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Liver cirrhosis is the liver scarring in human body which causes the liver organ failure to function its regular activities effectively
and normally. In this paper, we proposed and analyzed the combined effect of hepatitis B virus (HBV) infection and heavy alcohol
consumption on the progression dynamics of liver cirrhosis. In order to study the progression dynamics of cirrhosis and to
describe the effect of alcohol intake variation on a chronic hepatitis B patients a deterministic model and a logistic function are
considered, respectively. (e detailed proof of the positivity, boundedness, and biological feasibility of the proposed model is
presented. (e disease endemic equilibrium point and the existence of bifurcation were investigated in detail. We established and
proved the existence theorems for forward and backward bifurcations, respectively. Finally, we performed large scale numerical
simulations to verify the analytic work and the result of the numerical simulations reveal that heavy alcohol consumption
significantly accelerates the progression of liver cirrhosis in chronic hepatitis B infected individuals.

1. Introduction

Liver cirrhosis is a late stage of liver diseases where a healthy
liver tissue is possibly transformed into scar tissue when
forced to process alcohol or subjected to viral infections,
which in turn makes the liver organ fail to function nor-
mally. It is characterized by high morbidity and mortality in
the world where one million deaths are attributable to
cirrhosis every year [1]. Liver cirrhosis is caused by alcohol
abuse, chronic viral hepatitis (B and C), and nonalcohol fatty
diseases [2]. Although liver cirrhosis has no signs until liver
damage is extensive, acute infection individuals gradually
develop symptoms such as easily bleeding, nausea, loss of
appetite, and sudden weight loss.

(e two main etiologic factors of liver cirrhosis include
HBV infection and heavy alcohol consumption [3]. Between
350 and 400 million people are chronic carriers and 2 billion
people are living with HBV infection in the world [4].
Hepatitis B, one of the major risk factors of liver cirrhosis

which originates from hepatitis B virus, is more likely to
occur among people with long term viral hepatitis. (e HBV
infection involves two phases: acute infection and chronic
HBV carriers [5]. About 90% of acute infection individuals
are capable of clearing HBV from their blood within 6
months [6, 7]. However, the chronic phase is the end-stage
liver disease which results in liver inflammation and can lead
to life-long illness. (is contagious disease is spreading ei-
ther vertically from infected mothers to her infants during
delivery or horizontally through unsafe sexual practices,
blood transfusion with another infected human, and ex-
posures to infectious blood and body fluids [6, 8]. Liver
cirrhosis is heavily prevalent in hepatocellular carcinoma
(HCC) when compared with HBV patients [9], Liver cir-
rhosis development is higher in chronic HBV patients with
high viral load than in those with low viral load [10].

Heavy alcohol consumption is another major risk factor
of chronic liver cirrhosis development in which about 38% of
people older than 15 years consume approximately more
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than 17 litres of pure alcohol annually (see [4] and references
therein). About 10%–20% of heavy drinkers of alcohol
commonly develop cirrhosis after 10 or more years. Spe-
cifically, drinking 50 grams of pure alcohol daily for 10 to 20
years is the minimum amount of alcohol required to gen-
erate cirrhosis. Heavy alcohol consumption causes rapid
progression of liver disease, weakens innate and adaptive
immunity, and allows HBV to persist chronically [3]. Many
studies reveal that there is no significant increase to cirrhosis
for people who consume less than 50 grams of pure alcohol
per day. Consumption of greater than 50 grams of pure
alcohol per day for both males and females accelerates the
progression of cirrhosis in chronic hepatitis B carriers and
consumption of greater than 300 grams of alcohol per day is
poisonous and lethal for a 60 kg weighing person
[4, 5, 11, 12]. Moreover, alcohol abuse exponentially in-
creases the risk for liver cirrhosis [10, 13].

Khatun and Biswas [2] clarified the transmission dy-
namics of liver cirrhosis from HBV and concluded that the
disease can be controlled through vaccination and treatment
using a mathematical model and optimal control strategy.
Ganesan et al. [3] suggested that the combination of HBV
infection and alcohol abuses can provide detrimental con-
sequences in rapid end-stage liver disease. Iida-Ueno et al.
[4] investigated the association between hepatitis B virus
infection and alcohol consumption. (e authors concluded
that heavy alcohol consumption within chronic HBV in-
fected patients significantly increases the progression of liver
disease to cirrhosis, on average fivefold increased risk. Din
et al. [5] formulated an epidemic model to investigate the
viral dynamics of HBV by considering the impact of acutely
infected individuals in the vertical transmission of HBV
infection. (e authors incorporated two time dependent
controls in their model and concluded that effective
implementation of the control strategies for the long-run is
possible enough in order to eradicate HBV in the com-
munity. Khan et al. [6] developed a deterministic mathe-
matical model to qualitatively analyze the impact of
migration, vaccination, and hospitalization on the spread
and control of HBV. (e authors concluded that the mi-
gration, vaccination, and hospitalization are effective mea-
sures to predict the intervention strategies. Maćıas-Dı́az et al.
[7] presented a nonstandard numerical design to analyze a
discrete three-dimensional HBV epidemic model. Mokdad
et al. [8] suggested preventive measures to control and re-
duce liver cirrhosis risk factors should be urgently
strengthened. Vonghia et al. [11] related binge drinking with
body mass index and suggested that for a 60 kg person
drinking 300 g of pure alcohol per day which is the lethal
amount can kill the person or poison his blood. Yang et al.
[9] studied the prevalence of cirrhosis in HBV and hepa-
tocellular carcinoma (HCC) and the result shows that it was
88% and 97% among HBV and hepatitis C virus (HCV)
patients, respectively. Khajji et al. [14] analyzed the impact of
the addiction treatment centers on system stability and
awareness creation programs on the drinkers.

Mathematical models are widely used and can be
employed to study the dynamics behavior of infectious
diseases such as HBV infection, liver cirrhosis, cholera, and

so on. (e studies on these infectious diseases highlight how
to control the spread and predict its future damage on the
lives and economies of the country. Interestingly, there is a
large scale of mathematical models developed on the
transmission dynamics and control mechanisms of HBV
infection, alcohol drinking pattern, and liver cirrhosis
reduction.

(e authors in [14, 15] formulated a continuous and
discrete mathematical model to study the dynamical be-
havior of alcohol drinking with the impact of private and
public addiction treatment centers. Park et al. [16] discussed
the factors associated with alcohol consumption in HBV
carriers in Korea and identified high-risk alcohol con-
sumption as consuming at least 60 g of alcohol on one
occasion and 40 g of alcohol on more than one occasion for
male and female, respectively. Ullah et al. [17] analyzed the
dynamics of HBV transmission model with hospitalized
class. Zou et al. [18] developed a deterministic model to
analyze the impact of sexual transmission on the disease
prevalence. Khan et al. [19] illustrated the merits of media
coverage with the help of dynamical model for hepatitis
B. Zhao et al. [20] studied the application of vaccination
strategies in China against HBV infection and found that
long term effective immunization is needed by providing
higher vaccination coverage. Zhou et al. [21] compared
excessive drinking and moderate alcohol consumption and
concluded that alcohol abuse in patients with chronic HBV
infection increases liver inflammation which finally accel-
erates the progression of liver cirrhosis while moderate al-
cohol consumption has no significant effect on its
progression.

