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A representation of each vertex of a network into distance-based arbitrary tuple form, adding the condition of uniqueness of each
vertex with reference to some settled vertices. Such settled vertices form a set known as resolving set. &is idea was delivered in
various problems of computer networking as well as in chemical graph theory. Due to its huge implications, many new variants
were introduced such as edge resolving set, fault-tolerant version of edge, and vertex resolving set and its generalization named as
partition resolving set. In this work, we addressed all these variants for a benzenoid chemical structure named a hammer graph.
Moreover, we proved that all the above variants are independent of the size and order of this graph.

1. Introduction

Chemical structures are studied with various techniques in
different fields of science. Particularly, mathematical
chemistry provides various tools and techniques to study
different chemical networks and structures. &ere are many
ways for the deep study of chemical networks, also
approaching towards the applications of these chemical
networks through suggested tools. Not only in chemistry
itself but also mathematical chemistry open blockages in
different other fields, such as physical chemistry, where
particularly for thermodynamics and topics related to
compound energy, uses mathematical chemistry tools to
undergo the study of chemicals. In mathematical chemistry,
graph theory provides unique and useful variants and topics
to study chemical structures and its topologies. Few papers
related to the topic of this work are given in [1–5].

To characterize the structural properties of clusters,
polymers, crystals, and molecules, chemical graph theory is a
very reliable tool and also provides various methods. In
chemical graph theory, a vertex can be a collection of atoms,
orbitals, intermediates, a molecule, an electron, or an atom
andmany other objects which are solemnly depended on the

situation, model, and topic of implication. Whereas, an edge
is may be a connection between two atoms, intermolecular
bonding, or any other forces such as Keesom forces.

In 1975 and 1976, three graph theoretical researchers and
experts of computer networking gave an idea of studying a
graph in terms of distance vector [6, 7].&ey named this idea as
resolving set, metric basis, or locating set independently, and
names variy depend on the field. In this idea, few vertices are
selected on the condition that the remaining vertices of entire
structure, network, or graph have unique position.&e selected
vertices formed a set named as the locating set [8] in computer-
related topics, the resolving set in chemical topics [9], and
metric basis in terms of pure theoretical studies of graphs in
mathematics [10].

To get benefit from this idea, lots of practical applications
have been introduced as improved variants. Fault-tolerant
version of the resolving set is proposed in [11]. It dealt the
problem of when any of a vertex from the resolving set fails to
deliver and no more behave as a member of the resolving set.
Instead of vertices’ position, if one can gain the unique position
of entire graph’s edges, then this variant is known as the edge
resolving set and proposed in [12], while the edge version of the
fault-tolerant resolving set was introduced in [13].
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&e applications of these ideas are cited.&e resolving set
has applications in chemical compounds, which are detailed
in [14], in pharmaceutical research and evaluating drugs
[15], in information technology such as robot navigation
[16], other computer related topics [17–20], image pro-
cessing [6], weighting problem [21], and some detailed
applications are further cited in [22–24]. Different works on
chemical structures and their resolvability are discussed in
[25–27]. For the computational cost of these topics, we refer
to see [28–30], in which authors concluded that all the
parameters are NP-hard problems in terms of computing in
generalize way.

Given here are some suggested articles as a literature
review and closely related to the topics studied here. In [31],
vertex-based resolvability is considered as a point of dis-
cussion and implemented on Harary graph. &e same
technique is implemented on kayak paddles graph in [32],
on necklace graph in [33], and on some general mathe-
matical structures in [34, 35]. For the next variant which is
fault tolerant of the resolving set, we refer to see [36, 37], in
which some general graphs are considered and some
computer related networks for different topologies of net-
working are studied [38, 39]. For the articles related to the
partition dimension or resolving set, we refer to see [40, 41].
&e general mathematical topologies and graphs are studied
in terms of the edge-based resolving set in [42, 43], and they
raised few questions related to this variant. In [44], the
authors reply back and answered some questions. Necklace
graph is studied in [45], polycyclic hydrocarbon-related
structure is discussed in [46], Peterson graph is generalized
in [47], and another general k-multiwheel graph is studied in
[48].

Mathematical notations, definitions, and parameters are
given below.

Definition 1. &e distance between two vertices,
x1, x2 ∈ N(G), is the minimum count of edges on the way
from x1 to x2 or vice versa; usually, it is denoted by d(x1, x2),
with N(G) is the set of vertices of a graph G. Setting L �

x1, x2, . . . , xg  is an ordered subsets of N(G) and p(x|L) �

(d(x, x1), d(x, x2), . . . , d(x, xg)) is the g-tuple vector of

distance for the vertex x. If each vertex x ∈ N(G) have
unique p-vector, then L is considered as the resolving set and
the minimum count of members of L is known as metric
dimension (dim(G)). By eliminating any arbitrary vertex
from L and the condition of unique p-vector remains true,
then the set L becomes Lf which is known as fault-tolerant
resolving set, and similarly, the least count of its members is
known as fault-tolerant metric dimension (dimf(G)). If we
evaluate edges or retrieve the unique p-vector for the edges
of a graph, then the set becomes Le and known as the edge
resolving set (Le(G)), and its member’s minimum count is
denoted by (dime(G)). &e fault-tolerant version for edges
(similarly Lf) is denoted by (Re,f) and called as fault-tol-
erant edge metric dimension (dime,f(G)). Now, the whole
N(G) arranging into subsets say Lp � Lp1, Lp2, . . . , Lpg 

and testing for unique p-vector for each vertex. If we are able
to find such Lp, then the set known as the partition resolving
set and the order of Lp is called as partition dimension
(pd(G)).

