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�is study introduces a novel structure that is not included in the metallic structure family. �is new structure, which is called an
almost bronze structure, has been de�ned using a (1, 1) type tensor �eld φ which ful�lls the requirement φ2 � mφ − Id on a
di�erentiable manifold. We investigated the parallelism and integrability conditions of these almost bronze structures by use of an
almost product structure corresponding to them. Also, we have de�ned an almost bronze Riemannian manifold.

1. Introduction

Several polynomial structures on a di�erentiable manifold
are de�ned using (1, 1) type C∞–tensor �elds.�e following
structures can be listed as examples of these polynomial
structures: almost tangent structures, almost complex
structures, almost product structures, golden structures,
silver structures, bronze structures, and metallic structures.
�ese structures have been recently studied by many authors
(see [1–12]).

�e term “metallic ratio” has been de�ned by Spinadel
[13] as a generalized form of the golden proposition in 1999
and coined the concept of the “metallic means family” or
“metallic propositions.” �e author has revealed the rela-
tionship between this metallic means family and the gen-
eralization of the Fibonacci numbers, i.e., the generalized
secondary Fibonacci sequence.

�ere are several important generalizations of the
Fibonacci and Lucas numbers such as Horadam, k-Fibo-
nacci, m-Fibonacci, bivariate Fibonacci, m-Lucas, and
p-Lucas numbers. As a result, members of the metallic ratio
family have been obtained.�e silver Fibonacci, silver Lucas,
bronze Fibonacci, and bronze Lucas numbers [14] are ex-
amples of these generalizations. In [14], Kalia de�ned the
silver Fibonacci numbers as a generalized form of the
Fibonacci numbers and the silver Lucas numbers as a

generalized form of the Lucas numbers. �e author has
revealed that silver Fibonacci numbers and silver Lucas
numbers have been related to the golden ratio. �en, the
author de�ned the bronze Fibonacci numbers and the
bronze Lucas numbers as well.

As a member of this metallic ratio family, the bronze
ratio was de�ned in [7]. In [12], the bronze structure was
studied considering the bronze ratio, which is a member of
this metallic ratio family. In [14], Kalia introduced a new
bronze ratio which is related to the bronze Lucas and bronze
Fibonacci numbers, which are not members of the metallic
mean family. In [15], Şahin de�ned an almost poly-Norden
structure by use of this new bronze ratio, examined several
geometric properties of this structure by using a corre-
sponding almost complex structure, and investigated poly-
Norden manifolds in terms of their maps with other
manifolds having di�erent structures.

In this study, we investigate new almost bronze struc-
tures by using the new bronze mean. �e new almost bronze
structures are polynomial structures with a structure
polynomial of Q(φ) � φ2 −mφ + Id for m ∈ R∖[−2, 2] on
di�erentiable manifolds. �e major novelty introduced by
this paper is that an almost product structure has been used
to examine a new almost bronze structure’s geometry on a
di�erentiable manifold. To the best of our knowledge, the
new almost bronze structure on manifolds has not been
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studied yet before the current study in the literature. In the
study, the method in [2] was used.

/e present study has been designed as follows: Sec-
tion 2 provides preliminary knowledge about the new
bronze means, bronze Fibonacci numbers, and bronze
Lucas numbers. In Section 3, the new almost bronze
structure on a differentiable manifold is introduced.
Several properties of these structures are obtained in
relation to the bronze Fibonacci and bronze Lucas
numbers. Moreover, the relationships among the bronze
ratio, complex bronze ratio, and tangent real bronze ratio
were determined. In Section 4, several examples of almost
bronze structures are presented. /e connections in
principal fibre bundles and tangent bundles are explored
in Section 5 in terms of almost bronze structure. /en in
Section 6, the integrability feature of the almost bronze
structure is studied, and the parallelism of the almost
bronze structure is investigated considering the Schouten
connection and the Vrǎnceanu connection. In the last
section, an almost bronze Riemannian manifold is de-
fined, and several features of the defined manifold are
studied. /is section also includes an illustration of the
defined bronze structure on the manifold R2 manifold.

2. Preliminaries

/is section provides brief information about the new mean,
i.e., the bronze mean, using the related bronze Fibonacci and
bronze Lucas numbers defined in [14].

/e bronze Fibonacci numbers (fm,n) are a family of
sequencing numbers defined by the recurrence presented
below:

fm,n+2 � mfm,n+1 − fm,n; fm,0 � 0, fm,1 � 1. (1)

On the other hand, the bronze Lucas numbers (lm,n)

refer to a family of sequencing numbers defined by the
following recurrence:

lm,n+2 � mlm,n+1 − lm,n; lm,0 � 2, lm,1 � m. (2)

Different from the bronze means presented in [7, 10–12],
a new bronze mean is defined as follows:

ρm �
m +

������
m

2
− 4



2
. (3)

/is is obtained as the positive root of the following
equation:

x
2

− mx + 1 � 0. (4)

For brevity’s sake, we will refer to this mean as the bronze
mean.

