � 20, a2 � 16, a3 � 25, and demand is
b1 � 11.1, b2 � 13.23, b3 � 17.07, b4 � 14.67, and we obtain
the optimal transportation cost as 95.75 and x11 � 11.10,
x14 � 8.9, x23 � 17.07, x34 � 5.77 and unit flow as 42.84.

By Step 5, both supply and demand constraints are
uncertain for model 3. Here, supply is a1 � 20.67,
a2 � 16.59, a3 � 24.45, and demand is b1 � 11.1,
b2 � 13.23b3 � 17.07, b4 � 14.67. Similarly, we obtain the
optimal transportation cost as 96.42 and x11 � 11.10,
x14 � 9.57, x23 � 17.07, x34 � 5.1 and unit flow as 42.84. In the
samemanner, we have to solve different alpha levels for the 3
cases of constraints. Computational results for 3 models are
shown in Table 4. Using Step 6, we can solve for different
alpha levels.

*ree new models have been constructed for
SFTPMC. While model 1 presents supply as a probabi-
listic value and demand as a certain value, model 2
presents demand as a probabilistic value and supply as a
certain value, and model 3 presents supply and demand as
probabilistic values. *e cost coefficient of the objective
function is transformed to alpha cut representation, and
the stochastic mixed constraints are transformed to de-
terministic form by using the WD for solving the models.
*e fact that these models are constructed from different
points of view is worth noting. Since the usage of the
models is dependent on the DM’s preference, we cannot
conclude which model is the best in the process of de-
cision-making.

6. Sensitivity Analysis and Discussion

In this section, SFTPMC performed a SA of optimality in
terms of variations in probabilities on uncertain parameters
such as source and demand. For the SA, we used the model 3
problem and changed the probability from (0≤P≤ 1), where
P is the probability on ai or bj. We analysed the problem by
holding any one parameter of probabilities (pai or pbj) as
constant at 0.5 and changed the probabilities of the other
parameter of probabilities (pai or pbj). Using the remark
(4.1.3), the probability of the particular parameter remains
0.5 for equality constraint. In optimal solutions for model 3
in each stochastic parameter and fuzzy cost, both trans-
portation cost and total shipping units (Flow) were obtained
and listed. To handle several objective functions in this SA,
the Lingo software was employed to solve this optimization
problem. *e SA findings for the probability for demand bj

are shown in Table 5. *ese analysis’s graphical represen-
tations for transportation cost and unit flow in relation to the
probability for bj are shown in Figures 1 and 2. *e
transportation cost gradually increases with the probability
for bj, as shown in Figure 1. It is worth noting that trans-
portation costs are sensitive to variations in demand re-
quirements probability. In Figure 2, the unit flow decreases
gradually depending on variations in demand requirements
probability. Similarly, we can find the SA for ai. *e SA of
the probability reveals some intriguing patterns. DM’s can
get knowledge and capacity to develop the transportation
system by gaining an understanding of the sensitivity pat-
terns of probability for uncertain parameters.

*e SA of SFTPMC is obtained by varying the proba-
bility of demand constraint in Table 5, and it is also depicted
using the graph, and the outcomes of optimal transportation
cost and unit flow are shown in Figures 1 and 2.

In this study, the proposed SFTPMC models obtain
the best solutions in an unpredictable situation, according
to the results. It is easy to contemplate more conservative
decisions in extremely uncertain conditions. In the re-
sults, it is noticed that the varying probabilities for bj are
different values of transportation cost and unit flow for
this problem. It is common to move toward more con-
servative solutions when there is greater uncertainty in the
optimization problem. It is observed that when modeling
SFTPMC with the uncertainty introduced by the proba-
bility for ai and bj, more conservative solutions are se-
lected as the optimal. *is analysis, on the other hand,
demonstrates the need of grasping the sensitivity of mixed
constraints in the face of rising uncertainty. It helps a DM

Table 2: Stochastic fuzzy transportation problem mixed constraint (P).