Theorem 1 (see [14]). If Γ is a simple, undirected connected
graph, then dim(Γ) � 1 iff Γ � Pn.

Theorem 2 (see [12]). For integers n≥ 2, dime(Pn)

� 1, dime(Cn) � 2, and dime(Kn) � n − 1. Moreover,
dime(Γ) � 1 iff Γ is a path Pn.

2. Results on the Vertex Edge-Based
Resolvability and Their Variants for
Benzenoid Hammer Structure

&e graph shown in Figure 1 is a hammer structure with total
4n + 30 number of vertices and 5n + 37 count of total edges
[49]. Hammer structure is basically a benzenoid structure
and belongs to the benzenoid hydrocarbons family. It
contains total n + 8 hexagons or cycle C6 attached in sys-
tematic way to build a hammer-like structure. Maximum
edges attached to a vertex is three and the least edges are two.
Moreover, given below is the vertex and edge set of hammer
structure:

N(H(n)) � ai, bi: 1≤ i≤ 16 ∪ ci, c
∗
i : 1≤ i≤ 2n − 1 , B(H(n))

� aiai+1, bibi+1: 1≤ i≤ 13 ∪ cici+1, c
∗
i c
∗
i+1: 1≤ i≤ 2n − 2 ∪ cic

∗
i : 2≤ i(even)≤ 2n − 2 

a1a14, a2a15, a9a16, a6a15, a13a16, a15a16, a7c1, a8c
∗
1 , b7c2n−1, b8c

∗
2n−1, b1b14, b2b15, b9b16, b6b15, b13b16, b15b16 .

(1)

Lemma 1. Let H(n) be a structure of benzene hammer for
n≥ 1. ,en, the least possible cardinality in its resolving set is
two.

Proof. &ere are in collective 4n + 30, 4n + 30 vertices in
the mathematical graph of benzene hammer having limits
n≥ 1, and to evaluate the least possible cardinality of its

resolving set, by assuming both, the formula is
C(4n + 30, 2) � (4n + 30)!/2 × (4n + 28)!. For any graph
the least possible cardinality of its resolving set can be one
as well but by &eorem 1, the path graph is the only graph
having single member in its resolving set. As we know that
the choosing resolving set for any graph is NP-hardness
category of problems, that is why we cannot find the exact
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counts of resolving sets; therefore, we have a choice to
make a single resolving set from
(4n + 30)!/2 × (4n + 28)!-possibilities. For this particular
graph, we defined L as a resolving set and their members
are L � a4, b4 . By implementing Definition 1, we will
prove our main claim that L is suitable for H(n) or
benzene hammer structure’s resolving set. As the method
defined in Definition 1, we will check all possible positions
of each vertex of H(n) respective to L considering as a
resolving set.

Positions p(ai|L) in relation to L, for the nodes ai with
i � 1, 2, . . . , 16, are provided as

p ai|L(  �

(|i − 4|, 2(n + 4) − i), if i � 1, 2,

(|i − 4|, 2(n + 5) − i), if i � 3, 4, . . . , 7,

(|i − 4|, 2(n − 2) + i), if i � 8, 9, . . . , 11,

(18 − i, 2(n + 10) − i), if i � 12, 13,

(18 − i, 2(n + 4)), if i � 14,

(i − 12, 2(n − 5) + i), if i � 15, 16.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Positions p(bi|L) in relation to L, for the nodes bi with
i � 1, 2, . . . , 16, are provided as

p bi|L(  �

(2n + 9 − i, 2(n + 4) − i), if i � 1, 2,

(2n + 11 − i, 2(n + 5) − i), if i � 3, 4, . . . , 7,

(2n + i − 5, 2(n − 2) + i), if i � 8, 9, . . . , 12,

(2n + i − 7, 2(n − 3) + i), if i � 13, 14,

(2n + 21 − i, 2(n − 5) + i), if i � 15, 16.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

Positions p(ci|L) and p(c∗i |L) in relation to L, for the
nodes ci and c∗i with i � 1, 2, . . . , 2n − 1, are provided as

p ci|L(  � (i + 3, 2n − i + 3),

p c
∗
i |L(  � (i + 4, 2n − i + 4).

(4)

&e given positions p(·|L) of all 4n + 30-nodes of H(n)

structure of benzene hammer having limits n≥ 1,
according to L, are distinct. It is concluding that the
structure of benzene hammer or H(n) resolves with only
two member’s resolving set. So, the least possible cardi-
nality of the resolving set of H(n) structure is two. □

Remark 1. Let H(n) be a structure of benzene hammer for
n≥ 1. &en,

dim(H(n)) � 2. (5)

Proof. &e concept of metric dimension, defined in Defi-
nition 1, is entirely dependent on the chosen vertices in a
resolving set or say L. &e vertices are selected in a manner
that each vertex of structure of benzene hammer have
unique or distinct representations which are represented by
p(·|L). In Lemma 1, we have selected an appropriate re-
solving set for the benzene hammer structure with least
possible cardinality. Such chosen resolving set is L � a4, b4 

for H(n) or structure of benzene hammer and with possible
values of n≥ 1. As we have seen that Lemma 1 already proved
|L| � 2, it is enough for the prove of this remark andH(n), or
the structure of benzene hammer have two metric dimen-
sion; this concludes the proof. □

Lemma 2. Let H(n) be a structure of benzene hammer for
n≥ 1. ,en, the least possible cardinality in its fault-tolerant
resolving set is four.

