Research Article

A Simple Algorithm for Prime Factorization and Primality Testing

Kabenge Hamiss

1Department of Mathematics and Statistics, Islamic University in Uganda, Mbale 2555, Uganda
2Department of Mathematical and Computer Sciences, University of Gezira, Wad Medani 20, Sudan

Correspondence should be addressed to Kabenge Hamiss; kabenhami@gmail.com

Received 1 September 2022; Revised 31 October 2022; Accepted 7 November 2022; Published 15 December 2022

Academic Editor: Niansheng Tang

Copyright © 2022 Kabenge Hamiss. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We propose a new simple and faster algorithm to factor numbers based on the nature of the prime numbers contained in such composite numbers. It is well known that every composite number has a unique representation as a product of prime numbers. In this study, we focus mainly on composite numbers that contain a product of prime numbers that are greater than or equal to 5 which are of the form $6k + 1$ or $6k + 5$. Therefore, we use the condition that every prime or composite P of primes greater than or equal to 5 satisfies $P^2 \equiv 1 \pmod{24}$. This algorithm is very fast especially when the difference in the prime components of a composite number (prime gap) is not so large. When the difference between the factors (prime gap) is not so large, it often requires just a single iteration to obtain the factors.

1. Introduction

An integer p is prime if $p \geq 2$ and has exactly two positive divisors, namely, 1 and p itself [1–5]. An integer n is called a composite if $n \geq 2$ and n have more than two positive divisors [6–9].

Any composite number (integer) can be decomposed into smaller integers called prime factors, for which their multiplication produces the original integer. The process of decomposing such numbers is called integer factorization [7, 10–12].

Over the years, the prime factorization of large numbers has drawn much attention due to its practical applications and the associated challenges [13, 14]. In computing applications, encryption algorithms such as the Rivest–Shamir–Adleman (RSA) cryptosystems are widely used for information security, where the keys (public and private) of the encryption code are represented using large prime factors [15–21]. Since prime factorization of large numbers is extremely hard, RSA cryptosystems take advantage of this property to ensure information security [10, 22, 23].

Many efforts have been made to develop an effective method of factoring numbers and to know whether a number is prime or not [24, 25]. They include Sieve of Eratosthenes, Pollard’s Algorithm, special-purpose factorization algorithm, general-purpose, Special Generic Factorizations, Williams’ $P + 1$ Method, and Lenstra’s Elliptic Curve Method, among others [2, 22, 26–30].

1.1. Congruences. We say that a divides b if there is some integer c such that $b = ac$. If a divides b, we write $a \mid b$, and if a does not divide b we write $a \not\mid b$.

If $m \mid (a − b)$, we write

$$a ≡ b \pmod{m},$$

and say that a is congruent to b modulo m. The quantity m is called the modulus and all numbers congruent (or equivalent) to $a \pmod{m}$ are said to constitute a congruence (or equivalence) class [7, 31–33]. According to [34], an algorithm is a precise step-by-step series of rules that leads to a product or to the solution to a problem. Some steps in an algorithm depend on what happened or was learned in earlier steps.

2. The Main Result

Let p and q be prime numbers greater than or equal to 5. Porras Ferreira and William De Jesus [35] proved that prime numbers p and q are representatives of $5 \pmod{6}$ or $1 \pmod{6}$ implying
Let m be a composite containing at least one prime $s \leq 5$; then,
\[
m^2 \equiv s^{2k} \pmod{24},
\]
where k is a positive integer.

Theorem 1. Let m be a composite of the form $6k + 1$. Then,
\[
m = 6k + 1.
\]

Proof. Let p_1, p_2, \ldots, p_n be primes greater or equal to 5 and s be a prime less than 5 such that
\[
m = s^k p_1^k p_2^k \cdots p_n^k.
\]

Since k and k_i are positive integers, then
\[
p_1^{2k_1} \equiv 1 \pmod{24},
p_2^{2k_2} \equiv 1 \pmod{24}, \ldots,
P_n^{2k_n} \equiv 1 \pmod{24}.
\]

From the property in [7] of multiplication, then multiplying p_i^{2k} in (5) together, we obtain
\[
p_1^{2k} p_2^{2k} \cdots p_n^{2k} \equiv 1 \pmod{24}.
\]

Multiplying s^{2k} both side in (6), we obtain
\[
s^{2k} p_1^{2k} p_2^{2k} \cdots p_n^{2k} \equiv s^{2k} \pmod{24}.
\]

However, $m^2 = s^{2k} p_1^{2k} p_2^{2k} \cdots p_n^{2k}$ implying
\[
m^2 \equiv s^{2k} \pmod{24}.
\]

Thus, the theorem is proven.

