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We propose a trigonometric generalizer/generator of distributions utilizing the quantile function of modi�ed standard Cauchy
distribution and construct a logistic-based new G-class disbursing cotangent function. Signi�cant mathematical characteristics
and special models are derived. New mathematical transformations and extended models are also proposed. A two-parameter
model logistic cotangent Weibull (LCW) is developed and discussed in detail.  e beauty and importance of the proposed model
are that its hazard rate exhibits all monotone and non-monotone shapes while the density exhibits unimodal and bimodal
(symmetrical, right-skewed, and decreasing) shapes. For parametric estimation, the maximum likelihood approach is used, and
simulation analysis is performed to ensure that the estimates are asymptotic.  e importance of the proposed trigonometric
generalizer, G class, and model is proved via two applications focused on survival and failure datasets whose results attested the
distinct better �t, wider �exibility, and greater capability than existing and well-known competing models.  e authors thought
that the suggested class and models would appeal to a broader audience of professionals working in reliability analysis, actuarial
and �nancial sciences, and lifetime data and analysis.

1. Introduction and Motivations

Generalizing a classical distribution is an old practice in dis-
tribution theory.  e earliest work regarding generalizing a
distribution was conducted by Pearson [1] using di�erential
equations. Since 1985, the families (or classes) of distributions
have been derived adopting the following famous methodolo-
gies: di�erential equation method, transformation techniques,
compounding methodology, skewed distributions generation,
parametric induction, quantile based approach, transformed
(T)-transformer (X) mechanism, exponentiated T-X system,
T-R\{Y\} approach, etc., It is possible to more readily manage
data that is highly skewedwith each newmodel that is developed
because of its enhanced heavy-tailed, tractable core functions,
and simpli�ed simulation technique.

 e literature review explores the following four critical
points which prove the basis for this study. (i) In the sta-
tistical literature, a slew of new families and models for
algebraically generalizers/distribution’s generatorsW[G(x)]
have been introduced in contrast of neglecting trigonometric
equations (trigonometric generalizers). (ii)  e interest in
modelling directional and proportional data led applied
researchers to develop and employ trigonometry function-
based models capable of handling these datasets more
smoothly and economically. (iii)  e use of algebraic and
trigonometric functions in mixture generalizers is still to be
researched and investigated. (iv) Using the stated trans-
formation, any current G class or model may be simply
reversed in a subsequent version.  e major motives are
considered to be in�uenced and inspired by the generated
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results in terms of accuracy, adaptability, and goodness of fit
(gof) which are included below:

(i) To introduce a generator of distributions based on
cotangent function (that is a combination of alge-
braic and trigonometric functions and generators
concurrently).

(ii) To introduce a new G-class called a new logistic-G
class of distributions (LCG for short) in trigono-
metric scenario.

(iii) (ere are several advantages to the suggested class,
including its simplification, lack of non-identifi-
ability, and lack of over-parametrization.

(iv) Because of the injection of the cotangent function,
the new CDF can increase flexibility, giving rise to
new efficient and flexible models.

(v) Non-generalized and non-exponentiated models,
according to the literature, give insufficient gof.

(e famous generalizers and corresponding G-families
are presented in Table 1.

Moreover, the new generators and G-classes are in-
troduced regarding several purposes. Among them, the
recent and remarkable include the following. (A) To
present a new family utilizing the additive model structure
(see [6]). (B) New generator W[G(x)] is defined with
quantile function (see [7]). (C) To achieve better gof and
more flexibility than existing classical models (see [8]).
(D) Type I half logistic Burr XG family has been con-
structed by Algarni et al. [9]. (E) (e bivariate Weibull-G
family based on copula function using odd classes has
been introduced by El-Sherpieny et al. [10]. (F) A sig-
nificant amount of distribution families was proposed
using parameter induction (inserting one or maybe more
new parameters (s) to the baseline), for example, a new
one was put forward by Cordeiro et al. [11]. (G) Adopting
the T-X family methodology only (see [12]). (H) Pre-
senting a flexible family which deals with both monotone
and non-monotone hazard rate function (see [13]). (I)
Using a flexible family to introduced flexible generalized
Pareto distribution (see [14]). (e whole real line interval
(− ∞,∞) distributions naturally come up when random
variables should vary in the infinite real interval and
several distributions such as logistic, normal, Laplace, t,
Chen, and Gumbel distributions are supported on this
interval. It has been used to describe the distribution of
income and wealth in a fairly basic way. (e logistic
distribution has numerous uses in statistical analysis and
has a form that resembles the normal distribution.