Even though there is a safe and effective vaccine
available for HBV, HBV related mortality and morbidity
are still there in the top list and the progression of liver
cirrhosis is increasing in the world. (e efficacy of drugs
aimed at breaking the progression of liver fibrosis was
studied by Friedman and Hao [22] by developing a
mathematical model of liver cirrhosis. Hence, we will
formulate a deterministic model along with logistic al-
cohol intake variation to investigate the combined effect of
HBV infection and heavy alcohol consumption on the
progression dynamics of chronic liver cirrhosis, which is
not considered by any scholar yet, to the best of the
knowledge of the authors.

(is article is organized as follows. Section 2 is devoted
to model formulation and presents the fundamental
properties of the model. In Section 3, positivity of the
solution, boundedness of the feasible region, disease
free-equilibrium, and the existence of disease endemic
equilibrium will be presented and the stabilities of disease
free-equilibrium (DFE) and endemic equilibrium (EE) are
checked in Section 4. In Section 5, we will analyze the
bifurcation phenomena and prove the existence of for-
ward and backward bifurcation of the model. In Section 6,
the local sensitivity analysis of the model will be calculated
and its biological interpretation will be provided. Section 7
is devoted to explore the simulation of the liver cirrhosis
model. Finally, conclusion of the overall work is presented
in Section 8.
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2. Model Formulation

Here, we develop a deterministic mathematical model that
consists of four ordinary differential equations along with a
logistic model with alcohol consumption variation to study
the progression dynamics of chronic liver cirrhosis. We
partitioned the whole population into four compartments:
the susceptible individuals S(t), the acutely infected indi-
viduals I(t), the liver cirrhotic individuals C(t), and the
recovered individuals R(t) with
N(t) � S(t) + I(t) + C(t) + R(t).

Susceptible individuals S(t) are individuals who are not
yet infected with the disease at time t. (e susceptible
population do not have an immunity against a potential
infection. (is class is generated by the recruitment rate Λ
and decreased by disease transmission coefficient β(A),
where A(t) is the amount of pure alcohol consumed in
grams per day. Further, it is decreased by the natural death
rate μ. Hence, the above hypotheses lead to a differential
equation of the susceptible population at time t

d

dt
S(t) � Λ − β(A)(I(t) + cC(t))S(t) − (μ + ])S(t). (1)

(e parameters ] and c represent the vaccination rate of
newborn infants and the rate of relative infectiousness of
cirrhosis over acute infection, respectively. All population
classes are subjected to the natural death rate μ.

(e acutely infected populations I(t) are individuals
who are currently infected with the disease, develop strong
enough immunity to clear the disease from the body, and are
capable of spreading the disease to those in the susceptible
phase. (is class is generated by the transmission coefficient
β(A) and it is decreased by a spontaneous recovery rate η, a
cirrhosis progression rate σ, and natural and disease related
death rates μ and μ1, respectively. (e acute infection
compartment is given by the following differential equation:

d

dt
I(t) � β(A)(I(t) + cC(t))S(t) − μ + μ1 + η + σ( 􏼁C(t).

(2)

Liver cirrhotic individuals C(t) are asymptomatic in-
fection individuals who are infected with the end-stage liver
disease and can transmit the disease at any time t. (e
cirrhotic compartment is increased by a cirrhosis progres-
sion rate σ and a proportion q, (0< q≤ 1) of relapse rate. It is
decreased by a cirrhosis recovery rate δ and natural and
disease related death rates μ and μ2, respectively. (e dif-
ferential equation governing the liver cirrhosis compartment
is given by

d

dt
C(t) � (σ + qη) I(t) − μ + μ2 + δ( 􏼁C(t). (3)

Finally, the recovered population R(t) is generated by
cirrhosis recovery rate δ and a spontaneous acute recovery
rate η. (is class is further decreased by natural death rate μ.
Hence, the recovery class is governed by the following
equation:

d

dt
R(t) � ]S(t) +(1 − q)η I(t) + δC(t) − μR(t). (4)

Moreover, we assumed the variation in the amount of
pure alcohol consumption of young adults is supposed to be
given by a logistic model with an alcohol consumption
growth rate r. (e rate of change of alcohol consumption at
any time t is given by

d

dt
A(t) � r A(t) − A0( 􏼁 1 −

A(t)

Amax
􏼠 􏼡, (5)

where A0 represents a minimum amount of pure alcohol
consumed and Amax represents a maximum amount of pure
alcohol consumed in grams. Furthermore, we considered
the following assumptions to enhance the model formu-
lation for the progression dynamics of chronic liver
cirrhosis.

(i) All state variables are nonnegative and known
quantities.

(ii) (e transmission coefficient depends on the vari-
ation of alcohol consumption of HBV infection
patient.

β(A) � β0 + β1
A(t) − A0

Amax
􏼠 􏼡. (6)

β0 is the mean transmission rate of liver cirrhosis
and β1 is the incremental rate of pure alcohol
consumption.

(iii) Individuals aged above 15 years are considered.
(iv) (e average amount of alcohol consumption for

male and female is the same.
(v) Alcohol consumption with meal is taken into

account.

Figure 1 represents the transfer diagram for chronic liver
cirrhosis.

d

dt
S(t) � Λ − β(A)(I(t) + cC(t))S(t) − (μ + ])S(t),

d

dt
I(t) � β(A)(I(t) + cC(t))S(t) − μ + μ1 + η + σ( 􏼁I(t),

d

dt
C(t) � (σ + qη) I(t) − μ + μ2 + δ( 􏼁C(t),

d

dt
R(t) � ]S(t) +(1 − q)η I(t) + δC(t) − μR(t),

d

dt
A(t) � r A(t) − A0( 􏼁 1 −

A(t)

Amax
􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)
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(is is done along with the subsidiary condition

S(0) � S0 ≥ 0,

I(0) � I0 > 0,

C(0) � C0 > 0,

R(0) � R0 > 0,

A(0)≥ 0 .

(8)

3. Model Analysis

In this section, we present the solution of the model under
discussion and affirm that the solution is nonnegative for
long time in future.

3.1. Positivity and Boundedness of Solution

Theorem 1. )e solution G(t) � (S(t), I(t), C(t), R (t), A

(t)) is nonnegative for all t> 0 if the initial data of system (7)
in the form G(0) � (S(0), I(0), C(0), R(0), A(0)) is
nonnegative.