This indicates that any composite number that contains at least one prime less than 5 does not satisfy the condition of 1 (mod24).

Therefore, from this point, we can analyze the conditions that will determine any integer to be a prime or a composite.

2.2. Composite of the Form $6k + 5$. Let m be a composite of at least two primes of the form $6t + 5$ and $6r + 1$; that is, $m = (6t + 5)(6r + 1)$. Then,
\[
m = 6(6t + 5)(6r + 1),
\]

2.3. Composites of the Form $6k + 1$ and Their Factorization

Case 3. $P = (6t + 1)(6r + 1)$.

Theorem 2. Let
\[
P = (6t + 1)(6r + 1).
\]

Then, there exists some integer A such that
\[
A \equiv (r + t) \pmod{6}.
\]

Proof. From
\[
P = (6t + 1)(6r + 1) = 6[6tr + (r + t)] + 1.
\]

Then,
\[
P - 1 = 6[6tr + (r + t)].
\]

Dividing through by 6, we obtain
\[
\frac{P - 1}{6} = (r + t) + 6rt.
\]
Now, let \(A = (P - 1/6) \) and \(u = rt \) implying that 20 becomes
\[
A = (r + t) + 6u.
\]
(20)

Hence, we obtain
\[
A \equiv (r + t) \pmod{6}.
\]
(21)

Lemma 1. If \(r + t = A \), then either \(r = A, t = 0 \) or \(r = 0, t = A \) is a solution (trivial solution) to (16).

Proof. Let \(r + t = A \). We know that \(u = tr = 0 \). Then, it implies that \(r = A - t \):
\[
t(A - t) = 0.
\]
(22)

Thus, \(t = 0 \) or \(t = A \).

When \(t = 0, r = A \) or when \(t = A, r = 0 \), therefore, \(A \) and 0 is the trivial solution to (16). □

Corollary 1. Let \(P \) be a number of the form \(6k + 1 \) for any integer \(k \geq 1 \); then, for some \(P \) is a prime, if and only if \(A = k \) and 0 (trivial solution) is the only solution to (16).

Proof. \(P = 6k + 1 \) can be written in the form \((6t + 1)(6r + 1)\) and clearly; if \(A = 0 \) is the only solution, then
\[
P = (6A + 1)(6 \cdot 0 + 1) = \left(6 \frac{P - 1}{6} + 1\right)1 = (P - 1) + 1,\]
\[
P = P - 1.
\]

Conversely, let \(P = 6k + 1 \) be a prime. Clearly, \(P = (6k + 1)(6 \cdot 0 + 1) \); thus, \(A = k, 0 \) is the solution. □

Corollary 2. If \(P = (6t + 1)(6r + 1) \) has at least one more integral solution other than the trivial, then \(P \) is a composite.

Proof. Suppose there exists a suitable value of \(r + t \) say \(r + t = s \neq A \). Then, \(u = tr \neq 0 \).

Let \(rt = u; \) then, \(t(s - t) = u: \)
\[
st - t^2 - u = 0,
\]
\[
t^2 - st + u = 0.
\]
(24)

We use the quadratic formula given by
\[
t = \frac{s \pm \sqrt{s^2 - 4u}}{2}.
\]
(25)

If the integer numbers for \(t \) exist say \(t = (s \pm \sqrt{s^2 - 4u})/2 \) are integers, then
\[
m = \left(6 \left(\frac{s + \sqrt{s^2 - 4u}}{2}\right) + 1\right)\left(6 \left(\frac{s - \sqrt{s^2 - 4u}}{2}\right) + 1\right).
\]
(26)

Thus, it is a composite.