Repositories 1 2 3 4 ai

Coal plant

A (0,0.5,1) (2,4,6) (1.5,2,3) (2,4,5) � a1
B (3,5,7) (1.5,2,3) (0,0.5,1) (4,5.8,6) ≥ a2
C (7,8.5,9) (2.5,3,4) (3,4,5) (2,3,4) ≤ a3
bj ≥ b1 ≤ b2 ≥ b3 � b4
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Table 5: Sensitivity analysis of SFTPMC by the varying probability of (pbj
).

Probabilities for bj(Pbj
) Probabilities ai(pai

) Optimal transportation cost Unit flow

0.99

0.5

99.64 49.25
0.95 98.81 47.59
0.9 98.38 46.73
0.85 98.1 46.17
0.8 97.89 45.74
0.75 97.7 45.05
0.7 97.54 45.05
0.65 97.4 44.77
0.6 97.26 44.37
0.55 97.14 44.25
0.5 97.02 44.01
0.45 96.9 43.77
0.4 96.78 43.53
0.35 96.66 43.29
0.3 96.54 43.05
0.25 96.42 43.41
0.2 96.29 42.55
0.15 96.16 42.29
0.1 96 41.97
0.05 95.8 41.57
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Figure 1: SA of the optimal transportation cost.

Table 4: Computational results for 3 models.

Optimization method (Lingo software) Model 1 Model 2 Model 3
Optimal transportation cost 93.67 95.75 96.42
Units in flow 42 42.84 42.84

Table 3: Alpha cut representation of cost function for problem (P).

1 2 3 4 ai

A (1 − α)1x11 + 0αx11 (1 − α)6x12 + 2αx12 (1 − α)3x13 + 1.5αx13 (1 − α)5x14 + 2αx14 � a1
B (1 − α)7x21 + 3αx21 (1 − α)3x22 + 1.5αx22 (1 − α)1x23 + 0αx23 (1 − α)6x24 + 4αx24 ≥ a2
C (1 − α)9x31 + 7αx31 (1 − α)4x32 + 2.5αx32 (1 − α)5x33 + 3αx33 (1 − α)4x34 + 2αx34 ≤ a3
bj ≥ b1 ≤ b2 ≥ b3 � b4
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Figure 2: SA of the unit’s flow.

Journal of Mathematics 9



choose the right level of uncertainty for uncertain
parameters.

7. Conclusions and Future Scope

*is article describes a model for solving an SFTPMC that
includes the cost coefficient of the objective function as a
fuzzy number and probabilistic constraints accompanying
the WD. *e fuzzy objective value is converted into an
equivalent deterministic objective function using alpha cut
representation, and all stochastic constraints are converted
into an equivalent deterministic constraint using WD.
*ree models, models 1, 2, and 3, of SFTPMC are also
established, and the optimal solution for each model has
been obtained by using Lingo software. A numerical ex-
ample is given to show the performance of the models. *e
SA results are presented for model 3 supply and demand
parameters. A pictorial representation (Figures 1 and 2) of
model 3 on SA is to illustrate the effect of the change in
demand parameters on total transportation costs and unit
flow. Likewise, perform SA for the supply parameters. In
addition, this analysis demonstrates the need of grasping
the sensitivity of mixed constraints in the face of rising
uncertainty. It assists a DM to choose the right level of
uncertainty for uncertain parameters. *e computed re-
sults clearly indicate that the designed model is robust with
respect to the different parameters. As this is the problem,
SFTPMC plays a vital role in many cases of managerial
decision-making situations such as the planning of many
complex resource allocation problems in the areas of in-
dustrial production, in which demand and supply are
random variables in nature. In such situations, this model
will serve as an efficient tool for optimal planning.

*e limitations of the current study are presented. *is
research has considered an FTP with mixed constraints
under a stochastic environment, where the single objective
that is transportation cost is considered. In reality, the de-
cision-making process handling with the complex organi-
zational situation cannot depend exclusively on a single
condition. So, we must understand the presence of nu-
merous criteria that can improve multicriteria decision-
making. In view of this, in our future study, we plan to
investigate SFTPMC scenarios by considering multi-
objective with multiitem parameters. Using the approach
presented in this work, supply and demand variations can be
considered in the economic order quantity model. In our
forthcoming research, we plan to get real-world data from
proper authorities and employ statistical regularity criteria
to derive its probability distribution. In this case, theWD has
a broad range of applications.
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