Proof. &ere are in collective 4n + 30, 4n + 30 vertices in the
mathematical graph of benzene hammer having limits n≥ 1,
and to evaluate the least possible cardinality of its fault-
tolerant resolving set, by assuming both, the formula is
C(4n + 30, 4) � (4n + 30)!/2 × (4n + 28)!. As we know that
the choosing fault-tolerant resolving set for any graph is NP-
hardness category of problems, that is why we cannot find
the exact counts of fault-tolerant resolving sets; therefore, we
have a choice to make a single fault-tolerant resolving set
from (4n + 30)!/2 × (4n + 28)!-possibilities. For this par-
ticular graph, we defined Lf as a fault-tolerant resolving set,
and their members are Lf � a4, b4, a11, b11 . By imple-
menting Definition 1, we will prove ourmain claim that Lf is
suitable for H(n) or benzene hammer structure’s fault-
tolerant resolving set. As the method defined in Definition 1,
we will check all possible positions of each vertex of H(n)

respective to Lf considering as a fault-tolerant resolving set.
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Figure 1: Benzenoid hammer with n � 3.
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Positions p(ai|Lf) in relation to Lf, for the nodes ai with
i � 1, 2, . . . , 16, are provided as

p ai|Lf  �

(|i − 4|, 2(n + 4) − i, i + 3, 2n + 9 − i), if i � 1, 2,

(|i − 4|, 2(n + 5) − i, i + 3, 2n + 11 − i), if i � 3, 4,

(|i − 4|, 2(n + 5) − i, |i − 11|, 2n + 11 − i), if i � 5, 6, 7,

(|i − 4|, 2(n − 2) + i, |i − 11|, 2n + i − 5), if i � 8, 9, . . . , 11,

(18 − i, 2(n + 10) − i, |i − 11|, 2n + i − 5), if i � 12,

(18 − i, 2(n + 10) − i, |i − 11|, 2n + i − 7), if i � 13,

(18 − i, 2(n + 4), |i − 11|, 2n + i − 7), if i � 14,

(i − 12, 2(n − 5) + i, 19 − i, 2n − i + 21), if i � 15, 16.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Positions p(bi|Lf) in relation to Lf, for the nodes bi with
i � 1, 2, . . . , 16, are provided as

p bi|Lf  �

(2n + 9 − i, 2(n + 4) − i, 2n + 9 − i, i + 3), E i � 1, 2,

(2n + 11 − i, 2(n + 5) − i, 2n + 11 − i, i + 3), if i � 3, 4,

(2n + 11 − i, 2(n + 5) − i, 2n + 11 − i, |i − 1|), if i � 5, 6, 7,

(2n + i − 5, 2(n − 2) + i, 2n − 5 + i, |i − 1|), if i � 8, 9, . . . , 12,

(2n + i − 7, 2(n − 3) + i, 2n + i − 7, |i − 1|), if i � 13, 14,

(2n + 21 − i, 2(n − 5) + i, 2n + 21 − i, 19 − i), if i � 15, 16.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Positions p(ci|Lf) and p(c∗i |Lf) in relation to Lf, for the
nodes ci and c∗i with i � 1, 2, . . . , 2n − 1, are provided as

p ci|Lf  � (i + 3, 2n − i + 3, i + 4, 2(n + 2) − i),

p c
∗
i |Lf  � (i + 4, 2n − i + 4, i + 3, 2n + 3 − i).

(8)

On the discussion provided above, it is proved that
chosen Lf is a suitable candidate for a fault-tolerant re-
solving set and fulfills the definition having four least
possible members in it. Now, for the approach of proving
the optimized count of |Lf|, we have to rethink about |Lf|.
To check whether the assertion |Lf| � 3 is true or not and
finding another fault-tolerant resolving set with three
members in it for the structure of benzene hammer, given
below are some general samples or cases. In these samples,
we tried to prove that only |Lf|> 3 is possible. □

Case 1. Consider the subset L∗f ⊂ ai: i � 1, 2, . . . , 16 ;
also, assume eliminating any arbitrary vertex from this
assumed subset according to the requisite of definition
and the restrictions on the cardinality, that is, |L∗f| � 3.
&is sample resulted in the same positions of two vertices
breached the definition of fault-tolerant resolving set and
our assumption, and the reason is p(ar|L

∗
f) � p(as|L

∗
f),

with 1≤ r, s≤ 16.

Case 2. Consider the subset L∗f ⊂ bi: i � 1, 2, . . . , 16 ; also,
assume eliminating any arbitrary vertex from this assumed
subset according to the requisite of definition and the re-
strictions on the cardinality, that is, |L∗f| � 3. &is sample
resulted in the same positions of two vertices and breached
the definition of the fault-tolerant resolving set and our
assumption, and the reason is p(ar|L

∗
f) � p(as|L

∗
f), with

1≤ r and s≤ 16.

Case 3. Consider the subset L∗f ⊂ ci: i � 1, 2, . . . , 2n − 1 ;
also, assume eliminating any arbitrary vertex from this as-
sumed subset according to the requisite of definition and the
restrictions on the cardinality, that is, |L∗f| � 3. &is sample
resulted in the same positions of two vertices and breached
the definition of the fault-tolerant resolving set and our
assumption, and the reason is p(ar|L

∗
f) � p(as|L

∗
f), with

1≤ r and s≤ 16.