2.4. Factorizing the Composite of Case 3. Suppose \(P = (6t + 1)(6r + 1) \) is a composite with at least two prime factors; then, there exists some positive integer \(A \) such that \(A \equiv t + r \pmod{6} \) as in (17). Let
\[
t + r = a_0 + 6f,
\]
(27)
such that \(A - a_0 \) is divisible by 6, where \(f = 0, 1, 2, \ldots, n \) and \(a_0 \) is the smallest positive residue. Then,
\[
rt = B - f,
\]
(28)
where \(B = (A - a_0)/6 \).

From (28) and (29), we obtain
\[
t^2 - (a_0 + 6f)t + (B - f) = 0.
\]
(29)

Since we are interested in the positive integer solution, then
\[
(a_0 + 6f)^2 - 4(B - f) \geq 0.
\]
(30)

By expanding, we obtain
\[
36f^2 + (12a_0 + 4)f - 4B + a_0^2 \geq 0.
\]
(31)

Then, let \(h \) be the least positive integer solution for \(f \) satisfying (32). Then, \(f_n = h + n \), where \(n = 0, 1, \ldots, \eta \). This implies that \(f_{\min} = h \) for the real solution in (30).

Substituting \(f_n = h + n \) in (30), we obtain
\[
t_n^2 - (a_0 + 6h + 6n)t_n + (B - h - n) = 0.
\]
(32)

However, we know that \(P \) has at least one prime factor not exceeding \(\sqrt{P} \) \[36 \]. Then, \(6t + 1 \leq \sqrt{P} \), or \(t \leq \sqrt{P} - 1/6 \). Substituting for \(t \) in (33) to determine the maximum value for \(n = \eta \), we obtain
\[
n \leq \frac{(\sqrt{P} - 1)^2 - 6(a_0 + 6h)(\sqrt{P} - 1) + 36(B - h) - \sqrt{P}}{36\sqrt{P}}.
\]
(33)

For maximum \(\eta \), we choose the negative integer solution of \(f \) in (32).

Suppose \(h_\omega \) is the negative value of \(f \); then, we obtain
\[
\eta \leq \frac{(\sqrt{P} - 1)^2 - 6(a_0 + 6h_\omega)(\sqrt{P} - 1) + 36(B - h_\omega)}{36\sqrt{P}}.
\]
(34)

Then, we can now obtain the exact integer solution for \(t \) recursively in simply \(\leq \eta + \omega \) iterations, where \(\omega \) is the error in \(n \).

During the iterations, we may reach a point when we cannot obtain the integer solution for \(t \), and as we reach \(t_n \), the values of \(t \) tend to converge to some real number say \(r \), and this requires us to do more iteration so that we can reach at least \(t = 1 \). So, to reduce the iterations, we decide to simply list down the remaining values of \(t \) if \(t_n > r + 1 \) right from 1 to \(r - 1 \) and do the trial divisions, and this is the error we assume to be \(\omega \).

When we obtain exact integer solutions for \(t \), then it implies that, at least one of the \(t \) values gives a prime or a number that divides \(P \).
Case 4. \(P = (6t + 5)(6r + 5) \).

Theorem 3. Let \(P = (6t + 5)(6r + 5) \).

Then, there exists some integer \(A \) such that
\[
A \equiv 5 \pmod{6}. \tag{52}
\]

Proof. From
\[
P = (6t + 5)(6r + 5) = 6[6tr + 5(r + t)] + 25, \tag{37}
\]
then
\[
P - 25 = 6[6tr + 5(r + t)]. \tag{38}
\]
Dividing through by 6, we obtain
\[
\frac{P - 25}{6} = 5(r + t) + 6rt. \tag{39}
\]
Now, let \(A = (P - 25)/6 \) and \(u = rt \) imply that (41) becomes
\[
A = 5(r + t) + 6u. \tag{40}
\]
Hence, we obtain
\[
A \equiv 5(r + t) \pmod{6}. \tag{41}
\]
□

Lemma 2. If \(5(r + t) = A \) and \(A \) is divisible by 5, then \(P \) is divisible by 5.

Proof. Let \(5(r + t) = A \). We know that \(u = tr = 0 \). Then, it implies that \(r = A/5 - t \):
\[
t \left(\frac{A}{5} - t \right) = 0. \tag{42}
\]
Thus, \(t = 0 \) or \(t = (A/5) \).