/e bronze Fibonacci numbers and bronze Lucas
numbers have the following relationship:

lm,n � fm,n+1 − fm,n−1 � 2fm,n+1 − mfm,n,

m
2

− 4 fm,n � lm,n+1 − lm,n−1.
(5)

/e bronze means’ continued fractions are defined as
m − 1; 1, m − 2 , while the recurrence relationship is de-
fined as follows:

ρn+2
m � mρn+1

m − ρn
m. (6)

/e following relationship is another one:

ρn
m �

lm,n + fm,n

������

m
2

− 4


2
.

(7)

3. Almost Bronze Structures on Manifolds

In this paper, M refers to a C∞–class differentiable manifold,
and all tensor fields and connections on this manifold are
considered to be of class C∞. We denote by X(M) the Lie
algebra of the vector fields on M.

Definition 1 (see [16]). Let M be a differentiable manifold
and F be a (1, 1) type tensor field on M. If F satisfies the
following equation it is defined as a polynomial structure:

Q(X) � X
k

+ akX
k− 1

+ · · · + a2X + a1Id � 0. (8)

In this equation, the identity operator on X(M) is denoted
by Id, while Fk− 1(q), Fk− 2(q), . . ., F(q), Id are linear in-
dependent for each point q in M. In this case, the polynomial
Q(X) is said to be a structure polynomial.

As stated in [17], F, which is an almost product (resp.,
almost complex, almost tangent) structure, satisfies the
condition of F2 − Id � 0 (resp., J2 + Id � 0, T2 � 0). /en
(M, F) is named as an almost product (resp., almost
complex, almost tangent) manifold.

Being inspired by the bronze mean given in (3), we can
introduce the almost bronze structure which is a new
structure on a differentiable manifold M.

Definition 2. Let M be a differentiable manifold and φ be a
(1, 1) tensor field that satisfies the equation below:

φ2
� mφ − Id (9)

where m ∈ R∖[−2, 2]. Here, φ is said to be a new almost
bronze structure on manifold M. For brevity’s sake, we will
refer to this structure as the almost bronze structure.

Several properties of almost bronze structures regarding
number sequences are as follows:

Proposition 1. (e power of an almost bronze structure on
the manifold M is defined as follows for any integer n:

φn
� fm,nφ − fm,n−1Id,φn

�
lm,n+1 − lm,n−1

m
2

− 4
φ −

lm,n − lm,n−2

m
2

− 4
Id,

(10)

where (fm,n) stands for the bronze Fibonacci numbers, and
(lm,n) stands for the bronze Lucas numbers.
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Let ρm be a bronze ratio. Binet’s formulas of the bronze
Fibonacci sequence and the bronze Lucas sequence are
defined as follows:

fm,n �
ρn

m − m − ρm( 
n

������
m

2
− 4

 , lm,n � ρn
m + m − ρm( 

n
, (11)

respectively [14].
From (10) and (11), we have a new form for equality (10)

φn
�
ρn

m − m − ρm( 
n

������
m

2
− 4

 φ +
ρn−1

m − m − ρm( 
n−1

������
m

2
− 4

 Id,

φn
�
ρn+1

m − ρn−1
m + m − ρm( 

n+1
− m − ρm( 

n−1

m
2

− 4
φ

−
ρn

m − ρn−2
m + m − ρm( 

n
− m − ρm( 

n−2

m
2

− 4
Id.

(12)

Unless otherwise stated, we will take m ∈ R∖[−2, 2]

throughout the study.
A simple calculation results in the following.

Proposition 2. (e properties of an almost bronze structure
φ are as follows:

(i) (e bronze ratio ρm and ρm � m − ρm are the ei-
genvalues of φ.

(ii) On the tangent space of the manifold TpM, φ is an
isomorphism for each p ∈M.

(iii) φ is an invertible structure, and its inverse φ is an
almost bronze structure on M, and it can be cal-
culated as follows: φ � mId − φ.

A polynomial structure on a manifold M induces a
generalized almost product structure P, as described in [16].

/us, the almost product structure and almost bronze
structure on M are connected structures.

Theorem 1

(i) If φ is an almost bronze structure on M, then Pφ is an
almost product structure on M, and it is defined as
follows:

Pφ �
1

������
m

2
− 4

 (2φ − mId). (13)

We call that Pφ is an almost product structure in-
duced by φ.

(ii) If P is an almost product structure on M, then φP is an
almost bronze structure on M, and it is defined as
follows:

φP �
1
2

mId +

������

m
2

− 4


P . (14)

(us, φP is named as an almost bronze structure
induced by P.

Since φPφ
� φ and PφP

� P, almost product structures and
almost bronze structures on M have a one-to-one
correspondence.