Case 4. Consider the subset L∗f ⊂ ai, bj: i, j � 1, 2, . . . , 16 ;
also, assume eliminating any arbitrary vertex from this as-
sumed subset according to the requisite of definition and the
restrictions on the cardinality, that is, |L∗f| � 3. &is sample
resulted in the same positions of two vertices and breached
the definition of fault-tolerant resolving set and our as-
sumption, and the reason is p(ar|L

∗
f) � p(as|L

∗
f), with

1≤ r and s≤ 16.
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Case 5. Consider the subset
L∗f ⊂ ai, cj: i � 1, 2, . . . , 16, j � 1, 2, . . . , 2n − 1 ; also, as-
sume eliminating any arbitrary vertex from this assumed
subset according to the requisite of definition and the re-
strictions on the cardinality, that is, |L∗f| � 3. &is sample
resulted in the same positions of two vertices and breached
the definition of the fault-tolerant resolving set and our
assumption, and the reason is p(ar|L

∗
f) � p(as|L

∗
f), with

1≤ r and s≤ 16.

Case 6. Consider the subset L∗f ⊂ ai, c∗j : i � 1, 2,

. . . , 16, j � 1, 2, . . . , 2n − 1}; also, assume eliminating any
arbitrary vertex from this assumed subset according to the
requisite of definition and the restrictions on the cardinality,
that is, |L∗f| � 3.&is sample resulted in the same positions of
two vertices and breached the definition of the fault-tolerant
resolving set and our assumption, and the reason is
p(br|L

∗
f) � p(bs|L

∗
f), with 1≤ r and s≤ 16.

Case 7. Consider the subset L∗f ⊂ bi, cj: i � 1, 2,

. . . , 16, j � 1, 2, . . . , 2n − 1}; also, assume eliminating any
arbitrary vertex from this assumed subset according to the
requisite of definition and the restrictions on the cardinality,
that is, |L∗f| � 3.&is sample resulted in the same positions of
two vertices and breached the definition of the fault-tolerant
resolving set and our assumption, and the reason is
p(cr|L

∗
f) � p(c∗s |L∗f), with 1≤ r and s≤ 2m − 1.

Case 8. Consider the subset L∗f ⊂ bi, c∗j : i � 1, 2,

. . . , 16, j � 1, 2, . . . , 2n − 1}, also assume eliminating any
arbitrary vertex from this assumed subset according to the
requisite of definition and the restrictions on the cardinality
that is |L∗f| � 3.&is sample resulted in the same positions of
two vertices and breached the definition of the fault-tolerant
resolving set and our assumption, and the reason is
p(cr|L

∗
f) � p(c∗s |L∗f), with 1≤ r and s≤ 2m − 1.

Case 9. Consider the subset L∗f ⊂ ci, c∗j : i, j � 1, 2,

. . . , 2n − 1}; also, assume eliminating any arbitrary vertex
from this assumed subset according to the requisite of
definition and the restrictions on the cardinality, that is,
|L∗f| � 3. &is sample resulted in the same positions of two
vertices and breached the definition of fault-tolerant re-
solving set and our assumption, and the reason is
p(ar|L

∗
f) � p(as|L

∗
f), with 1≤ r and s≤ 16.

&e given positions p(·|Lf) of all 4n + 30-nodes of H(n)

structure of benzene hammer having limits n≥ 1, according
to Lf, are distinct. It is concluded that the structure of
benzene hammer or H(n) resolves with only two members’
resolving set. So, the least possible cardinality of the re-
solving set of H(n) structure is two. It also fulfills the

definition of eliminating any of arbitrary nodes in the chosen
fault-tolerant resolving set, and it will still resolve the nodes
of structure. &e assertion |Lf| � 3 for the fault-tolerant
resolving set Lf is not true, concluding having the same
position of two nodes of structure. It is concluded that the
structure of benzene hammer or H(n) resolves with only
four member’s fault-tolerant resolving sets. So, the least
possible cardinality of the fault-tolerant resolving set of
H(n) structure is four.

Remark 2. Let H(n) be a structure of benzene hammer for
n≥ 1. &en,

dimf(H(n)) � 4. (9)

Proof. &e concept of fault-tolerant metric dimension, de-
fined in Definition 1, is entirely dependent on the chosen
vertices in a fault-tolerant resolving set or say Lf. &e
vertices are selected in a manner that each vertex of structure
of benzene hammer have unique or distinct representations
which are represented by p(·|Lf). In Lemma 2, we have
selected an appropriate fault-tolerant resolving set for the
benzene hammer structure with least possible cardinality.
Such chosen fault-tolerant resolving set is
Lf � a4, b4, a11, b11  for H(n) or structure of benzene
hammer with possible values of n≥ 1. As we have seen that
Lemma 2 is already proved |Lf| � 4, it is enough for the
prove of this remark and H(n) or the structure of benzene
hammer has four fault-tolerant metric dimension; this
concludes the proof. □

Lemma 3. Let H(n) be a structure of benzene hammer for
n≥ 1. ,en, the least possible cardinality in its edge resolving
set is two.

Proof. &ere are in collective 4n + 30, 4n + 30 vertices in the
mathematical graph of benzene hammer having limits n≥ 1,
and to evaluate the least possible cardinality of its edge
resolving set, by assuming both, the formula is
C(4n + 30, 2) � (4n + 30)!/2 × (4n + 28)!. For any graph,
the least possible cardinality of its edge resolving set can be
one as well, but by &eorem 1, the path graph is the only
graph having single member in its edge resolving set. As we
know that choosing edge resolving set for any graph is NP-
hardness category of problems, that is why we cannot find
the exact counts of edge resolving sets; therefore, we have a
choice to make a single-edge resolving set from
(4n + 30)!/2 × (4n + 28)!-possibilities. For this particular
graph, we defined Le as an edge resolving set, and their
members are Le � a4, b4 . By implementing Definition 1,
we will prove our main claim that Le is suitable for H(n) or
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benzene hammer structure’s edge resolving set. As the
method defined in Definition 1, we will check all possible
positions of each edge of H(n) respective to Le considering
as an edge resolving set.