When \(t = 0, r = (A/5) \) or when \(t = (A/5), r = 0, \) since we know that 5 divides \(A, \) now, let \(A = 5/5; \) substituting for either \(t \) or \(r \) in equation (37),
\[
P = (6\zeta + 5)(6 \cdot 0 + 5) = (6\zeta + 5)5. \tag{43}
\]
Thus, \(P \) in (37) is divisible by 5, and therefore, \(P \) is not a prime. □

Corollary 3. If \(P = (6t + 5)(6r + 5) \) has at least a nonzero integer solution, then \(P \) is a composite.

Proof. Suppose there exists a suitable value of \(5(r + t) \) say \(5(r + t) = s \neq A. \) Then, \(u = tr \neq 0. \)
Let \(rt = u. \) Then, \(t(s/5 - t) = w: \)
\[
st - 5t^2 - 5u = 0, \tag{44}
\]
\[
5t^2 - st + 5u = 0.
\]
We use the quadratic formula given by
\[
t = \frac{s \pm \sqrt{s^2 - 100u}}{10}, \tag{45}
\]
\[
m = \left(\frac{6}{10} \left(\frac{s + \sqrt{s^2 - 100u}}{10} \right) + 5 \right) \left(\frac{6}{10} \left(\frac{s - \sqrt{s^2 - 100u}}{10} \right) + 5 \right). \tag{46}
\]
Thus, a composite provided the values for \(t \) and \(r \) are integers.
Clearly, if the values of \(t \) and \(r \) are not integers, then \(P \) is a prime.

2.5. **Factorizing the Composite of Case 4.** Suppose \(P = (6t + 5)(6r + 5) \) is a composite. Then, there exists some positive integer \(A \) such that \(A \equiv 5 \pmod{6} \) as in (38). Let \(5(t + r) = ao + 6f, \)
\[
such that \ A - ao \ is divisible by 6, \ where f = 0, 1, 2, \ldots , n \ and ao, \text{ is the smallest positive residue. Then,}
\[
rt = B - f, \tag{47}
\]
where \(B = A - ao/6. \)
From (48) and (49), we obtain
\[
5t^2 - (ao + 6f)t + 5(B - f) = 0. \tag{48}
\]
Since we are interested in the positive integer solution, then
\[
(ao + 6f)^2 - 100(B - f) \geq 0. \tag{49}
\]
By expanding, we obtain
\[
36f^2 + (12ao + 100)f - 100B + ao^2 \geq 0. \tag{50}
\]
Then, let \(h \) be the least positive integer solution for \(f \) satisfying (52). Then, \(f_n = h + n, \) where \(n = 0, 1, \ldots, \eta. \) This implies that \(f_{\text{min}} = h \) for the real solution in (50).
Substituting \(f_n = h + n \) in (50), we obtain
\[
5t^2 - ao + 6f + 6n) t_n + 5(B - h - n) = 0. \tag{51}
\]
However, we know that \(6t + 5 \leq \sqrt{P}; \) then, \(t \leq (\sqrt{P} - 5/6). \) Substituting for \(t \) in (53) to determine the maximum value for \(n = \eta, \) we obtain
\[
n \leq \frac{5(\sqrt{P} - 5)^2 - 6 ao + 6h) (\sqrt{P} - 5) + 180(B - h)}{36 \sqrt{P}} = \frac{5 \sqrt{P}}{36}. \tag{52}
\]
For maximum \(\eta, \) we choose the negative integer solution of \(f \) in (52).
Suppose \(h_n \) is the negative value of \(f, \) then, we obtain
\[
\eta \leq \frac{5(\sqrt{P} - 5)^2 - 6 ao + 6h) (\sqrt{P} - 5) + 180(B - h)}{36 \sqrt{P}} = \frac{5 \sqrt{P}}{36}. \tag{53}
\]
Then, we can now obtain the exact integer solution for \(t \) recursively in simply \(\leq \eta + o \) iterations. When we obtain exact integer solutions for \(t, \) then it implies that at least one of the \(t \) values gives a prime or a number that divides \(P. \)
Theorem 4. Let \(P = (6t + 5)(6r + 1) \); then, there exist some integer \(A \) such that
\[
A \equiv (5r + t) \pmod{6}.
\]
\[(54) \]