Proof

(i) Assume that φ is an almost bronze structure on the
manifold M. In this case, the structure
Pφ � 1/

������
m2 − 4

√
(2φ − mId) obtained from the al-

most bronze structure φ is an almost product
structure since the following condition is satisfied:

P
2
φ �

4φ2
− 4mφ + m

2
Id

m
2

− 4
�
4 φ2

− mφ  + m
2
Id

m
2

− 4
�

m
2

− 4 Id

m
2

− 4
� Id. (15)

(ii) Assume that P is an almost product structure on the
manifold M. /e structure φP � 1/2(mId

+
������
m2 − 4

√
P), which is induced by the almost

product structure P, is an almost bronze structure
since the following condition is satisfied:

φ2
P �

m
2
Id + 2m

������

m
2

− 4


P + m
2

− 4 Id

4
�

m
2

− 2 Id + m
������
m

2
− 4


P

2

�
1
2

m
2

− 2 Id + m 2φP − mId(   � mφP − Id.

(16)

We get φPφ
� φ and PφP

� P by straightforward
calculations from (13) and (14).

Using the above-mentioned literature and /eorem 1,
we can give the following definitions:
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(i) Assume that (M, T) is an almost tangent manifold.
/en, the tensor field φT, which is induced by T, is
defined as follows:

φT �
1
2

mId +

������

m
2

− 4


T , m ∈ R∖[−2, 2], (17)

and it is called an almost tangent bronze structure on
manifold M.
/en, the equation verified by an almost tangent
bronze structure

φ2
T − mφT +

m
2

4
Id � 0. (18)

/e tangent real bronze ratio ρt
m � m/2 is then

calculated using the associated equation in the real
field R, that is, x2 − mx + m2/4 � 0.

(ii) Let J be an almost complex structure onmanifold M.
/e tensor field φJ which is induced by J is defined
using the equation

φJ �
1
2

mId +

������

m
2

− 4


J , m ∈ R∖[−2, 2], (19)

is called an almost complex bronze structure on
manifold M.
φJ satisfies the following polynomial equation:

φ2
J − mφJ +

m
2

− 2
2

Id � 0 . (20)

For M � R2, we obtain the following equation:

x
2

− mx +
m

2
− 2
2

� 0 (21)

with solutions

x1 �
m

2
+

������
m

2
− 4



2
i,

x2 �
m

2
−

������
m

2
− 4



2
i.

(22)

□

Definition 3. /e complex number

ρc
m �

m +
������
m

2
− 4


i

2
(23)

will be called complex bronze ratio.

If we take −2<m< 2 in (19), then we have an almost
poly-Norden structure defined in [15].

φ2
J − mφJ + Id � 0. (24)

4. Examples of the Almost Bronze Structures

Several examples of the almost bronze structure will be
presented in this section.

Example 1 (Clifford algebras). Let Cℓn be the real Clifford
algebra of the Euclidean space Rn [18]. /e standard base
ei 1≤ i≤ n ofR

n satisfies the multiplication rules according to
the Clifford product

eiei � 1,

eiej � −ejei for i≠ j.
(25)

/erefore, by using

φei
�
1
2

m +

������

m
2

− 4


ei , (26)

where m ∈ R∖[−2, 2] and (25), we can obtain a new rep-
resentation of the Clifford algebra as follows:

φei
almost bronze structure,

φei
φej

+ φej
φei

� m φei
+ φej

  −
m

2

2
for i≠ j.

(27)

In [18], Cℓ2 is constructed as

1 �
1 0

0 1
 ,

e1 �
1 0

0 −1
 ,

e2 �
0 1

1 0
 ,

(28)

and then we get

(i)φe1
�
1
2

m1 +

������

m
2

− 4


e1  �

ρm 0

0 m − ρm

⎛⎝ ⎞⎠,

(ii)φe2
�
1
2

m1 +

������

m
2

− 4


e2  �
1
2

m 2ρm − m

2ρm − m m

⎛⎝ ⎞⎠.

(29)

Example 2 (Quaternion algebras). /ere is a quaternion
algebra H with a base 1, i, j, k  satisfying

i2 � −1,

j2 � −1,

k2 � −1,

ij � −ji � k,

jk � −kj � i,

ki � −ik � j.

(30)

Any quaternion can be written as follows:
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q � Sq + V
→

q � a0 + a1i + a2j + a3k, (31)

where Sq � a0 denote the scalar part of q and V
→

q � a1i +

a2j + a3k denote the vectorial part of q.
For q≠ 0, q0 � q/Nq is called unit quaternion where

Nq �

��������������

a2
0 + a2

1 + a2
2 + a2

3



is the norm of quaternion q. We
can express each unit quaternion in the following form
q0 � cos α + S

→
0 sin α, where ε→0stands for a unit vector that

satisfies S
→2

0 � −1.
/us, inspired by [19], we have the following.