Positions p(aiai+1|Le) in relation to Le, for the edges
aiai+1 with i � 1, 2, . . . , 13, are provided as

p aiai+1|Le(  �

(3 − i, 2(n + 3)), if i � 1, 2,

(3 − i, 2n + 9 − i), if i � 3,

(i − 4, 2n + 9 − i), if i � 4, 5, 6,

(i − 4, 2(n − 2) + i), if i � 7, 8, 9, 10,

(17 − i, 2(n − 2) + i), if i � 11,

(17 − i, 2n + 7), if i � 12, 13.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Positions p(bibi+1|Le) in relation to Le, for the edges
bibi+1 with i � 1, 2, . . . , 13, are provided as

p bibi+1|Le(  �

(2(n + 3), 3 − i), if i � 1, 2,

(2n + 9 − i, 3 − i), if i � 3,

(2n + 9 − i, i − 4), if i � 4, 5, 6,

(2(n − 2) + i, i − 4), if i � 7, 8, 9, 10,

(2(n − 2) + i, 17 − i), if i � 11,

(2n + 7, 17 − i), if i � 12, 13.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Positions p(cici+1|Le) and p(c∗i c∗i+1|Le) in relation to Le,
for the edges cici+1 and c∗i c∗i+1 with i � 1, 2, . . . , 2n − 2, are
provided as

p cici+1|Le(  � (i + 3, 2n − i + 2),

p c
∗
i c
∗
i+1|Le(  � (i + 4, 2n − i + 3).

(12)

Positions p(cic
∗
i |Le) in relation to Le, for the edges cic

∗
i

with i � 2, 4, . . . , 2n − 2, are provided as

p cic
∗
i |Le(  � (i + 3, 2n − i + 3). (13)

Positions of the joint edges in relation to Le are provided
as

p a1a14|Le(  � (3, 2n + 7),

p a2a15|Le(  � (2, 2n + 5),

p a9a16|Le(  � (4, 2n + 5),

p a6a15|Le(  � (2, 2n + 4),

p a13a16|Le(  � (4, 2n + 6),

p a15a16|Le(  � (3, 2n + 5),

p a7c1|Le(  � (3, 2n + 2),

p a8c
∗
1 |Le(  � (4, 2n + 3),

p b7c2n−1|Le(  � (2n + 2, 3),

p b8c
∗
2n−1|Le(  � (2n + 3, 4),

p b1b14|Le(  � (2n + 7, 3),

p b2b15|Le(  � (2n + 5, 2),

p b9b16|Le(  � (2n + 5, 4),

p b6b15|Le(  � (2n + 4, 2),

p b13b16|Le(  � (2n + 6, 4),

p b15b16|Le(  � (2n + 5, 3).

(14)

&e given positions p(·|Le) of all 5n + 37-bonds of H(n)

structure of benzene hammer having limits n≥ 1, according
to Le, are distinct. It is concluded that the structure of
benzene hammer or H(n) resolves with only two member’s
edge resolving set. So, the least possible cardinality of edge
resolving set ofH(n) structure is two. It is concluded that the
structure of benzene hammer or H(n) resolves with only
two members of edge resolving set. So, the least possible
cardinality of edge resolving set of H(n) structure is
two. □
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Remark 3. Let H(n) be a structure of benzene hammer for
n≥ 1. &en,

dime(H(n)) � 2. (15)

Proof. &e concept of edge metric dimension, defined in
Definition 1, is entirely dependent on the chosen vertices in
an edge resolving set or say Le. &e vertices are selected in a
manner that each edge of structure of benzene hammer have
unique or distinct representations which are represented by
p(·|Le). In Lemma 3, we have selected an appropriate edge
resolving set for the benzene hammer structure with least
possible cardinality. Such chosen edge resolving set is Le �

a4, b4  for H(n) or structure of benzene hammer with
possible values of n≥ 1. As we seen that Lemma 3 already
proved |Le| � 2, it is enough for the proof of this remark and
H(n), or the structure of benzene hammer has two edge
metric dimensions; this concludes the proof. □

Lemma 4. Let H(n) be a structure of benzene hammer for
n≥ 1. ,en, the least possible cardinality in its fault-tolerant
edge resolving set is four.

Proof. &ere are in collective 4n + 30, 4n + 30 vertices in the
mathematical graph of benzene hammer having limits n≥ 1,
and to evaluate the least possible cardinality of its fault-
tolerant edge resolving set, by assuming both, the formula is
C(4n + 30, 2) � (4n + 30)!/2 × (4n + 28)!. As we know the
choosing fault-tolerant edge resolving set for any graph is
NP-hardness category of problems, that is why we cannot
find the exact counts of fault-tolerant edge resolving sets;
therefore, we have a choice to make a single fault-tolerant
edge resolving set from (4n + 30)!/2 × (4n + 28)!-possibili-
ties. For this particular graph, we defined Le,f as a fault-
tolerant edge resolving set, and their members are
Le,f � a4, b4, a11, b11 . By implementing Definition 1, we
will prove our main claim that Le,f is suitable for H(n) or
benzene hammer structure’s fault-tolerant edge resolving
set. As the method defined in Definition 1, we will check all
possible positions of each edge of H(n) respective to Le,f

considering as a fault-tolerant edge resolving set.
Positions p(aiai+1|Le,f) in relation to Le,f, for the edges

aiai+1 with i � 1, 2, . . . , 13, are provided as

p aiai+1|Le,f  �

(3 − i, 2(n + 3), i + 3, 2n + 7), if i � 1, 2,

(3 − i, 2n + 9 − i, i + 3, 2n + 10 − i), if i � 3,

(i − 4, 2n + 9 − i, 10 − i, 2n + 10 − i), if i � 4, 5, 6,

(i − 4, 2(n − 2) + i, 10 − i, 2n + 10 − i), if i � 7,

(i − 4, 2(n − 2) + i, 10 − i, 2n − 5 + i), if i � 8, 9, 10,

(17 − i, 2(n − 2) + i, i − 11, 2n − 5 + i), if i � 11,

(17 − i, 2n + 7, i − 11, 2n + 6), if i � 12, 13.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