Proof. From
\[
P = (6t + 5)(6r + 1) = 6[6tr + (5r + t)] + 5,
\]
then
\[
P - 5 = 6([5r + t] + 6tr).
\]
\[(56) \]

Dividing through by 6, we obtain
\[
\frac{P - 5}{6} = (5r + t) + 6tr.
\]
\[(57) \]

Let \(A = P - 5/6 \) and \(k = tr \); then,
\[
A = (5r + t) + 6k,
\]
\[(58) \]

implying
\[
A \equiv (5r + t) \pmod{6}.
\]
\[(59) \]

Lemma 3. If \(5r + t = A \), then either \(r = (A/5) \), \(t = 0 \) or \(r = 0 \), \(t = A \) is a trivial solution to (56).

Proof. Let
\[
5r + t = A.
\]
\[(60) \]

Then,
\[
rt = 0,
\]
\[(61) \]

implying that
\[
r = \frac{A - t}{5} = t\left(\frac{A - t}{5}\right) = 0.
\]
\[(62) \]

Thus, \(t = 0 \) or \(t = A \), when \(t = 0 \), \(r = (A/5) \) and when \(t = A \), \(r = 0 \).

Corollary 4. When the trivial solution in Lemma 3 is the only solution to (56), then \(P \) is either prime or divisible by 5.

Proof. From (56), we need to show that \(P \) is either divisible by 5 or has exactly two divisors that is 1 and \(P \) itself:
\[
P = (6r + 1)(6t + 5).
\]
\[(63) \]

When \(t = 0 \), \(r = (A/5) \), then
\[
P = \left(\frac{6A}{5} + 1\right)(6 \cdot 0 + 5) = \left(\frac{P - 5}{6} + 1\right)5.
\]
\[(64) \]

Then, \(P \) is divisible by 5, provided 5 divides \(A \).

Or when \(t = A \), \(r = 0 \), then
\[
P = (6 \cdot 0 + 1)(6A + 5) = 1 \cdot \left(\frac{P - 5}{6} + 5\right),
\]
\[(65) \]

or
\[
P = 1 \cdot P.
\]

Implying if (56) has only a trivial solution, then 1 and \(P \) are the only divisors of \(P \).

Corollary 5. If there exists one more solution (nontrivial solution) of (56), then \(P \) is a multiple of primes greater than or equal to 5.

Proof. Let \(s \neq A \) and \(u \neq 0 \) be the suitable integers such that \(5r + t = s \) and \(tr = u; \) then,
\[
r = \frac{s - t}{5},
\]
\[(66) \]

\[
\Rightarrow \left(\frac{s - t}{5}\right)t - u = 0,
\]
\[(67) \]

\[
t^2 - st + 5u = 0.
\]

Applying quadratic formula, we obtain
\[
t = \frac{s \pm \sqrt{s^2 - 20u}}{2}.
\]
\[(68) \]

The solution is either \((s + \sqrt{s^2 - 20u}/2) \) or \((s - \sqrt{s^2 - 20u}/2) \).

Substituting the solution in (56), we obtain
\[
P = \left(\frac{s + \sqrt{s^2 - 20u}}{2} \cdot 10 + 1\right)\left(\frac{s - \sqrt{s^2 - 20u}}{2} + 5\right)
\]
\[(69) \]

or
\[
P = \left(\frac{s - \sqrt{s^2 - 20u}}{2} \cdot 10 + 1\right)\left(\frac{s + \sqrt{s^2 - 20u}}{2} + 5\right).
\]
\[(70) \]

Thus, \(P \) is a composite if \((s + \sqrt{s^2 - 20u}/2) \) and \((s - \sqrt{s^2 - 20u}/2) \) are integers.

3.1. Factorizing the Composite \(P = (6t + 5)(6r + 1) \). Suppose \(P = (6t + 5)(6r + 1) \) is a composite. Then, there exists some positive integer \(A \) such that \(A = 5r + t \pmod{6} \) as in (56).

Let
\[
5r + t = a_o + 6f,
\]
\[(71) \]

such that \(A - a_o \) is divisible by 6, where \(f = 0, 1, 2, \ldots, n \) and \(a_o \) is the smallest positive residue. Then,
\[
rt = B - f,
\]
\[(72) \]

where \(B = (A - a_o)/6 \).