A previous study [15] introduced logistic distribution
whose main functions (cdf and pdf) in a new format are
given below:

F(x) � 1 + e
− (x− μ/σ)

 
− 1

,

f(x) �
e

− (x− μ/σ)

σ 1 + e
− (x− μ/σ)

 
2, x ∈ R.

(1)

Alzaatreh et al. [16] contributed transformed (T)-
transformer (X) family of distributions (for short, T-X
family) which expanded vision about generators of distri-
butions (W[G(x)]), and in this article, via the T-X method,
a new logistic-G class of statistical distributions is proposed
adopting a cotangent-based trigonometric generator
[− cot(πG(x))].

(is paper is outlined as follows. Section 1 is about
introduction and motivations while in Section 2, cotangent
generator and LCG class are developed. In Section 3, some
special models are presented while in Section 4, the char-
acteristics of LCG class are deduced. In Section 5, a new
model LCW along with significant properties is discussed
and a simulation work is performed in Section 6. (e im-
portance of the new class and model is confirmed by two
real-life applications using failure and survival datasets in
Section 7. Finally, in Section 8, the conclusions are
presented.

2. Development of Cotangent Generator

In this part, let us assume that X is a random variable (r.v.)
that follows the famous distribution, the standard Cauchy
distribution, and its location parameter has value equal to
μ � 0 while the other parameter which is called the scale
parameter has value equal to σ � 1; then, its cdf and qf,
respectively, are

F(x) �
1
2

+
tan− 1

x

π
, x> 0, (2)

Q(u) � tan[π(u − 0.5)]

� tan πu −
π
2

  � [− cot(πu)].
(3)

Replacing u by G(x), W[G(x)] � [− cot(πG(x))], a new
trigonometric generator based on cotangent function is
achieved having support (− ∞,∞).

2.1. Genesis of LCGClass. By assuming that r(t) is considered
as the pdf of a r.v. T ∈ [a, b] for − ∞≤ a< b<∞ and
W[G(x)] � [− cot(πG(x))], it fulfills the T-X family’s fol-
lowing requirements. (i) Since [πG(x)] ∈ [0, π], then
[− cot(πG(x))] ∈ (− ∞,∞). (ii) [− cot(πG(x))] is differen-
tiable and monotonically non-decreasing because cotangent
function is differentiable andmonotonically non-decreasing on
[0, π]. (iii) Since G(x)⟶ 0 such that x⟶ − ∞ , then
[πG(x)]⟶ − ∞ and [− cot(πG(x))]⟶ − ∞. Similarly,
G(x)⟶ 1 as x⟶∞ ; then, [πG(x)]⟶∞ and
[− cot(πG(x))]⟶∞.

Now, the main functions of LCG class in T-X format can
be written as

F(x) � 
− cot(πG(x))

− ∞
r(t)dt. � R[− cot(πG(x))], (4)

f(x) � πg(x)csc2(πG(x))r[− cot(πG(x))], (5)
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h(x) �
πg(x)csc2(πG(x))r[− cot(πG(x))]

1 − R[− cot(πG(x))]
. (6)

2.1.1. LCG Class in Cotangent Scenario. Let T be a logistic
r.v. with cdf R(t) � (1 + e− t)− 1 and pdf
r(t) � e− t(1 + e− t)− 2. Putting W[G(x)] � − cot[πG(x)] in
(4), the cdf of new class is obtained and presented as

F(x) � 1 + ecot(πG(x))
 

− 1
. (7)

(e pdf corresponding to (7) reduces to

f(x) � πg(x)csc2(πG(x))e
cot(πG(x)) 1 + e

cot(πG(x))
 

− 2
. (8)

2.1.2. LCG Class in Tangent Scenario. Putting W[G(x)] �

tan[π(G(x) − 0.5)] in (4), the cdf of new class may be
expressed as below:

F(x) � 1 + e
− tan[π(G(x)− 0.5)]

 
− 1

. (9)

(e pdf corresponding to (9) reduces to

f(x) � πg(x)sec2(π(G(x) − 0.5))e
− tan(π(G(x)− 0.5)) 1 + e

− tan(π(G(x)− 0.5))
 

− 2
. (10)

3. Special Models

Some special models of LCG class with their main functions
and corresponding graphs are presented subsequently.