Positions p(bibi+1|Le,f) in relation to Le,f, for the edges
bibi+1 with i � 1, 2, . . . , 13, are provided as

p bibi+1|Le,f  �

(2(n + 3), 3 − i, 2n + 7, i + 3), if i � 1, 2,

(2n + 9 − i, 3 − i, 2n + 10 − i, i + 3), if i � 3,

(2n + 9 − i, i − 4, 2n + 10 − i, 10 − i), if i � 4, 5, 6,

(2(n − 2) + i, i − 4, 2n + 10 − i, 10 − i), if i � 7,

(2(n − 2) + i, i − 4, 2n − 5 + i, 10 − i), if i � 8, 9, 10,

(2(n − 2) + i, 17 − i, 2n − 5 + i, i − 11), if i � 11,

(2n + 7, 17 − i, 2n + 6, i − 11), if i � 12, 13.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

Positions p(cici+1|Le,f) and p(c∗i c∗i+1|Le,f) in relation to
Le,f, for the edges cici+1 and c∗i c∗i+1 with i � 1, 2, . . . , 2n − 2,
are provided as

p cici+1|Le,f  � (i + 3, 2n − i + 2, i + 4, 2n + 3 − i),

p c
∗
i c
∗
i+1|Le,f  � (i + 4, 2n − i + 3, i + 3, 2n + 2 − i).

(18)
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Positions p(cic
∗
i |Le,f) in relation to Le,f, for the edges

cic
∗
i with i � 2, 4, . . . , 2n − 2, are provided as

p cic
∗
i |Le,f  � (i + 3, 2n − i + 3, i + 3, 2n + 3 − i). (19)

Positions of the joint edges in relation to Le,f are pro-
vided as

p a1a14|Le,f  � (3, 2n + 7, 3, 2n + 7),

p a2a15|Le,f  � (2, 2n + 5, 4, 2n + 6),

p a9a16|Le,f  � (4, 2n + 5, 2, 2n + 4),

p a6a15|Le,f  � (2, 2n + 4, 4, 2n + 5),

p a13a16|Le,f  � (4, 2n + 6, 2, 2n + 5),

p a15a16|Le,f  � (3, 2n + 5, 3, 2n + 5),

p a7c1|Le,f  � (3, 2n + 2, 4, 2n + 3),

p a8c
∗
1 |Le,f  � (4, 2n + 3, 3, 2n + 4),

p b7c2n−1|Le,f  � (2n + 2, 3, 2n + 3, 4),

p b8c
∗
2n−1|Le,f  � (2n + 3, 4, 2n + 2, 3),

p b1b14|Le,f  � (2n + 7, 3, 2n + 7, 3),

p b2b15|Le,f  � (2n + 5, 2, 2n + 6, 4),

p b9b16|Le,f  � (2n + 5, 4, 2n + 4, 2),

p b6b15|Le,f  � (2n + 4, 2, 2n + 5, 4),

p b13b16|Le,f  � (2n + 6, 4, 2n + 5, 2),

p b15b16|Le,f  � (2n + 5, 3, 2n + 5, 3).

(20)

On the discussion provided above, it is proved that
chosen Le,f is a suitable candidate for a fault-tolerant edge
resolving set and fulfills the definition having four least
possible members in it. Now, for the approach of proving the
optimized count of |Le,f|, we have to rethink about |Le,f|. To
check whether the assertion |Le,f| � 3 is true or not and
finding another fault-tolerant edge resolving set with three
members in it for the structure of benzene hammer, given
below are some general samples or cases. In these samples,
we tried to prove that only |Le,f|> 3 is possible. □

Case 10. Consider the subset L∗e,f ⊂ ai: i � 1, 2, . . . , 16 ;
also, assume eliminating any arbitrary vertex from this as-
sumed subset according to the requisite of definition and the
restrictions on the cardinality, that is, |L∗e,f| � 3. &is sample
resulted in the same positions of two edges and breached the
definition of fault-tolerant edge resolving set and our as-
sumption, and the reason is p(crcr+1|L

∗
e,f) � p(crc

∗
r+1|L
∗
e,f),

with 1≤ r≤ 2n − 2 and 2≤ s(even)≤ 2n − 2.

Case 11. Consider the subset L∗e,f ⊂ bi: i � 1, 2, . . . , 16 ;
also, assume eliminating any arbitrary vertex from this as-
sumed subset according to the requisite of definition and the
restrictions on the cardinality, that is, |L∗e,f| � 3. &is sample
resulted in the same positions of two edges and breached the

definition of the fault-tolerant edge resolving set and our
assumption, and the reason is p(crcr+1|L

∗
e,f) �

p(crc
∗
r+1|L
∗
e,f), with 1≤ r≤ 2n − 2 and 2≤ s(even)≤ 2n − 2.