(a) An almost bronze hyperbolic quaternion structure
can be defined as follows:

φhq �
m

2
+

������
m

2
− 4



2
S
→

0, 〈 S
→

0, S
→

0〉 � 1, S
→2

0 � 1, (32)

where 〈., .〉L is the inner product and S
→

0 is a unit
hyperbolic vector.

(b) An almost bronze biquaternion structure can be
defined as follows:

φbq �
m

2
+

������
m

2
− 4


i

2
S
→

0, 〈 S
→

0, S
→

0〉 � 1, S
→2

0 � −1, (33)

where 〈., .〉L is the inner product and i2 � −1.
(c) An almost bronze split quaternion structure can be

defined as follows:

φsq �
m

2
+

������
m

2
− 4



2
S
→

0, 〈 S
→

0, S
→

0〉L � 1, S
→2

0 � 1, (34)

where 〈., .〉L is Lorentzian inner product and S
→

0 is a
spacelike unit vector in the Minkowski 3-space E3

1.
(d) An almost bronze dual split quaternion structure can

be defined as follows:

φdsq �
m

2
+

������
m

2
− 4



2
S
→

0, 〈S
→

0, S
→

0〉L � 1, S
→2

0 � 1, (35)

where〈., .〉is Lorentzian inner product and S
→

0is a
spacelike unit dual vector in E3

1.
(e) An almost bronze hyperbolic split quaternion

structure can be defined as follows:

φhsq �
m

2
+

������
m

2
− 4



2
S
→

0, 〈 S
→

0, S
→

0〉L � 1, S
→2

0 � 1, (36)

where 〈., .〉is Lorentzian inner product and S
→

0is a
spacelike unit hyperbolic vector in E3

1.

Example 3 (Bronze matrices). Let Mat(n,R) be a matrix
algebra of real n × n –matrices and φ∈Mat(n,R). If φ
satisfies the following equation:

φ2
� mφ − In, (37)

where In is the identity matrix onMat(n,R), then this matrix
is called an almost bronze matrix.

By solving (37) for n � 2, we can obtain the almost
bronze structure in Mat(2,R).

(i) For a ∈ R, b ∈ R∖ 0{ }, and d ∈ R

φa,b �

a −
1
b

a
2

− ma + 1 

b m − a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

φd,b �

m − d −
1
b

d
2

− m d + 1 

b d

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(38)

(ii) For a � ρm and b ∈ R,

φρm,b �
ρm 0

b m − ρm

 ,φm−ρm,b �
m − ρm 0

b ρm

 

φρm,b �
ρm b

0 m − ρm

 ,φm−ρm,b �
m − ρm b

0 ρm

 .

(39)

(iii) For a � ρm and b � 0,

φρm,0 �
ρm 0

0 m − ρm

 

φm−ρm,0 �
m − ρm 0

0 ρm

 .

(40)

/en, from (29) and (38), we obtain

φ1 � lim
b⟶0

φρm,b,

φ2 � φm/2,
����
m2−4

√
/ 2.

(41)

Also, from (38), we get the sequence of trace (Trφk
a,b)k≥0

is the bronze Lucas sequence: 2, m, m2 − 2, m(m2 − 3), . . ..

Example 4 (Bronze reflections). As also stated in [20], the
equation of the reflection in accordance with a hyperplane
H with the normal u ∈ E∖ 0{ }in Euclidean space (E, < , > )

is as follows:

ru(α) � α −
2〈α, u〉

〈u, u〉
u for α ∈ E. (42)

In this equation, it is obvious that r2u � IE where IE is the
identity on E.

/us, the bronze reflection with respect to u can be
defined as follows:

φu �
mIE +

������

m
2

− 4


ru

2
,

(43)
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and then u is an eigenvector of φu with the corre-
sponding eigenvalue m − ρm. /en, the following equation is
obtained from [20, p.314]

XφuX
− 1

� φX(u), (44)

where X is an orthogonal transformation on E. /us, the
following equation can be written as an explicit expression of
the linear transformation

φu(α) � ρmα + m − 2ρm( 
〈α, u〉

〈u, u〉
u. (45)

Example 5 (Triple structures with respect to almost bronze
structures). Given two (1, 1) tensor fields F and P on the
manifold M and K � P °F, we called that the triple
(F,P,K � P °F) is as follows [21]:

(1) an almost hyperproduct structure: ifF,P are almost
product structures and P °F � F°P, then K is an
almost product structure,

(2) an almost biproduct complex structure: if F, P are
almost product structures and P °F � −F°P, then
K is an almost complex structure,

(3) an almost product bicomplex structure: if F, P are
almost complex structures and P °F � F°P, then
K is an almost product structure,

(4) an almost hypercomplex structure: if F, P are al-
most complex structures and P °F � −F°P, then
K is an almost complex structure.