Proof. To show the positivity of the state S(t), I(t), C(t), R

(t), and A(t), we first present the solution of the first
equation of system (7).

d

dt
S(t) + β(A)(I(t) + cC(t))S(t) +(μ + ])S(t) � Λ. (9)

Integration of (9) with respect t yields

S(t) � e
− (μ+])t+ 􏽚

t

0
β(A)(I(x) + cC(x))dx􏼠 􏼡

S0 + 􏽚
t

0
Λ e

(μ+])t+ 􏽚
t

0
β(A)(I(u) + cC(u))du􏼠 􏼡⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠dt

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

≥ 0. (10)

From equation (10), we observe that S(t) is nonnegative
for all t> 0. In a similar procedure, one can verify that
I(t), C(t), R(t), and A(t) are nonnegative for t > 0. □

Theorem 2. )e closed set

Ω � (S, I, C, R) ∈ R4
+: 0<N(S, I, C, R)≤

Λ
μ

􏼨 􏼩. (11)

It is biologically feasible region of the initial value
problems (7) and (8).

Proof. For the sake of convenience, we let r1 � μ + ], r2 �

μ + μ1 + η + σ, r3 � μ + μ2 + δ throughout this paper. Recall
that the total population N(t) at any time t is given by

N(t) � S(t) + I(t) + C(t) + R(t). (12)

Differentiation of equation (12) with respect t gives
dN

dt
� Λ − μN − μ1I − μ2C. (13)

Simplification of equation (13) in the absence of infec-
tious yields

dN

dt
≤Λ − μN. (14)

After a slight arrangement and integration of equation
(14) with respect to t we obtain

0<N≤
Λ
μ

+ N(0) −
Λ
μ

􏼠 􏼡e
− μt

. (15)

By taking limit as t⟶∞ on the inequality in equation
(15) we obtain

N(t)≤
Λ
μ

. (16)

Hence, each solution of the initial value problems (7) and
(8) remains in equation (11) for all t> 0. □

µ µ1 µ2µ µ

µ

σIβ(A)(I + γC)

qηI
ηI

δC

vS

Λ
S CI

RA

Figure 1: Transfer diagram of liver cirrhosis. Hence, combining equations (1)–(5) above together with the assumptions (i)–(v), finally, we
obtain the following system of differential equations for the progression dynamics of liver cirrhosis.
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3.2. Basic Reproduction Number (R0). To calculate the
expression for basic reproduction number (R0), we want to
determine the DFE of system (7). For this purpose, we set the
right hand side (RHS) of system (7) equal to zero and
substitute S(t) � S0 > 0, I(t) � I0 � 0, C(t) � C0 � 0, R(t) �

R0 � 0, and A(t) � [A0, Amax]. (us,

ε01 �
Λ
r1

, 0, 0, 0, A0􏼠 􏼡,

orε02 �
Λ
r1

, 0, 0, 0, Amax􏼠 􏼡.

(17)

(erefore, ε0 � ε01, ε02􏼈 􏼉 is the set of DFE point of system
(7). By using DFE, we can calculate the basic reproduction
number (R0). We follow the work of Watmough and
Driessche method [23] to calculateR0. Consider the system
(dx/dt) � (F − V)x, where the transmission matrix F is
given by

F �
β(A)S0 cβ(A)S0

0 0
􏼠 􏼡, (18)

and the transition matrix V is given by

V �
r2 0

− (σ + qη) r3
􏼠 􏼡. (19)

Hence, the next generation matrix calculated from
equations (18) and (19) becomes

FV
− 1

�

β(A)S0

r2
+

cβ(A)(σ + qη)S0

r2r3

cβ(A)S0

r3

0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (20)

Now, the dominant eigenvalue ρ(FV− 1) represents
(R0) of system (7) which is given by

R0 �
β(A)S0

r2
+

cβ(A)(σ + qη)S0

r2r3

�
Λβ(A) μ + μ2 + δ + c(σ + qη)( 􏼁

(μ + ]) μ + μ1 + η + σ( 􏼁 μ + μ2 + δ( 􏼁
.

(21)

From equation (21), we calculate two different expres-
sions forR0. (e expression for the first basic reproduction
numberR01 is calculated when a chronic hepatitis B patient
consumes a minimum amount of alcohol (i.e., A(t) � A0).

R01 �
Λβ0 μ + μ2 + δ + c(σ + qη)( 􏼁

(μ + ]) μ + μ1 + η + σ( 􏼁 μ + μ2 + δ( 􏼁
. (22)

(e expression for the second basic reproduction
number R02 of system (7) is calculated when a chronic
hepatitis B carrier consumes maximum amount of alcohol
(i.e., A(t) � Amax).

R02 � R01 +
Λkβ1 μ + μ2 + δ + c(σ + qη)( 􏼁

(μ + ]) μ + μ1 + η + σ( 􏼁 μ + μ2 + δ( 􏼁
, (23)

where k � ((A(t) − A0)/Amax). We observe that
0<R01 <R02 and rewrite it asR0 � R01,R02􏼈 􏼉 in compact
form.

3.3. Existence of Endemic Equilibrium. In this current sec-
tion, we investigate the disease endemic equilibrium of
system (7). One interesting idea behind the endemic equi-
librium is that it is used to determine the persistence of liver
cirrhosis in the population. Let us denote the steady state
solution of system (7) by ε∗ � S∗(t), I∗(t), C∗(t), R∗(t){ }

where A∗(t) ∈ [A0, Amax]. (us, the reduced part of system
(7) will take the form

0 � Λ − β A
∗

( 􏼁 I
∗
(t) + cC

∗
(t)( 􏼁S
∗
(t) − (μ + ])S

∗
(t),

0 � β A
∗

( 􏼁 I
∗
(t) + cC

∗
(t)( 􏼁S
∗
(t) − μ + μ1 + η + σ( 􏼁I

∗
(t),

0 � (σ + qη)I
∗
(t) − μ + μ2 + δ( 􏼁C

∗
(t),

0 � ]S
∗
(t) +(1 − q)η I

∗
(t) + δC

∗
(t) − μR

∗
(t),

0 � r A
∗
(t) − A0( 􏼁 1 −

A
∗
(t)

Amax
􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

Hence, after a tiresome calculation we worked out the
first endemic equilibrium ε∗1 from equation (24) which is
given by

S
∗
(t) �

μ + μ1 + η + σ( 􏼁 μ + μ2 + δ( 􏼁

β0 μ + μ2 + δ + c(σ + qη)( 􏼁
,

I
∗
(t) �

(μ + ]) μ + μ2 + δ( 􏼁 R01 − 1( 􏼁

β0 μ + μ2 + δ + c(σ + qη)( 􏼁
,

C
∗
(t) �

(μ + ])(σ + qη) R01 − 1( 􏼁

β0 μ + μ2 + δ + c(σ + qη)( 􏼁
,

R
∗
(t) �

1
(μ + ])

]S
∗

+(1 − q)η I
∗

+ δC
∗

􏼂 􏼃,

(25)

where A∗(t) � A0. Hence, the existence of the first endemic
equilibrium E∗1 in equation (25) depends on R01. (is
implies that there is at least one positive endemic equilib-
rium point if and only if R01 > 1.