3.1. 4e Logistic Cot Exponential (LCE) Distribution. By
assuming that the variable X follows an exponential dis-
tribution, then we may be able to express the central
functions for the LCE distribution in the form as follows:

F(x) � 1 + e
cot π 1− e− αx( )[ ]

 
− 1

, x> 0,

f(x) � παe
− αxcsc2 π 1 − e

− αx
( ( e

cot π 1− e− αx( )( ) 1 + e
cot π 1− e− αx( )( )

 
− 2

,

h(x) � παe
− αxcsc2 π 1 − e

− αx
( (  1 + e

cot π 1− e− αx( )( )
 

− 1
.

(11)

3.2. 4e Logistic Cot Lindley (LCLi) Distribution.
Assuming X is a Lindley random variable, we can write the
new one-parameter LCLi model that has the following cdf,

pdf, and hazard function. Figure 1 demonstrates the graph
plots of the LCE, and Figure 2 demonstrates the the graph
plots of the LCLi.

F(x) � 1 + e
cot π 1− e− αx(1+αx/1+α)( )( )

 
− 1

, x, α> 0,

f(x) �
π(1 + x)α2e− αx/1 + αcsc2 π 1 − e

− αx
(1 + αx/1 + α)( (  e

cot π 1− e− αx(1+αx/1+α)( )( )
 

1 + e
cot π 1− e− αx(1+αx/1+α)( )( )

 
2 ,

h(x) � π
(1 + x)α2e− αx

1 + α
csc2 π 1 − e

− αx 1 +
αx

1 + α
    1 + e

cot π 1− e− αx(1+αx/1+α)( )( )
 

− 1
.

(12)

3.3.4eLogistic CotGamma (LCGa)Distribution. Let X be a
gamma random variable; then, the LCGa model has the
following main functions:

Table 1: (e real line supporting generalizers and corresponding G-families.

Range of T Generator W[G(x)] Models of the T-X family Inventor(s)
(− ∞,∞) log(G(x)/G(x)) Log odd logistic family Torabi and Montazeri [2]
(− ∞,∞) log(− logG(x)) Logistic-X family Tahir et al. [3]
(− ∞,∞) 1 − (1 + [− log G(x)]− λ)− 1 Logistic type 2-G family Hassan et al. [4]
(− ∞,∞) log(− log G(x)) Logistic-G family Mansoor et al. [5]
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F(x) � 1 + e
cot(πc(α,βx)/Γα)

 
− 1

, x> 0,

f(x) � π
βα

Γαx
α− 1

e
− βx

csc2 π
c(α, βx)

Γα
 e

cot(ππc(α,βx)/Γα) 1 + e
cot(ππc(α,βx)/Γα)

 
− 2

,

h(x) � π
βα

Γα
x
α− 1

e
− βxcsc2 π

c(α, βx)

Γα
  1 + e

cot(ππc(α,βx)/Γα)
 

− 1
.

(13)

(e plots of the LCGa are shown as graphs in Figure 3.

3.4. 4e Logistic Cot Dagum (LCD) Distribution. By as-
suming that for the possibility that X is a Dagum random

variable, then the LCD distribution has the following pri-
mary functions:
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Figure 1: Graphical representation for the plots of the LCE: (a) density and (b) hazard rate function using certain values of the parameters.

0.5 1.0 1.5 2.00.0
x

0.0

0.5

1.0

1.5

2.0

2.5

f (
x)

α=0.7
α=1.3
α=1.9

α=2.4
α=2.5

(a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

h 
(x

)

0.5 1.0 1.50.0 2.0
x

α=0.5
α=0.9
α=1.3

α=2.1
α=2.7

(b)

Figure 2: Graphical representation for the plots of the LCLi: (a) density and (b) hazard rate using certain values of the parameters.
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F(x) � 1 + e
cot π 1+αx− β( )

− λ( ( 
 

− 1
, x> 0,

f(x) �
παβλx

− (β+1) 1 + αx
− β

 
− (λ+1)

csc2 π 1 + αx
− β

 
− λ

  e
cot π 1+αx− β( )

− λ( ( 

1 + e
cot π 1+αx− β( )

− λ( ( 
 

2 ,

h(x) � παβλx
− (β+1) 1 + αx

− β
 

− (λ+1)
csc2 π 1 + αx

− β
 

− λ
   1 + e

cot π 1+αx− β( )
− λ( ( 

 
− 1

.