From (72) and (73), we obtain
\[
t^2 - (a_o + 6f)t + 5(B - f) = 0.
\]
\[(74) \]
Since we are interested in the positive integer solution, then
\[(a_o + 6f)^2 - 20(B - f) \geq 0. \tag{73}\]

By expanding, we obtain
\[36f^2 + (12a_o + 20)f - 20B + a_o^2 \geq 0. \tag{74}\]

Then, let \(h \) be the least positive integer solution for \(f \) satisfying (76). Then, \(f_n = h + n \), where \(n = 0, 1, \ldots, \eta \). This implies that \(f_{\min} = h \) for the real solution in (75). Substituting \(f_n = h + n \) in (75), we obtain
\[t_n^2 - (a_o + 6h + 6n)t_n + 5(B - h - n) = 0. \tag{75}\]

However, we know from [7] that \(6t + 5 \leq \sqrt{P} \); then, \(t \leq (\sqrt{P} - 5)/6 \). Substituting for \(t \) in (77) to determine the maximum value for \(n = \eta \), we obtain
\[n \leq \frac{(\sqrt{P} - 5)^2 - 6(a_o + 6h)(\sqrt{P} - 5) + 180(B - h)}{36\sqrt{P}} \tag{76}\]

For maximum \(\eta \), we choose the negative integer solution of \(f \) in (76).
Suppose \(h_o \) is the negative value of \(f \); then, we obtain
\[\eta \leq \frac{(\sqrt{P} - 5)^2 - 6(a_o + 6h_o)(\sqrt{P} - 5) + 180(B - h_o)}{36\sqrt{P}} \tag{77}\]

Then, we can now obtain the exact integer solution for \(t \) recursively in simply \(\eta \) iterations. When we obtain exact integer solutions for \(t \), then it implies that at least one of the \(t \) values gives a prime or a number that divides \(P \).

4. General Outline of the Algorithm

We outline the steps of factoring primes based on the proofs above.

Given an integer \(P \)

1. Check if \(P \) satisfies \(P^2 \equiv 1 \pmod{24} \).
2. Does (1) hold? If so, do step (4), and if not, do step (3).
3. Check if it is either divisible by 2 or by 3 and reduced it by dividing by 2 or 3 until the Quotient is no longer divisible by 2 or 3. If the resulting Quotient is greater than 3, we can call it \(P \) and do step (4).
4. Check if \(P \) is either of the form \(6k + 1 \) or \(6k + 5 \) by subtracting 1 or 5 from \(P \) and check if the difference is divisible by 6.
5. If \(P \) is of the form \(6k + 1 \), then

 Either Case 3

 (i) We determine integer \(A \) from \(A = (P - 1)/6 \).
 (ii) We write down the congruence:
 \[A \equiv r + t \pmod{6}. \tag{78}\]
 (iii) We determine \(B \) and \(a_o \), where \(a_o \) is the least positive residue such that \(B = A - a_o/6 \) is a positive integer

 (iv) We obtain the least positive integer \(f_{\min} = h \) such that
 \[t^2 - (a_o + 6f)t + (B - f) = 0 \text{ has a real solution.} \]
 This is obtained from \((a_o + 6f)^2 - 4(B - f) \geq 0 \).
 (v) We obtain the integer \(n \) from \(n = \eta \leq (\sqrt{P}/36) \), where \(h_o = -h \).
 (vi) \(n = 0, 1, 2, \ldots, \eta \), \(f_o = h \), \(f_n = h + n \) and \(t_o = (a_o + 6h) \pm \sqrt{(a_o + 6h)^2 - 4(B - h)/2} \).
 If the integer solution does not exist at \(n = 0 \), we do step (vii).
 (vii) We perform at most \(\eta \) iterations to obtain the integer solutions for \(t \) from
 \[t_n = \frac{(a_o + 6h + 6n) \pm \sqrt{(a_o + 6h + 6n)^2 - 4(B - h - n)}}{2} \tag{79}\]

Remark: If the values of \(t \) seem to converge at some point on a real line, then it is better to list the integer values of \(t \) from the point of convergence (integer value of convergence) to as small as 1; that is, if the integer value of convergence of \(t \) is \(\tau \), then we list them such that \(t = \tau - 1, \ldots, 1 \) and do the trial divisions from \(P/6t + 1 \).