Similarly, the second endemic equilibrium ε∗2 when
A∗(t) � Amax and β(A∗) � β0 + kβ1 becomes

S
∗
(t) �

μ + μ1 + η + σ( 􏼁 μ + μ2 + δ( 􏼁

β0 + kβ1( 􏼁 μ + μ2 + δ + c(σ + qη)( 􏼁
,

I
∗
(t) �

(μ + ]) μ + μ2 + δ( 􏼁 R02 − 1( 􏼁

β0 + kβ1( 􏼁 μ + μ2 + δ + c(σ + qη)( 􏼁
,

C
∗
(t) �

(μ + ])(σ + qη) R02 − 1( 􏼁

β0 + kβ1( 􏼁 μ + μ2 + δ + c(σ + qη)( 􏼁
,

R
∗
(t) �

1
(μ + ])

]S
∗

+(1 − q)η I
∗

+ δC
∗

􏼂 􏼃.

(26)
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Hence, the existence of E∗2 in equation (26) depends on
R02. (erefore, the disease endemic equilibrium
E∗ � E∗1 ,E∗2􏼈 􏼉 of system (7) exists if R02 >R01 > 1.

4. Stability Analysis

To present the local and global asymptotic stability of the two
equilibria of system (7), we use the Jacobian matrices at DFE
and EE for local stability and the Lyapunov function for the
global stability of both equilibria.

4.1. Local Stability Analyses

Theorem 3. )e disease free-equilibrium point,
ε0 � ε01, ε02􏼈 􏼉, of system (7) is locally asymptotically stable if
R01 <R02 < 1 and unstable otherwise.

Proof. (e desired Jacobian matrix evaluated at E0 when
A∗(t) ∈ [A0, Amax] becomes

J ε0( 􏼁 �

− r1 − β A
∗

( 􏼁S0 − cβ A
∗

( 􏼁S0 0 0

0 β A
∗

( 􏼁S0 − r2 cβ A
∗

( 􏼁S0 0 0

0 (σ + qη) − r3 0 0

] (1 − q)η δ − μ 0

0 0 0 0 − r5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (27)

where r5 � ((2A∗ − (A0 + Amax))/Amax).
(e characteristic polynomial of equation (27) becomes

ψ(λ) � λ + r1( 􏼁(λ + μ) λ + r5( 􏼁 λ2 + a1λ + a2􏼐 􏼑. (28)

(e first three eigenvalues of equation (28) are
λ � − r1, λ � − μ, λ � − r5. (ey are negative and the existence
of the remaining eigenvalues is determined using the Routh-
Hurwitz condition such that

a1 � r2 + r3 > 0,

a2 � r1r2r3 1 − R02( 􏼁> 0,
(29)

hold. (us, the necessary condition for the Routh-Hurwitz
criteria is satisfied wheneverR02 < 1. (erefore, the DFE E0
of system (7) is locally asymptotically stable if
R01 <R02 < 1. □

Theorem 4. )e disease endemic equilibrium point,
ε∗ � ε∗1 , ε∗2􏼈 􏼉, of system (7) is locally asymptotically stable in Ω
if R02 >R01 > 1 and unstable otherwise.

Proof. We compute the desired Jacobian matrix J(ε∗) cal-
culated at E∗ which becomes

J ε∗( 􏼁 �

− β A
∗

( 􏼁I
∗

+ cβ A
∗

( 􏼁C
∗

+ r1( 􏼁 − β A
∗

( 􏼁S
∗

− cβ A
∗

( 􏼁S
∗ 0 0

β A
∗

( 􏼁I
∗

+ ηβ A
∗

( 􏼁C
∗ β A

∗
( 􏼁S

∗
− r2 cβ A

∗
( 􏼁S

∗ 0 0

0 (σ + qη) − r‘3 0 0

] (1 − q)η δ − μ 0

0 0 0 0 − r5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (30)

(e first two roots of equation (30) are λ � − μ< 0 and
λ � − r5 < 0 and the remaining roots can be calculated from
the polynomial equation

ψ(λ) � λ3 + a1λ
2

+ a2λ + a3. (31)

(e coefficient ai(i � 1, 2, 3) of equation (31) becomes

a3 � r2r3 β A
∗

( 􏼁I
∗

+ cβ A
∗

( 􏼁C
∗

+ r1( 􏼁 − r1r3β A
∗

( 􏼁 + r1cσβ A
∗

( 􏼁 + qηcβ A
∗

( 􏼁I
∗

( 􏼁S
∗
,

a2 � r2r3 β A
∗

( 􏼁I
∗

+ cβ A
∗

( 􏼁C
∗

+ r1( 􏼁 − r1β A
∗

( 􏼁S
∗
,

a1 � r1 + r2 + r3 + β A
∗

( 􏼁I
∗

+ cβ A
∗

( 􏼁C
∗

− β A
∗

( 􏼁S
∗
.

(32)
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Hence, the values ai(i � 1, 2, 3) are positive terms if
R02 >R01 > 1.(e necessary and sufficient condition for the
local asymptotic stability of E∗ of system (7) holds if Hi > 0
of the third-order degree polynomial in equation (31) is
satisfied for i � 1, 2, 3.

HI � det

a1 1 0

a3 a2 a1

0 0 a3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠> 0 . (33)

Clearly, HI in equation (33) is positive if R02 >R01 > 1.
Hence, the disease endemic equilibrium E∗ of system (7) is
locally asymptotically stable in the biological feasible region
if R02 >R01 > 1. □

4.2. Global Stability Analysis. In the following part of work,
we discuss the global behavior of both equilibria of system
(7) using the well-known LaSalle’s invariant principle [24]
by developing an appropriate Lyapunov functions.

Theorem 5. )e disease free-equilibrium, E0 � E01,E02􏼈 􏼉,
of system (7) is globally asymptotically stable in Ω if
R01 <R02 < 1.

Proof. First we construct a suitable Lyapunov function of
the form

V(t) � k1 S(t) − S0( 􏼁 + k2I(t) + k3C(t), (34)

where ki, (i � 1, 2, 3) are nonnegative real numbers to be
chosen later. Differentiating equation (34) with respect to t
and simplifying the result yields

dV(t)

dt
� k1

d(t)

dt
+ k2

d(t)

dt
+ k3

d(t)

dt
. (35)

Upon arrangement of equation (35) for A∗ � [A0, Amax],
we obtain

dV(t)

dt
� k1 Λ − β(A) I + ηC + r1( 􏼁S( 􏼁

+ k2 β(I + ηC)S − r2I( 􏼁 + k3 (σ + qη)I − r3C( 􏼁.

(36)

Next, we choose k1 � r1 � k2 and k3 � (cβ(A∗))/r3.
Simplification of equation (35) yields

dV

dt
� − r

2
1 S(t) − S0( 􏼁 − r1r2 1 − R02( 􏼁I(t)

− β A
∗

( 􏼁S0 + cβ A
∗

( 􏼁C(t)S0( 􏼁.