Taking into account (14), we get

φF �
m

2
Id +

2ρm − m

2
 F,

φP �
m

2
Id +

2ρm − m

2
 P,

φK �
m

2
Id +

2ρm − m

2
 K.

(46)

/en, we find a relation between φF, φP, and φK as
������

m
2

− 4


φK � 2φPφF − mφP − mφF + ρ2mId + Id. (47)

Hence, the triple (φF,φP,φK) is as follows:

(i) an almost hyperproduct structure: if and only if φF ,
φP are almost bronze structures and
φFφP − φPφF � 0, then φK is an almost bronze
structure,

(ii) an almost biproduct complex structure: if and only
if φF, φP are almost bronze structures and
φPφF + φFφP � m(φP + φF) − 1/2m2Id, then φK

is an almost complex bronze structure,
(iii) an almost product bicomplex structure: if and only

if φF, φP are almost complex bronze structures and
φFφP − φPφF � 0, then φK is an almost bronze
structure,

(iv) an almost hypercomplex structure: if and only if φF,
φP are almost complex bronze structures and
φPφF + φFφP � m(φP + φF) − 1/2m2Id, then φK

is an almost complex bronze structure.

Example 6 (Almost bronze structures from symplectic
distributions). Given any symplectic vector space (V, μ), we
have V � U + Uμ where Uμ � v ∈ V: μ(v, u) � 0 for every u

∈ U}if U is a subspace of (V, μ). A subspace U of (V, μ) is
symplectic if and only if μ|U×U is nondegenerate (or
U∩Uμ � 0{ }) [22]. Consequently, if R is a symplectic dis-
tribution on a symplectic manifold (N, μ) (i.e., Rx is a
symplectic subspace of the tangent space at x ∈ N), then
another symplectic distribution S � Rμ is obtained com-
plementary to R. In this case, P � r − s is an almost product
structure where r and s are the corresponding projection
tensors. /en, an associated symplectic almost bronze
structure is obtained as follows by using (14)

φR � ρmr + m − ρm( s. (48)

5. Connection as Almost Bronze Structure

5.1. Connections in the Principal Fibre Bundles. Assume that
P(M, G) is a principal fibre bundle on a manifold M, where
P is the total space, M is the base space, G is the structure
group, and π is the projection. Let V denote a vertical
distribution (i.e., V � kerπ∗), H denote a horizontal dis-
tribution (i.e., TP � V⊕H), andH be a G-invariant. /us,
v and h become the corresponding projectors of V and H,
respectively./erefore, (1, 1) type tensor field can be defined
as follows:

P � v − h, (49)

and it is an almost product structure on P. According to [2],
P defines a connection if and only if the following conditions
are satisfied:

(a) P(X) � X⇔X is a vertical vector field,
(b) dRe°Pu � Pue°dRe for each u ∈ P and e ∈ G.

We can get the following proposition by using the re-
lation between the almost bronze structure and the almost
product structure:

Proposition 3. An almost bronze structure φ onP specifies a
connection if and only if the following conditions are satisfied:

(a) For X ∈ X(P), φ(X) � ρmX if and only if X ∈V.
(b) dRe°φu � φue°dRe for each u ∈ P and e ∈ G.

Assumingthat ϖ ∈∧1(P, g) is a connection 1-form of
horizontal distributionH and Ω ∈ ∧2(P, g) is the curvature
form of ϖ where g stands for the Lie algebra of G, we can
obtain the following relation [2]:

Ω(X, Y) � −
1
4
ϖ NP(X, Y)( , (50)

where NP stands for the Nijenhuis tensor of P, i.e.,
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NP(X, Y) � [X, Y] + [PX, PY] − P[PX, Y] − P[X, PY],

(51)

for all X, Y vector fields on M.
/us, the following proposition can be stated by

straightforward calculations from (13) and (51).

Proposition 4. Let φ be an almost bronze structure on the
manifold M and Pφ be an almost product structure induced
by φ. (en

NPφ
(X, Y) �

4
m

2
− 4

Nφ(X, Y) (52)

Ω(X, Y) � −
1

m
2

− 4
ϖ Nφ(X, Y) , (53)

whereNPφ
andNφ stand for the Nijenhuis tensors of Pφ and

φ, respectively.

/erefore, it can be stated that the integrability of the
structures φ and Pφ is equivalent.

Proposition 5. (e connection is flat (i.e.,Ω � 0) if and only
if the associated almost bronze structure is integrable, which
means Nφ � 0.

Given two vector fields X, Y on the manifold M and a
connection, the liftLϖ: X(M)⟶ X(P) is determined by
this connection if the following condition is met [2]:

Lϖ X,Lϖ Y  − Lϖ[ X, Y] � NP Lϖ X,Lϖ Y( . (54)

/us, considering (52) and (54), we have the following
proposition.