If there is no integer value of \(t \) such that \((P/6t + 1) \) is an integer, then we try Case 4. OR Case 4

(i) We determine integer \(A \) from \(A = (P - 25)/6 \).
(ii) We write down the congruence:
\[A \equiv 5(r + t) \pmod{6}. \tag{80}\]

(iii) We determine \(B \) and \(a_o \), where \(a_o \) is the least positive residue such that \(B = (A - a_o)/6 \) is a positive integer.
(iv) We obtain the least positive integer \(f_{\min} = h \)
 such that
 \[5t^2 - (a_o + 6f)t + (B - f) = 0 \text{ has a real solution.} \]
 This is obtained from \((a_o + 6f)^2 - 100(B - f) \geq 0 \).
 (v) We obtain the integer \(n \) from \(n = \eta \leq (5\sqrt{P}/36) \), where \(h_o = -h \).
 (vi) \(n = 0, 1, 2, \ldots, \eta \), \(f_o = h \), \(f_n = h + n \) and \(t_o = (a_o + 6h) \pm \sqrt{(a_o + 6h)^2 - 100(B - h)/10} \).
 If the integer solution does not exist at \(n = 0 \), we do step (vii).
 (vii) We perform at most \(\eta \) iterations to obtain the integer solutions for \(t \) from
 \[t_n = \frac{(a_o + 6h + 6n) \pm \sqrt{(a_o + 6h + 6n)^2 - 100(B - h - n)}}{10} \tag{81}\]
convergence (integer value of convergence) to as small as 1; that is, if the integer value of convergence of t is τ, then we list them such that $t = \tau - 1, \ldots, 1$ and do the trial divisions from $P/6t + 5$.

If there is no integer value of t such that $(P/6t + 5)$ is an integer, then P is a prime.

(6) If P is of the form $6k + 5$, then

(i) We determine integer A from $A = (P - 5)/6$.
(ii) We write down the congruence:

$$A \equiv 5r + t \pmod{6}.$$ \hfill (82)

(iii) We determine B and a_o, where a_o is the least positive residue such that $B = (A - a_o)/6$ is a positive integer.

(iv) We obtain the least positive integer $f_{\min} = h$ such that

$$t^2 - (a_o + 6h + 6f)t + 5(B - f) = 0$$
has a real solution.

This is obtained from

$$(a_o + 6f)^2 - 4(B - f) \geq 0.$$

(v) We obtain the integer n from $n = \eta \leq (\sqrt{P}/36)$, where $h_o = -h$.

(vi) $n = 0, 1, 2, \ldots, \eta$, $f_o = h$, $f_n = h + n$, and

$$t_o = (a_o + 6h) \pm \sqrt{(a_o + 6h)^2 - 20(B - h - n)}.$$

If the integer solution does not exist at $n = 0$, we do step (vii).

(vii) We perform at most η iterations to obtain the integer solutions for t from

$$t_n = \frac{(a_o + 6h + 6n) \pm \sqrt{(a_o + 6h + 6n)^2 - 20(B - h - n)}}{2}.$$ \hfill (83)

Remark: if the values of t seem to converge at some point on a real line, then it is better to list the integer values of t from the point of convergence (integer value of convergence) to as small as 1; that is, if the integer value of convergence of t is τ, then we list them such that $t = \tau - 1, \ldots, 1$ and do the trial divisions from $P/6t + 5$.

If there is no integer value of t such that $(P/6t + 5)$ is an integer, then P is a prime.

Example 1. We consider the factorizing of number 1099551473989:

$A = 183258578994,$

$183258578994 \equiv 5(t + r) \pmod{6},$

$B = 30543096499, a_o = 0,$

$$5t^2 - 6ft + 5(30543096499 - f) = 0.$$ \hfill (84)

For real solution for t, we obtain $36f^2 + 100f - 3054309649900 \geq 0$:

\[36f^2 + 100f - 3054309649900 \geq 0.\]
Figure 2: Algorithm for numbers of the form $6k+1$: Case 4.