(37)

Here, it is to be noted that R02 < 1 automatically implies
that R01 < 1. Hence, (dV/dt)< 0 whenever R01 <R02 < 1.
Also, (dV/dt) � 0 if and only if S(t) � S0, I(t) � 0, and
C(t) � 0. (erefore, the largest compact invariant in set
(S, I, C, R) ∈ Ω: (dV/dt) � 0{ } is the singleton E0. (ere-
fore, we conclude that the point E0 is globally asymptot-
ically stable in Ω if R01 <R02 < 1 using LaSalle’s invariant
principle [24]. □

Theorem 6. )e disease endemic equilibrium,
E∗ � E∗1 ,E∗2􏼈 􏼉, of system (7) is locally asymptotically stable in
Ω if R02 >R01 > 1.

Proof. To examine the global behavior of E∗, we develop a
Lyapunov function of the form (see [25])

1
2

S − S
∗

( 􏼁 + I − I
∗

( 􏼁 + C − C
∗

( 􏼁 + R − R
∗

( 􏼁􏼂 􏼃
2
. (38)

By differentiating equation (37) along its trajectories
with respect to t we obtain

dV

dt
� S − S

∗
( 􏼁 + I − I

∗
( 􏼁 + C − C

∗
( 􏼁 + R − R

∗
( 􏼁( 􏼁

×
d

dt
S − S
∗

( 􏼁 + I − I
∗

( 􏼁 + C − C
∗

( 􏼁 + R − R
∗

( 􏼁􏼈 􏼉.

(39)

Further, it follows that

dV

dt
� (S + I + C + R) − S

∗
+ I
∗

+ C
∗

+ R
∗

( 􏼁( 􏼁

×
dS

dt
+

dI

dt
+

dC

dt
+

dR

dt
􏼨 􏼩

� N(t) − S
∗

+ I
∗

+ C
∗

+ R
∗

( 􏼁( 􏼁 ×
dN

dt
􏼨 􏼩.

(40)

Without loss of generality S∗ + I∗ + C∗ + R∗ ≤ (Λ/μ),
and substituting equations (12) and (14) in the above
equation gives

dV

dt
� N(t) −

Λ
μ

􏼠 􏼡 × Λ − μN(t)􏼈 􏼉. (41)

Upon simplification and rearrangement of equation (39)
we obtain

dV

dt
� N(t) −

Λ
μ

􏼠 􏼡 × − μ􏼈 􏼉 N(t) −
Λ
μ

􏼠 􏼡. (42)

After simplification and a slight arrangement of equation
(43) we obtain

dV

dt
� − μ N(t) −

Λ
μ

􏼠 􏼡

2

. (43)

(us, (dV/dt)≤ 0 when R02 >R01 > 1. Clearly,
(dV/dt) � 0 if and only if S � S∗, I � I∗, C � C∗, and
R � R∗. Hence, the largest compact set in
(S, I, C, R) ∈ Ω: (dV/dt) � 0{ } is the singleton ε∗ � ε∗1 , ε∗2􏼈 􏼉,
which is a disease endemic equilibrium. (erefore, by
LaSalle’s invariant principle [24], E∗ is globally asymptot-
ically stable in the biological feasible region when
R02 >R01 > 1. □

5. Bifurcation Analysis

In this section, we investigate the bifurcation phenomena of
system (7). We employ the center manifold theory presented
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in [26] to discuss the existence of bifurcation. We establish
the existence theorem for backward bifurcation and present
detail proof. A backward bifurcation is maintained when
stable DFE and stable EE coexist in a specified biological
region. In our model, both forward bifurcation and back-
ward bifurcation are sufficiently presented.

Let us denote S(t) � x1, I(t) � x2, C(t) � x3, R(t) � x4,
and A(t) � x5. (us, in vector notation it becomes x

→
�

(x1, x2, x3, x4, x5) and

f1 � Λ − β A
∗

( 􏼁 x2 + cx3( 􏼁x1 − (μ + ])x1,

f2 � β A
∗

( 􏼁 x2 + cx3( 􏼁x1 − μ + μ1 + η + σ( 􏼁x2,

f3 � (σ + qη)x2 − μ + μ2 + δ( 􏼁x3,

f4 � ]x1 +(1 − q)η x2 + δx3 − μx5,

f5 � r x5 − A0( 􏼁 1 −
x5

Amax
􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(44)

where A∗ � [A0, Amax].
Let fi(i � 1, . . . , 5) be a continuous twice differential

function defined on R5 × R. (us, equation (44) can be
written in the following dynamical system form

d x
→

dt
� fi( x

→
). (45)

Now setting R0 � 1 and solving the expression for the
bifurcation parameter β(A∗) and finally replacing the result
by β∗(A∗) yield

β∗ A
∗

( 􏼁 �
r2r3

r3 + c(σ + qη)( 􏼁S0
. (46)

(e linearizationmatrix of equation (45) evaluated at the
DFE E0 and β∗(A∗) becomes

J
∗ ε0( 􏼁 �

− r1 − β∗ A
∗

( 􏼁S0 − cβ∗ A
∗

( 􏼁S0 0 0

0 β∗ A
∗

( 􏼁S0 − r2 cβ∗ A
∗

( 􏼁S0 0 0

0 (σ + qη) − r‘3 0 0

] (1 − q)η δ − μ 0

0 0 0 0 − r5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(47)

(e characteristic polynomial of equation (47) becomes

ψ(λ) � λ λ + r1( 􏼁(λ + μ) λ + r5( 􏼁 λ +
r2c(σ + qη)

r3 + c(σ + qη)
+ r‘3􏼠 􏼡. (48)

We observe that equation (48) has four negative real part
eigenvalues and one zero eigenvalue which assures us the
existence of bifurcation phenomena for the proposed system
(7).

Next, we will establish the existence of forward and
backward bifurcations for the model under discussion.

Theorem 7. )e proposed model (7) exhibits a forward bi-
furcation at R01 � 1 if R01 < 1.

Proof. We investigate the bifurcation phenomenon for the
transmission of liver cirrhosis of the model under discus-
sion.We setR01 � 1 and calculate the bifurcation parameter
β0 and consequently replace it with β∗0 . (us,

β∗0 �
r2r3

r3 + c(σ + qη)( 􏼁S0
. (49)

Let us represent the right eigenvector
w � (w1, w2, w3, w4, w5)

T corresponding to a zero eigen-
value (i.e., λ � 0),

J
∗
w �

− r1 −
r2r3

r3 + c(σ + qη)( 􏼁
−

cr2r3

r3 + c(σ + qη)( 􏼁
0 0

0
r2r3

r3 + c(σ + qη)( 􏼁
− r2

cr2r3
r3 + c(σ + qη)( 􏼁

0 0

0 (σ + qη) − r‘3 0 0

] (1 − q)η δ − μ 0

0 0 0 0 − r5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

w1

w2

w3

w4

w5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

0

0

0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (50)

Simplification and rearrangement of equation (50) yields
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w1 � −
r2

r1
w2,

w2 � w2 > 0,

w3 �
σ + qη

r3
w2,

w4 �
σ + qη +(1 − q)η + r3δ

r1r3
􏼠 􏼡w2,

w5 � 0.