Proposition 6. (e lift Lϖ, which is defined by ϖ, is a
morphism if and only if the associated almost bronze structure
is integrable.

5.2. Connection in the Tangent Bundles. Let TM � ∪ p∈M
TpM be the tangent bundle of the manifold M, πM be the
projection, πM∗ be its differential, and VTM � kerπM∗ be
the vertical distribution of M. For any coordinate neigh-
borhood (U, xi) in M, (TM, xi, yi) stands for the induced
coordinate neighborhood in TM, i.e., xi(u) � xi(πM(u))

and yi(u) � dxi(u) for all u ∈ π−1
M(U). For an atlas on TM

with these local coordinates, the almost tangent structure of
TM is T � z/zyi ⊗dxi, i.e., T2 � 0.

Definition 4 (see [2]). Given an almost tangent structure T

of TM and a (1, 1) tensor field ] on M, ] is called a vertical
projector when the following conditions are met:

] °T � T,

T ° ] � 0.
(55)

Definition 5 (see [2]). N, which is complementary distri-
bution to VTM, i.e.,

X(M) � VTM⊕N, (56)

is called a normalization or a nonlinear connection or a
horizontal distribution.

Knowing that a vertical projector ] is C∞(M) linear with
Im] � VTM, we can state the following proposition.

Proposition 7 (see [2]). We obtain a nonlinear connection
N(]) from the vertical projector ] by using ker] � N(]).
Otherwise, with the respect to the separation (56), ]N and hN

are vertical and horizontal projectors, respectively, if N is a
nonlinear connection.

/us, the next proposition can be given as follow.

Proposition 8 (see [2]).]N is a vertical projector provided
that N(]N) � N.

Definition 6 (see [2]). A (1, 1) type tensor field Γ is called a
nonlinear connection of an almost product type if the fol-
lowing relations are provided:

T ° Γ � T,

Γ °T � −T.
(57)

Proposition 9 (see [2]). İe following assertions hold true if Γ
is a nonlinear connection of an almost product type:

(i) ]Γ � 1/2(Id − Γ) is a vertical projector,
(ii) VTM is the (−1)-eigenspace of Γ when N(]Γ) is the

(+1) -eigenspace of Γ.

Corollary 1 (see [2]). Any vertical projector v induces an
almost product structure on manifold M as follows:
Γ � Id − 2v.

/us,thisresult has been associated with the almost
bronzestructure.

Proposition 10. Obtained by the vertical projector v, a
nonlinear connection N on M can also be defined by an
almost bronze structure φ (� φΓ)

φ � ρmId −

������

m
2

− 4


] (58)

with VTM the (m − ρm)-eigenspace and N the
ρm-eigenspace.

6. Integrability and Parallelism of Almost
Bronze Structures

/is section examines the almost bronze structure’s inte-
grability and parallelism.
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Proposition 11. Let (M,φ) be an almost bronze manifold.
(ere are Dk and Dt complementary distributions on M

corresponding to the following projection operators:

k �
1

2ρm − m
φ −

m − ρm

2ρm − m
Id, t � −

1
2ρm − m

φ +
ρm

2ρm − m
Id. (59)

Remark 1. /e operators k and t obtained in Proposition 11
verify the following equations:

k + t � Id, kt � kt � 0, k
2

� k, t
2

� t, (60)

φk � kφ � ρmk,φt � tφ � m − ρm( t. (61)

As a result, k and t operators define Dk and Dt comple-
mentary distributions corresponding to these projections.

From (61), we get

t[kX, kY] �
1

2ρm − m( 
2 tNφ(kX, kY),

k[tX, tY] �
1

2ρm − m( 
2 kNφ(tX, tY).

(62)

As also stated by [23, 24], we have the following:

(i) A polynomial structure φ is integrable if and only if
Nφ � 0 or its equivalent ∇φ � 0 where ∇ is a torsion-
free linear connection.

(ii) For any vector fields X, Y inX(M), the distribution
Dk (resp. Dt) is integrable if and only if t[kX, kY] �

0 (resp., k[tX, tY] � 0).

/e following proposition can be stated with the help of
Proposition 4.

Proposition 12. (e almost bronze structure φ is integrable
if and only if the almost product structure Pφ induced by φ is
integrable.

Using the above-mentioned literature and (62), we can
give the following proposition.

Proposition 13. (e following claims are true:

(i) Dk is an integrable distribution if and only if
tNφ(kX, kY) � 0.

(ii) Dt is an integrable distribution if and only if
kNφ(tX, tY) � 0.

(iii) (e almost bronze structure φ is integrable if and
only if both of the distributions Dk and Dt are
integrable.