Figure 3: Algorithm for numbers of the form $6k+5$.

\[B = B_0, f = h, a = a_0, i = 0, 1, \ldots, \eta \]

\[t_i = \frac{(a + 6h + 6i) \pm \sqrt{(a + 6h + 6i)^2 - 100(B_i - h - i)}}{10} \]

Is $t_i = t$ an integer? No

Yes

Compute $P = \frac{P_2}{6t+5}$

Is $P = \frac{P_2}{6t+5}$ an integer? ERROR

Yes

Read P1 and P2

STOP

Is $t = \tau$ an integer? No

Yes

Compute $P = \frac{P_1}{6t+1}$

Is $P = \frac{P_1}{6t+1}$ an integer? Is $t = \tau - 1$?

No

Yes

TRY CASE I

PRIME

Is P an integer? Yes

Is $t = \tau - 1$?

No

Yes

Done CASE I

\[B = B_0, f = h, a = a_0, i = 0, 1, \ldots, \eta \]

\[t_i = \frac{(a + 6h + 6i) \pm \sqrt{(a + 6h + 6i)^2 - 100(B_i - h - i)}}{10} \]

Is $t_i = t$ an integer? No

Yes

Compute $P = \frac{P_2}{6t+5}$

Is $P = \frac{P_2}{6t+5}$ an integer? ERROR

Yes

Read P1 and P2

STOP

Is $t = \tau$ an integer? No

Yes

Compute $P = \frac{P_1}{6t+1}$

Is $P = \frac{P_1}{6t+1}$ an integer? Is $t = \tau - 1$?

No

Yes

TRY CASE I

PRIME

Is P^* or P_1^* an integer? Yes

Is $t = \tau - 1$?

No

Yes

Done CASE II
\[f_{\min} = h = 291275, \Rightarrow h_o = -291275. \] (85)

Using \(n_{\text{max}} = \eta \leq (5\sqrt{P} - 5)^2 - 6(a_o + 6h_o)(\sqrt{P} - 5) + 180(B - h_o)/36\sqrt{P} \), then \(n = 0, 1, 2, \ldots, 582550 \).

From \(t_o = ((a_o + 6h_o) \pm \sqrt{(a_o + 6h_o)^2 - 100(B - h_o) / 10}) \), we obtain

\[t_o = \frac{6 \times 291275 \pm \sqrt{100}}{10}. \] (86)

Then, \(t_o = 174766 \) or \(t_o = 174764 \), and therefore, the prime divisors of 1092551473989 are 1048601 and 1048589.

The above procedures (general outline) can be summarized by the flowcharts in Figures 1–3, respectively.

4.1. Algorithm for Numbers of the Form 6k + 1: Case 3. \(P, A = (P - 1/6), B = (A - a_o/6), (a_o + 6f_o)^2 - 4(B - f_o) \geq 0, h_o = -f_o, \eta \leq (\sqrt{P}/36) \)

4.2. Algorithm for Numbers of the Form 6k + 1: Case 4. \(P, A = P - 25/6, B = (A - a_o/6)(a_o + 6f_o)^2 - 100(B - f_o) \geq 0, h_o = -f_o, \eta \leq (5\sqrt{P}/36) \)

4.3. Algorithm for Numbers of the Form 6k + 5: Case 4. \(P, A = P - 5/6, B = (A - a_o/6)(a_o + 6f_o)^2 - 20(B - f_o) \geq 0, h_o = -f_o, \eta \leq (\sqrt{P}/36) \)

5. Conclusion and Recommendations

This method is good especially when the difference (prime gap) between the prime divisors is relatively small.

Remark 1. Normally, when the prime divisors are close to each other, values of \(t_o \) are integer solutions. However, this may not guarantee for all such problems.

The algorithm is effective in prime factorization and primality testing, especially when dealing with relatively large numbers. However, there is need for a way of differentiating numbers of the form \((6t + 3)(6r + 1)\) from numbers of the form \((6t + 5)(6r + 5)\) because the end result is of the form \(6k + 1\) which makes it difficult to choose which algorithm is suitable for such numbers. This forces one to randomly select either Case 3 formula or Case 4 which makes it more tiresome in case the first algorithm does not produce any result so you turn to another case before making any conclusion about the given problem.

In addition, this algorithm requires a computer program so that it carries a greater impact in the field of cryptography and mathematics.

Data Availability

The figures data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors thank Dr. Osman, Prof Moptaba M, and Dr. M. Sala for reading the work and helping prepare it and are indebted to them.

References