(51)

Similarly, we represent the left eigenvector
v � (v1, v2, v3, v4, v5) corresponding to a zero eigenvalue
λ � 0.

J
∗T

􏼐 􏼑v �

− r1 0 0 σ 0

−
r2r3

r3 + c(σ + qη)( 􏼁

r2r3

r3 + c(σ + qη)( 􏼁
− r2 (σ + qη) (1 − q)η 0

−
r2r3c

r3 + c(σ + qη)( 􏼁

r2r3c

r3 + c(σ + qη)( 􏼁
− r‘3 δ 0

0 0 0 − μ 0

0 0 0 0 − r5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

v1

v2

v3

v4

v5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

0

0

0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (52)

Simplifying and rearranging equation (52) gives

v1 � v4 � v5 � 0, v2 � v2 > 0, � v3 �
r2c

r3 + c(σ + qη)( 􏼁
v2.

(53)

We represent the kth component of fi(i � 1, . . . , 5) in
equation (44) to be fk(k � 1, . . . , 5) with

b1 � 􏽘
5

i,j,k�1
vkwiwj

z
2
fk

zxizxj

,

b2 � 􏽘
5

j,k�1
vkwj

z
2
fk

zxjzβ
∗
0
.

(54)

We use the center manifold theory [26] to calculate the
coefficients bi(i � 1, 2) in equation (54) to complete the
bifurcation process by finding the nonzero partial deriva-
tives of second order of fk(k � 1, . . . , 5) with respect to
xi(i � 1, . . . , 5) around the disease free-equilibrium.

z
2
f1

zx3zx1
� − cβ∗0 �

z
2
f1

zx1zx3
,

z
2
f1

zx2zx1
� − β∗0

�
z
2
f1

zx1zx2

z
2
f2

zx3zx1
� cβ∗0 �

z
2
f2

zx1zx3
,

z
2
f2

zx2zx1
� β∗0 �

z
2
f2

zx1zx2
.

(55)

Similarly, the second-order nonzero partial derivatives
of fk(k � 1, . . . , 5) with respect to xj(j � 1, . . . , 5) and β∗0
become

z
2
f1

zx2zβ
∗
0

� − S0,
z
2
f1

zx3zβ
∗
0

� − cS0,
z
2
f2

zx2zβ
∗
0

� S0,
z
2
f2

zx3zβ
∗
0

� cS0.

(56)
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Substitution of equations (51) and (55) into equation
(54) yields

b1 � −
2r2β
∗
0 r3 + c(σ + qη)( 􏼁

r1r3
v2w

2
2 < 0. (57)

Similarly, substitution of equations (53) and (56) into
equation (54) yields

b2 �
Λ

r1r3
r3 + c(σ + qη)( 􏼁v2w

2
2 < 0. (58)

Hence, the local dynamics of system (7) exhibits forward
bifurcation around the first disease free-equilibrium, E01,
which implies that there is at least one positive endemic
equilibrium at R01 � 1 if R01 < 1. □

Theorem 8. )e proposed model (7) undergoes a backward
bifurcation at R02 � 1 if R02 < 1.

Proof. By SettingR02 � 1 and calculating for the bifurcation
parameterβ1, we obtain

β∗1 �
r2r3 1 − R01( 􏼁

k r3 + c(σ + qη)( 􏼁S0
, (59)

where β1 is replaced by β∗1 .
(e right eigenvector u � (u1, u2, u3, u4, u5)

T corre-
sponding to a zero eigenvalue (i.e., λ � 0) becomes

J
∗
u �

− r1 −
r2r3 1 − R01( 􏼁

k r3 + c(σ + qη)( 􏼁
−

cr2r3 1 − R01( 􏼁

k r3 + c(σ + qη)( 􏼁
0 0

0
r2r3 1 − R01( 􏼁

k r3 + c(σ + qη)( 􏼁
− r2

cr2r3 1 − R01( 􏼁

k r3 + c(σ + qη)( 􏼁
0 0

0 (σ + qη) − r‘3 0 0

] (1 − q)η δ − μ 0

0 0 0 0 − r5
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. (60)

After simplification of equation (60) we obtain

u1 � −
r2 1 − R01( 􏼁

kr1
u2, u2 � u2 > 0, u3

�
(σ + qη)

r3
u2, u4 �

r3(1 − q)η + δ(σ + qη)

r1r3
􏼠 􏼡u2, u5 � 0.

(61)

Similarly, we represent the left eigenvector
v � (v1, v2, v3, v4, v5) corresponding to a zero eigenvalue
λ � 0.

J
∗T

􏼐 􏼑v �

− r1 0 0 σ 0

−
r2r3 1 − R01( 􏼁

r3 + c(σ + qη)( 􏼁

r2r3 1 − R01( 􏼁

r3 + c(σ + qη)( 􏼁
− r2 (σ + qη) (1 − q)η 0

−
r2r3c 1 − R01( 􏼁

r3 + c(σ + qη)( 􏼁

r2r3c 1 − R01( 􏼁

r3 + c(σ + qη)( 􏼁
− r‘3 δ 0

0 0 0 − μ 0

0 0 0 0 − r5
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. (62)

Simplifying and rearranging equation (62) gives
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v1 � v4 � v5 � 0, � v3 �
r2c 1 − R01( 􏼁

r3 + c(σ + qη)( 􏼁
v2, (63)

where v2 > 0 is arbitrary constant. Let us assume the kth

component of fi in equation (44) is fk(k � 1, . . . , 5) with

c1 � 􏽘

5

i,j,k�1
vkuiuj

z
2
fk

zxizxj

,

c2 � 􏽘
5

j,k�1
vkuj

z
2
fk

zxjzβ
∗
1
.

(64)

We calculate the coefficients ci(i � 1, 2) in equation (64)
after finding the nonzero partial derivatives of second order
of fk(k � 1, . . . , 5) with respect to xi,j(i, j � 1, . . . , 5) at the
disease free-equilibrium.

z
2
f1

zx1zx3
� − cβ∗1 �

z
2
f1

zx3zx1
,

z
2
f1

zx2zx1
� − β∗1 �

z
2
f1

zx1zx2

z
2
f2

zx3zx1

� cβ∗1 �
z
2
f2

zx1zx3
,

z
2
f2

zx2zx1
� β∗1 �

z
2
f2

zx1zx2
.

(65)

Similarly, the second-order nonzero partial derivatives
of f with respect to xj(j � 1, . . . , 5) and β∗1 become

z
2
f1

zx2zβ
∗
1

� − S0,
z
2
f1

zx3zβ
∗
1

� − cS0,
z
2
f2

zx2zβ
∗
1

� S0,
z
2
f2

zx3zβ
∗
1

� cS0. (66)

Exploiting equations (61), (64), and (65) we obtain

c1 �
2β∗1

kr1r
2
3

r3 + c(σ + qη)( 􏼁 β0S0 r3 + c(σ + qη)( 􏼁 − r2r3( 􏼁v2u
2
2.