Case 12. Consider the subset L∗e,f ⊂ ci: i � 1, 2, . . . , 2n − 1 ;
also, assume eliminating any arbitrary vertex from this as-
sumed subset according to the requisite of definition and the
restrictions on the cardinality, that is, |L∗e,f| � 3. &is sample
resulted in the same positions of two edges and breached the
definition of fault-tolerant edge resolving set and our as-
sumption, and the reason is p(arar+1|L

∗
e,f) � p(asas+1|L

∗
e,f),

with 1≤ r, s≤ 13.

Case 13. Consider the subset L∗e,f ⊂ ai, bj: i, j

� 1, 2, . . . , 16}; also, assume eliminating any arbitrary vertex
from this assumed subset according to the requisite of
definition and the restrictions on the cardinality, that is,
|L∗e,f| � 3. &is sample resulted in the same positions of two
edges and breached the definition of fault-tolerant edge
resolving set and our assumption, and the reason is
p(brbr+1|L

∗
e,f) � p(bsbs+1|L

∗
e,f), with 1≤ r, s≤ 13.

Case 14. Consider the subset L∗e,f ⊂ ai, cj: i �

1, 2, . . . , 16, j � 1, 2, . . . , 2n − 1}; also, assume eliminating
any arbitrary vertex from this assumed subset according to
the requisite of definition and the restrictions on the car-
dinality, that is, |L∗e,f| � 3. &is sample resulted in the same
positions of two edges and breached the definition of fault-
tolerant edge resolving set and our assumption, and the
reason is p(crcr+1|L

∗
e,f) � p(crc

∗
r+1|L
∗
e,f), with 1≤ r≤ 2n − 2

and 2≤ s(even)≤ 2n − 2.

Case 15. Consider the subset L∗e,f ⊂ ai, c∗j : i � 1, 2,

. . . , 16, j � 1, 2, . . . , 2n − 1}; also, assume eliminating any
arbitrary vertex from this assumed subset according to the
requisite of definition and the restrictions on the cardinality,
that is, |L∗e,f| � 3. &is sample resulted in the same positions
of two edges and breached the definition of fault-tolerant
edge resolving set and our assumption, and the reason is
p(brbr+1|L

∗
e,f) � p(bsbs+1|L

∗
e,f), with 1≤ r, s≤ 13.

Case 16. Consider the subset L∗e,f ⊂ bi, cj: i � 1, 2,

. . . , 16, j � 1, 2, . . . , 2n − 1}; also, assume eliminating any
arbitrary vertex from this assumed subset according to the
requisite of definition and the restrictions on the cardinality,
that is, |L∗e,f| � 3. &is sample resulted in the same positions
of two edges and breached the definition of fault-tolerant
edge resolving set and our assumption, and the reason is
p(crcr+1|L

∗
e,f) � p(crc

∗
r+1|L
∗
e,f), with 1≤ r≤ 2n − 2 and

2≤ s(even)≤ 2n − 2.

Case 17. Consider the subset L∗e,f ⊂ bi, c∗j : i � 1, 2, . . . ,

16, j � 1, 2, . . . , 2n − 1}; also, assume eliminating any arbi-
trary vertex from this assumed subset according to the
requisite of definition and the restrictions on the cardinality,
that is, |L∗e,f| � 3. &is sample resulted in the same positions
of two edges and breached the definition of the fault-tolerant
edge resolving set and our assumption, and the reason is
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p(crcr+1|L
∗
e,f) � p(bsbs+1|L

∗
e,f), with 1≤ r≤ 2n − 2, and

1≤ s≤ 13.

Case 18. Consider the subset L∗e,f ⊂ ci, c∗j : i, j � 1, 2,

. . . , 2n − 1}; also, assume eliminating any arbitrary vertex
from this assumed subset according to the requisite of
definition and the restrictions on the cardinality, that is,
|L∗e,f| � 3. &is sample resulted in the same positions of two
edges and breached the definition of the fault-tolerant edge
resolving set and our assumption, and the reason is
p(arar+1|L

∗
e,f) � p(asas+1|L

∗
e,f), with 1≤ r, s≤ 13.

&e given positions p(·|L∗e,f) of all 5n + 37-bonds of
H(n) structure of benzene hammer having limits n≥ 1,
according to Le,f, are distinct. It is concluded that the
structure of benzene hammer or H(n) resolves with only
four members’ fault-tolerant edge resolving set. So, the least
possible cardinality of the fault-tolerant edge resolving set of
H(n) structure is four. It also fulfills the definition of
eliminating any of arbitrary nodes in the chosen fault-tol-
erant edge resolving set, and it will still resolve the edges of
structure. &e assertion |Le,f| � 3 for the fault-tolerant edge
resolving set Le,f is not true concluding having the same
position of two nodes of structure. It is concluded that the
structure of benzene hammer or H(n) resolves with only
four member’s of the fault-tolerant edge resolving set. So, the
least possible cardinality of the fault-tolerant edge resolving
set of H(n) structure is four.

Remark 4. Let H(n) be a structure of benzene hammer for
n≥ 1. &en,

dime,f(H(n)) � 4. (21)

Proof. &e concept of fault-tolerant edge metric dimension,
defined in Definition 1, is entirely depend on the chosen
vertices in a fault-tolerant edge resolving set or say Le,f. &e
vertices are selected in a manner that each edge of structure
of benzene hammer have unique or distinct representations
which are represented by p(·|Le,f). In Lemma 4, we have
selected an appropriate fault-tolerant edge resolving set for
the benzene hammer structure with least possible cardi-
nality. Such chosen fault-tolerant edge resolving set is Le,f �

a4, b4, a11, b11  for H(n) or structure of benzene hammer
with possible values of n≥ 1. As we have seen that Lemma 4
already proved |Le,f| � 4, it is enough for the prove of this
remark and H(n) or the structure of benzene hammer has
four fault-tolerant edge metric dimension; this concludes the
proof. □

Lemma 5. Let H(n) be a structure of benzene hammer for
n≥ 1. ,en, the minimum subsets of its partition resolving set
is three.