Let us consider a fixed linear connection ∇ on manifold
M. We can define the following two linear connections
associated with the pair (φ,∇)

∇Sc
X Y � k ∇XkY(  + t ∇XtY( , (63)

∇Vr
X Y � k ∇kXkY(  + t ∇tXtY(  + k[tX, kY] + t[kX, tY],

(64)

for any X, Y vector fields of the manifold M. ∇Sc and ∇Vr are
known as the Schouten connection and the Vrǎnceanu
connection, respectively [25, 26].

Recall that a (1, 1) tensor field F is parallel in accordance
with the linear connection ∇ if its covariant derivative ∇F
vanishes.

Theorem 2. (e following claims are true:

(i) Both of the projectors k and t are parallel in accor-
dance with the connections ∇Sc and ∇Vr.

(ii) (e almost bronze structure φ is parallel regarding the
connections ∇Sc and ∇Vr.

Proof

(i) With the help of (60), we can express the following
equations for each vector field X, Y ∈ X(M):

∇Sc
X k Y � ∇Sc

X kY − k ∇Sc
X Y  � k ∇XkY(  − k ∇XkY(  � 0,

∇Vr
X k Y � ∇Vr

X kY − k ∇Vr
X Y 

� k ∇kXkY(  + k[tX, kY] − k ∇kXkY(  − k[tX, kY]

� 0.

(65)

/erefore, the projector k is parallel in accordance
with the connections ∇Sc and ∇Vr.
Likewise, it can be shown that the projector t is
parallel according to the connections ∇Sc and ∇Vr.

(ii) By direct computation, we get from (59) that φ is
parallel in accordance with the connections ∇Sc and
∇Vr. □

As is known, a distribution D on manifold M is said
parallel in accordance with the linear connection ∇ provided
that ∇XY belongs to D for each vector field X ∈ X(M) and
Y ∈ D.

Definition 7 (see [27]). For any vector fields X ∈ Dk (resp.,
Dt) and Y ∈ X(M), if the vector field (Δφ)(X, Y) belongs to
Dk (resp., Dt) where

(Δφ)(X, Y) � φ ∇XY(  − φ ∇YX(  − ∇φXY + ∇YφX (66)

then the distribution Dk (resp., Dt) is named half-
parallel.

Definition 8 (see [27]). For any vector fields X ∈ Dk (resp.,
Dt) and Y ∈ X(M), if the vector field (Δφ)(X, Y) belongs to
Dt (resp., Dk) then Dk (resp., Dt) is named anti-half-
parallel.
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Theorem 3. According to the connections ∇Sc and ∇Vr, both
distributions Dk and Dt are parallel.

Proof. Given X ∈ X(M) and Y ∈ Dk one has tY � 0 and
kY � Y; then, taking into account (60), (63), and (64) we
obtain

t ∇Sc
X Y  � 0, t ∇Vr

X Y  � 0. (67)

/us, the distribution Dk is parallel in accordance with
Schouten connection and Vrănceanu connection.

Likewise, it is seen that similar relations are satisfied by
Dt. □

Proposition 14. (e connection ∇Sc is equal to the con-
nection ∇ if and only if the distributions of almost bronze
structure φ (i.e., Dk and Dt) are parallel in terms of the
connection ∇.

Proof. If the connections ∇Sc and ∇ are equal, then it follows
from (63) that

k ∇XtY(  + t ∇XkY(  � 0 (68)

and from (60)

k ∇XtY(  � 0, t ∇XkY(  � 0. (69)

/erefore, Dk and Dt are parallel regarding the con-
nection ∇.

/e other direction of the proof can be shown easily. □

Proposition 15. For any X vector field in Dk and any Y

vector field on M, if the vector field [kX, tY] belongs to the
distribution Dk then Dk is half-parallel according to the
connection ∇Vr.

Proof. Given X ∈ Dk and Y ∈ X(M), we get the following
equation by using (66) for ∇Vr

t(Δφ)(X, Y) � tφ ∇Vr
X Y  − tφ ∇Vr

Y X  − t ∇Vr
φXY  + t ∇Vr

Y φX .

(70)

Finally, we get the following equation by using (61) and
(64),

t(Δφ)(X, Y) � m − 2ρm( t[kX, tY], (71)

which proves the proposition. □

Likewise, the following proposition can be presented for
the distribution Dt.

Proposition 16. For any X vector field in Dt and any Y

vector field on M, if the vector field [tX, kY] belongs to the
distributionDt thenDt is half-parallel in accordance with the
Vrănceanu connection ∇Vr.

Proposition 17. According to the connection ∇Vr, both
distributions Dk and Dt are anti-half-parallel.

Proof. Given X ∈ Dk and Y ∈ X(M), taking into consid-
eration equation (66) for ∇Vr, we can obtain

k(Δφ)(X, Y) � kφ ∇Vr
X Y  − kφ ∇Vr

Y X  − k ∇Vr
φXY  + k ∇Vr

Y φX .