(67)

Plugging equations (63) and (66) into equation (64)
yields

c2 �
Λ

r1r3
r3 + c(σ + qη)( 􏼁v2u2. (68)

Hence, the existence of the backward bifurcation around
the second disease free-equilibrium E02 depends on the
coefficient ci. (us, ci > 0 if and only if β0S0(r3 + c(σ
+qη))> r2r3. (erefore, system (7) exhibits backward bi-
furcation at R02 � 1 if R02 < 1.

Further, let us assume that one of the two infected classes
of system (7) is nonzero. (en, the solution of system (7) at
disease endemic equilibrium will become

S
∗
(t) �
Λ(σ + qη) − r2r3C

∗
(t)

r1(σ + qη)
, I
∗
(t) �

r3C
∗
(t)

(σ + qη)
. (69)

Substituting the above equations S∗(t) and I∗(t) in the
first equation of system (7) for A∗ � [A0, Amax]C

∗(t)≠ 0, we
get

Q(C) � aC
2

+ bC + c, (70)

where

a � r2r3 β0 + β1
A
∗
(t) − A0

Amax
􏼠 􏼡􏼠 􏼡 r3 + c(σ + qη)( 􏼁,

b � r1r2r3(σ + qη) 1 − R0( 􏼁, c � r1Λ(σ + qη)
2

− r1Λ(σ + qη)
2
(� 0).

(71)

Clearly, a> 0 and b> 0 if R0 < 1. Hence, the coefficients
of the quadratic equation are positive but b may be negative.
Existence of nonnegative solution of the above quadratic
equation ultimately depends on the sign of b since a is
positive term. (is ultimately suggests that the steady state
solution E∗ of system (7) depends on R0 and setting
Q(C) � 0 yields

C1 �
− b +

�������
b
2

− 4ac
􏽰

2a
, C2 �

− b −
�������
b
2

− 4ac
􏽰

2a
. (72)

It is obvious to notice that if the term under the square
root is negative (i.e., b2 < 4ac), then (1) the above quadratic
equation has no solution, and (2) there is no positive en-
demic equilibrium for system (7). Hence, there is a unique
endemic equilibrium E∗ in the biological feasible region Ω
since b < 0 if R02 >R01 > 1. □

6. Local Sensitivity Analysis

In this section, we present the sensitivity analysis of the
proposed model (7). It measures the relative contribution of
each model parameter which is responsible for the trans-
mission and prevalence of disease. Since the initial disease
transmission is directly related to R0, then we perform a
sensitivity analysis on R0 to identify the most critical pa-
rameters that assist us to break the spread of the disease. We
use the normalized forward sensitivity index to measure the
relative change of the model parameter to the disease control
and spreading.

Definition 1. A normalized forward local sensitivity index of
R0 of system (7), depending on the differentiability with
respect to a model parameter q, is given by

ΨR0
q �

zR0

zq
×

q

R0
. (73)

By applying equation (73) we calculate the sensitivity
analysis of R01 and R02 with respect to the model pa-
rameters. For instance, the sensitivity indices of R01 and
R02 with respect to β0 are given by
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ΨR01
β0

�
zR01

zβ0
×

β0
R01

�
Λ r3 + c(σ + qη)( 􏼁

r1r2r3
􏼠 􏼡

r1r2r3β0
Λβ0 r3 + c(σ + qη)( 􏼁

􏼠 􏼡 � +1.000,

ΨR02
β0

�
zR02

zβ0
×

β0
R02

�
Λ r3 + c(σ + qη)( 􏼁

r1r2r3
􏼠 􏼡

r1r2r3β0
Λ β0 + kβ1( 􏼁 r3 + c(σ + qη)( 􏼁

􏼠 􏼡 � 0.4808.

(74)

(e sensitivity indices of the remaining basic model
parameters evaluated at the parameter’s value are presented
in Table 1.

Table 1 presents the sensitivity indices of each model
parameter with respect to the basic reproduction numbers
R01 andR02. From observation of Table 1, we noticed some
parameters have positive sign and some other parameters
have negative sign. (is helps us to give the biological in-
terpretation of each model parameter in R01 and R02.
Parameters with positive sign have positive impact on R01
and R02. On the contrary, parameters with negative sign
have negative impact on R01 and R02. For instances, pa-
rameters such as β0, β1,Λ, and c have positive signs and have
direct relationship withR01 orR02. Biologically, this means
the increase (or decrease) of the parameter’s value auto-
matically increases (or decreases) R01 and R02. Likewise,
parameters such as σ, μ, η, μ1, δ, q, and μ2 have negative signs
and are inversely related to the basic reproduction numbers.
(is also mean that the increase (or decrease) of the pa-
rameter’s value directly decreases (or increases) R01 and
R02. We observe that the sensitivity indices enable us to
determine the various factors of disease transmission and its
control. (ese indices also allow us to find the most essential
parameters that strongly affect the basic reproduction
numbersR01 andR02. For example, if one can increase the
parameter β0 by 10%, thenR01 will increase by 10% andR02
will also increase by 4.81%. On the other hand, if one can
increase the parameter σ by 10%, so R01 and R02 will
decrease by 42.98%.

(e influence of parameters c, β0, and β1 is clearly
depicted in Figures 2(a) and 2(b) as discussed above. If we
increase the values of c and β0 only by keeping the value of
other parameters constant, then the basic reproduction
numberR0 will increase. (is implies that the parameters c

and β0 are directly related to R02. Figure 3 shows the di-
agrammatic representation of sensitivity indices of basic
model parameters with their relative contribution on liver
cirrhosis management. In Figure 3(b), the impact of β1 is
stronger than the impact of β0 on R02 while β1 has zero
contribution on R01.

7. Simulation of the Liver Cirrhosis Model

We employed MATLAB programming of ODE45 solver
built-in function to carry out the simulation of the proposed
model (7). For the purpose of simulation, we considered a set
of positive initial data 100, 40, 20, and 10 for the states in
equation (7), S(t), I(t), C(t), R(t), respectively. We assumed
a period of 0–60 years as time interval. (e values of the

parameters are given in Table 2. (e majority of the pa-
rameter’s value are taken from published journals and the
remaining parameter’s values are assumed in biologically
feasible ways.

(e plots in Figure 4 represent the dynamic behavior of
susceptible, acute infection, liver cirrhotic, and recovered
individuals. It can be observed that the susceptible pop-
ulation decrease while the acute infection and liver cirrhotic
individuals increase for over 15 years and start falling
sharply to zero afterward. In both figures, all trajectories are
converging to (0.8, 0, 0) when large amount of alcohol and
low amount of alcohol are consumed, which verifies the local
stability of DFE of system (7).