Proof. &ere are in collective 4n + 30, 4n + 30 vertices in the
mathematical graph of benzene hammer having limits n≥ 1,
and to evaluate the possible combinations given by Bell
number which is (HTML translation failed), S(4n + 30, α) is
the Stirling number of second kind [50]. Bell(4n + 30) is the

possible number of choosing partition resolving set for
H(n), but the best and suited ones are presented here and
defined as Lp � Lp1

, Lp2
, Lp3

 , with
Lp1

� a4 , Lp2
� b4 , andLp3

� N(H(n))\ a4, b4 .
For any graph, the least possible cardinality of its par-

tition resolving set can be two as well, but by&eorem 1, the
path graph is the only graph having two members in its
partition resolving set. As we know the choosing partition
resolving set for any graph is NP-hardness category of
problems, that is why we cannot find the exact counts of the
partition resolving set; therefore, we have a choice to make a
single partition resolving set from
Bell(4n + 30) � 

4n+30
α�0 S(4n + 30, α)-possibilities. For this

particular graph, we defined Lp as a partition resolving set,
and their members are Lp � Lp1

, Lp2
, Lp3

 , with
Lp1

� a4 , Lp2
� b4 , andLp3

� N(H(n))\ a4, b4 . By
implementing Definition 1, we will prove our main claim
that Lp is suitable for H(n) or benzene hammer structure’s
partition resolving set. As the method defined in Definition
1, we will check all possible positions of each vertex of H(n)

respective to Lp considering as a partition resolving set.
Positions p(ai|Lp) in relation to Lp, for the nodes ai with

i � 1, 2, . . . , 16, are provided as

p ai|Lp  �

(|i − 4|, 2(n + 4) − i, 0), if i � 1, 2,

|i − 4|, 2(n + 5) − i, z1( , if i � 3, 4, . . . , 7,

(|i − 4|, 2(n − 2) + i, 0), if i � 8, 9, . . . , 11,

(18 − i, 2(n + 10) − i, 0), if i � 12, 13,

(18 − i, 2(n + 4), 0), if i � 14,

(i − 12, 2(n − 5) + i, 0), if i � 15, 16,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

where z1 �
1, if i � 4,

0, otherwise.

Positions p(bi|Lp) in relation to Lp, for the nodes bi with
i � 1, 2, . . . , 16, are provided as

p bi|Lp  �

(2n + 9 − i, 2(n + 4) − i, 0), if i � 1, 2,

2n + 11 − i, 2(n + 5) − i, z1( , if i � 3, 4, . . . , 7,

(2n + i − 5, 2(n − 2) + i, 0), if i � 8, 9, . . . , 12,

(2n + i − 7, 2(n − 3) + i, 0), if i � 13, 14,

(2n + 21 − i, 2(n − 5) + i, 0), if i � 15, 16.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

Positions p(ci|Lp) and p(c∗i |Lp) in relation to Lp, for the
nodes ci and c∗i with i � 1, 2, . . . , 2n − 1, are provided as

p ci|Lp  � (i + 3, 2n − i + 3, 0),

p c
∗
i |Lp  � (i + 4, 2n − i + 4, 0).

(24)

&e given positions p(·|Lp) of all 4n + 30-nodes of H(n)

structure of benzene hammer having limits n≥ 1, according
to Lp, are distinct. It is concluded that the structure of
benzene hammer or H(n) resolves by making only three
members’ partition resolving set. So, the least possible
cardinality of the partition resolving set of H(n) structure is
three. It is concluded that the structure of benzene hammer
or H(n) resolves by making only three member’s partition
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resolving set. So, the least possible cardinality of the partition
resolving set of H(n) structure is three. □

Remark 5. Let H(n) be a structure of benzene hammer for
n≥ 1. &en,

pd(H(n)) � 3. (25)

Proof. &e concept of partition dimension, defined in
Definition 1, is entirely dependent on the chosen vertices in a
partition resolving set or say Lp. &e vertices are selected in a
manner that each vertex of structure of benzene hammer
have unique or distinct representations which are repre-
sented by p(·|Lp). In Lemma 5, we have selected an ap-
propriate partition resolving set for the benzene hammer
structure with least possible cardinality. Such chosen par-
tition resolving set is Lp � Lp1

, Lp2
, Lp3

 , with
Lp1

� a4 , Lp2
� b4 , andLp3

� N(H(n))\ a4, b4 , for
H(n), or structure of benzene hammer and with possible
values of n≥ 1. As we have seen that Lemma 5 already proved
|Lp| � 3, it is enough for the proof of this remark and H(n)

or the structure of benzene hammer has three partition
dimensions; this concludes the proof. □

3. Conclusion

Under the field of graph theoretical chemistry, lots of
methods have been developed to solve problems related to
complex networks. Also, lots of new tools are introduced to
create network and study them numerically, so they can
further be studied under the field of computer-based al-
gorithms. Study of resolvability parameters is a cluster of
various techniques in which networks are developed and
represented numerically. &is can be only possible if the
resolving set develops a graph’s numerical form when each
vertex has its unique position, location, or representation. In
this work, we consider a benzenoid chemical structure
named as hammer graph and developed various types of
resolvability parameters and proved that all these parameters
are free from the order and size of a hammer graph.
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