(72)

By using the equations of (61) and (64), we have

k(Δφ)(X, Y) � 2ρm − m( k[tX, kY]. (73)

Because of tX � 0, one can obtain k(Δφ)(X, Y) � 0.
/erefore, (Δφ)(X, Y) ∈ Dt.Similarly, it can be obtained
that Dt is anti-half-parallel regarding ∇Vr. □

7. Almost Bronze Riemannian Metrics

Consider the fact that an almost product Riemannian
structure is a (P, g) pair where P is an almost product
structure on manifold M and g is a Riemannian metric on
M, which is related to

g(PX, Y) � g(X, PY) (74)

or its equivalent

g(PX, PY) � g(X, Y), (75)

for all X, Y vector fields on M. /us, the Riemannian metric
g is called pure in accordance with the almost product
structure P .

Definition 9. An almost bronze Riemannian structure is a
pair (φ, g), which is satisfies

g(φX, Y) � g(X,φY) (76)

or its equivalent

g(φX,φY) � mg(X, φY) − g(X, Y), (77)

for all X, Y vector fields of the manifold M. Also, the triple
(M,φ, g) is called an almost bronze Riemannian manifold.

From /eorem 1 and Definition 9, we get the
followingproposition.

Proposition 18. Let (P) be an almost product Riemannian
structure and let (φ) be an almost bronze Riemannian
structure on M. (e Riemannian metric g is pure in accor-
dance with the operator φ if and only if g is pure in accordance
with the operator Pφ. Also, the Riemannian metric g is pure in
accordance with the operator P if and only if g is pure in
accordance with the operator φP.

Corollary 2. On an almost bronze Riemannian manifold:

(i) With respect to the projectors k and t, the Rie-
mannian metric g is pure, which means

g(X, kY) � g(kX, Y), g(X, tY) � g(tX, Y). (78)

(ii) Dk, Dt are g-orthogonal distributions, which means
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g(kX, tY) � 0. (79)

(iii) (e almost bronze structure isNφ-symmetric, which
means

Nφ(φX, Y) � Nφ(X,φY). (80)

If an almost product structure P is parallel in accordance
with the Levi-Civita connection ∇g of g, an almost product
Riemannian structure is a locally product structure, which
means ∇gP � 0. Also if the torsion tensor of linear con-
nection ∇ vanishes then the Nijenhuis tensor of P satisfies
the following equation:

NP(X, Y) � ∇PXP( Y − P ∇XP( Y − ∇PYP( X + P ∇YP( X. (81)

/us, we have the following proposition.

Proposition 19. (e almost bronze structure φ is integrable
if (M,φ, g) is a locally product bronze Riemannian manifold.

Considering this finding, we can give the linear con-
nections by making them parallel with the almost bronze
structure given as follows.

Theorem 4. For ∇φ � 0, the set of linear connections ∇ is
defined as follows:

∇XY �
1

m
2

− 4
m

2
− 2 �∇XY + 2φ �∇XφY  − mφ �∇XY  − m �∇XφY  

+ OPφ
Q(X, Y).

(82)

In this equation, �∇ stands for a linear connection while Q

stands for (1, 2) type tensor field where OPφ
Q is an associated

Obata operator

OPφ
Q(X, Y) �

1
2

Q(X, Y) + PφQ X, PφY  , (83)

for each field X, Y on the manifold M.

We complete the study of the almost bronze structure
with the following example.

Example 7. For any C∞ differentiable functions f and g

depending on (x, y),

k �
f
2

f
2

+ g
2

z

zx
⊗ dx +

fg

f
2

+ g
2

z

zx
⊗dy +

fg

f
2

+ g
2

z

zy
⊗dx +

g
2

f
2

+ g
2

z

zy
⊗ dy ,

t �
g
2

f
2

+ g
2

z

zx
⊗ dx −

fg

f
2

+ g
2

z

zx
⊗dy −

fg

f
2

+ g
2

z

zy
⊗dx +

f
2

f
2

+ g
2

z

zy
⊗ dy

(84)

where f2 + g2 ≠ 0, are projection operators in R2 and they
satisfy the conditions in (60).

Dk � Sp f
z

zx
+ g

z

zy
  andDt � Sp g

z

zx
− f

z

zy
  (85)

are complementary distributions that correspond to the
k and t projection operators, respectively. In terms of the
Euclidean metric of R2, the distributions Dk and Dt are
orthogonal. Furthermore, these distributions are connected
to the almost bronze structure

φ
z

zx
  �

ρmf
2

+ ρmg
2

f
2

+ g
2

z

zx
+

m − 2ρm( fg

f
2

+ g
2

z

zy
,

φ
z

zy
  �

m − 2ρm( fg

f
2

+ g
2

z

zx
+
ρmf

2
+ ρmg

2

f
2

+ g
2

z

zy
,

(86)

which is integrable since Nφ(z/zx, z/zy) � 0.
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