Figure 5 shows the impact of alcohol consumption on
the progression dynamics of liver cirrhosis. As clearly seen
from Figure 5(a) alcohol abuse in an HBV infected person
accelerates the progression of liver cirrhosis. (e number of
acute infection individuals in Figure 5(a) and the number of
liver cirrhotic individuals in Figure 5(b) increase for the first
few years and then return to zero.

In Figures 6(a) and 6(b), the simulation result for the
variation of the mean transmission rate is presented.
Maximization of this rate resulted in maximization of acute
infection and liver cirrhotic individuals. One has to mini-
mize the increment rate of alcohol consumption parallel to
the minimization policy for minimizing the transmission
rate.

(e plot in Figure 7 is a demonstration showing the
variation in the parameters $\beta_{0}$ and $\beta_{1}$
which yield tremendous change in the number of acute
infection and liver cirrhotic individuals. It shows that the
increase in the mean transmission rate increases the liver
cirrhotic population.

Figure 8 reveals chronic liver progression is directly
related to the progression rates. It indicates that if we keep
the other model parameters fixed and vary the progression
rate alone, we apparently observe the reduction of acute
infection and the increment of liver cirrhotic individuals.

Figure 9 demonstrates the the phase portrait of the state
variables in the model. (e number of acute infection in-
dividuals increases sharply for the first years whenever the
number of susceptible population increases as depicted in
Figure 9(a). Likewise, Figure 9(b) shows the number of liver
cirrhotic individuals increases when the number of acutely
infected population increases and after a while it experiences
a recyclic manner. Figure 9(d) indicates the change in liver
cirrhotic individuals when we vary alcohol consumption
over a period of 20 years. It rises for the first few years and
starts falling after a certain period of time.
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Table 1: Sensitivity analysis of basic mode parameters in R01 and R02.

Parameter Value (per year) Source ΨR01
β0

ΨR02
β0

μ 0.0300 [5] − 1.3938 − 1.3938
β0 0.0050 [5] +1.0000 +0.4808
μ1 0.0020 [5] − 0.0217 − 0.0217
σ 0.2500 [2] − 0.4298 − 0.4298
μ2 0.0020 Assumed − 0.0038 − 0.0038
c 0.1600 [5] +0.1193 +0.1193
q 0.2500 [2] − 0.7117 − 0.7117
δ 0.0600 [5] − 0.0577 − 0.0577
η 0.0500 [5] − 0.1556 − 0.1556
β1 0.0250 Assumed — +0.5192
] 0.0200 [5] − 0.1156 − 0.1156
Λ 0.0400 [5] +1.0000 +1.0000
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Figure 2: (e phase space of (a) R02 versus c and β0 and (b) R02 versus σ and β1.
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Figure 3: Sensitivity index of the model parameters in (a) R01 and (b) R02.
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Table 2: Model parameter’s value and source.

Parameter Value (per year) Source
μ 0.0300 [5]
β0 0.0050 [5]
μ1 0.0020 [5]
σ 0.2500 [2]
μ2 0.0020 Assumed
c 0.1600 [5]
q 0.2500 [2]
δ 0.0600 [5]
r 0.0650 Assumed
η 0.0500 [5]
β1 0.0250 Assumed
] 0.0200 [5]
Λ 0.0400 [5]
A0 20 kg [3, 27]
Amax 75 kg [11]
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Figure 4: (e plots demonstrate the simulation results of all trajectories S(t), I(t), C(t), R(t) converging to disease free-equilibrium
(a) when the amount of alcohol consumed is A(t) � Amax and (b) when the amount of alcohol consumed is A(t) � A0.
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Figure 5: (e plots demonstrate the simulation results of I(t) and C(t).
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Figure 6:(e simulation results of I(t) andC(t) with respect to various mean transmission coefficient β0 when all other parameters are kept
fixed.
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Figure 7:(e simulation results of $I(t),$ and $C(t)$ with various mean transmission coefficients β0 and the incremental rate β1 by keeping
the remaining parameters fixed.
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Figure 8: (e plot demonstrates the simulation results of acute infection and chronic liver cirrhosis with various progression rate σ.
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Figure 9: (e phase portrait for (a) S(t)versus I(t), (b) S(t)versusC(t), (c) I(t) versusC(t), and (d) A(t)versusC(t).
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8. Conclusion

We proposed a deterministic epidemic model to study the
combined effect of HBV infection and heavy alcohol con-
sumption on the dynamics of liver cirrhosis progression
along with a logistic model to describe the alcohol con-
sumption variation over a period of time. (e basic
mathematical properties are presented to elaborate the bi-
ological feasibility of the proposed model. We analyzed the
basic reproduction number, local and global stabilities of
disease free-equilibrium, and endemic equilibrium.(e local
sensitivity indices are employed in order to investigate the
impact of various parameters in the proposed model of liver
cirrhosis transmission dynamics. We proved the local sta-
bility using the Jacobian matrix approach and the global
stability of the two equilibria using the Lyapunov function
approach. We established and proved the existence of for-
ward and backward bifurcations with the help of central
manifold theory. Finally, large scale of numerical simula-
tions was performed for the proposed model and verified the
analytical work. (e numerical simulation reveals the im-
pacts of the combination of HBV infection and heavy al-
cohol consumption and it accelerates the progression of liver
cirrhosis unless alcohol intake reduction policy is not
implemented. (e authors recommend that any interested
researcher can apply optimal control strategy in order to
minimize the risk of alcohol consumption in chronic HBV
carriers to eliminate liver cirrhosis in the population.
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P. S. Kamath, “Liver cirrhosis,” Lancet, vol. 398, no. 10308,
pp. 1359–1376, 2021.

[2] M. S. Khatun andM. H. A. Biswas, “Optimal control strategies
for preventing hepatitis B infection and reducing chronic liver
cirrhosis incidence,” Infectious Disease Modelling, vol. 5,
pp. 91–110, 2020.

[3] M. Ganesan, A. Eikenberry, L. Y. Poluektova, K. K. Kharbanda,
and N. A. Osna, “Role of alcohol in pathogenesis of hepatitis B
virus infection,” World Journal of Gastroenterology, vol. 26,
no. 9, pp. 883–903, 2020.

[4] A. Iida-Ueno, M. Enomoto, A. Tamori, and N. Kawada,
“Hepatitis B virus infection and alcohol consumption,”World
Journal of Gastroenterology, vol. 23, no. 15, 2017.

[5] A. Din, Y. Li, and Q. Liu, “Viral dynamics and control of
hepatitis B virus (HBV) using an epidemic model,” Alexan-
dria Engineering Journal, vol. 59, no. 2, pp. 667–679, 2020.

[6] T. Khan, S. Ahmad, and G. Zaman, “Modeling and qualitative
analysis of a hepatitis B epidemic model,” Chaos: An

Interdisciplinary Journal of Nonlinear Science, vol. 29, no. 10,
Article ID 103139, 2019.
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