(14)

(e graphs in Figure 4 show the plots of the LCD.

4. Mathematical Properties of LCG Class

Here, important properties of the new class are presented.

4.1. 4e Inverse Function for Both pdf and cdf (Quantile
Function). We present an additional property of X which is
qf:

Q(u) � QG(v). (15)

Here, QG(v) � G− 1(v) is the parental qf, whereas
v � 1/πcot− 1(ln((1 − u)/u)). So, we can write the quantile
density function Q′(u) as follows:

Q′(u) �
π− 1cot− 1

(ln(1 − u)/u) 
− 2

πu(1 − u) 1 +(ln(1 − u/u))
2

 
. (16)

4.2. Useful Reliability Functions. In this part of the paper, we
will concentrate our efforts to introduce the most important
reliability functions. First we will define the survival function
(sf) S(x), after that we write the equation of the hazard rate
function (hrf) h(x), and the reversed hazard rate function r(x)

is as below, and the cumulative hazard rate function (chrf)
H(x) and mills’ ratio m(x) are, respectively, given below.

S(x) �
e
cot(πG(x))

1 + e
cot(πG(x))

,

h(x) � πg(x)csc2(πG(x)) 1 + e
cot(πG(x))

 
− 1

,

r(x) � πg(x)csc2(πG(x))e
cot(πG(x)) 1 + e

cot(πG(x))
 

− 1
,

H(x) � ln
ecot(πG(x))

1 + ecot(πG(x))
 

− 1

,

m(x) �
1 + e

cot(πG(x))

πg(x)csc2(πG(x))
2.

(17)

4.3. 4e Density Function Analytical Formulas. By solving
(18), we can get the roots of the equation, and we can call it
the solutions of the density function of the new class; it is
possible to provide an analytical description of the forms of
the new density:
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Figure 3: Graphical representation for the plots of the LCGa: (a) density and (b) hazard rate using certain values of the parameters.
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g
′
(x)

g(x)
+ πg(x)

csc2(πG(x))2e
cot(πG(x))

1 + e
cot(πG(x))

− 2 cot(πG(x)) − csc2(πG(x))  � 0. (18)

(18) can be multi-rooted equation. Let
λ(x) � d2 log[f(x)]/dx2; then,

λ(x) �
g
′′
(x)g(x) − g

′
(x) 

2

g(x)
2 + πg′(x)

csc2(πG(x)) 2e
cot(πG(x))

1 + e
cot(πG(x))

− 2 cot(πG(x)) − csc2(πG(x))⎡⎢⎣ ⎤⎥⎦

+ πg(x) 2πg(x)csc2(πG(x))(1 + cot(πG(x)))  +
πg(x)

(1 + cot(πG(x)))
2

2 1 + e
cot(πG(x))

  − 2πg(x)csc2(πG(x)) e
cot(πG(x)) cot(πG(x)) + csc2(πG(x))

+2πg(x) csc2(πG(x)) 
2

e
cot(πG(x))

 
2
.

(19)

4.4. 4e Hazard Function Analytical Formulas. In order to
find the roots of (20), wemust obtain the crucial points of the
hrf h(x).

g′(x)

g(x)
− 2πg(x)cot(πG(x)) −

πg(x)csc2(πG(x))e
cot(πG(x))

1 + e
cot(πG(x))

� 0.

(20)
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Figure 4: Graphical representation for the plots of the LCD: (a) density and (b) hazard rate using certain values of the parameters.
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As we can see, this equation has many solutions or we
can say many roots are available for this equation. Suppose
that λ′(x) � d2log[h(x)]/dx2. We have

λ′(x) �
g″(x)g(x) − (g′(x))

2

g(x)
2 − 2π g′(x)cot(πG(x)) − πg(x)

2csc2(πG(x)) 

+
π

1 + e
cot(πG(x))

 
3

g′(x)csc2(πG(x))e
cot(πG(x))

− πg(x)
2csc2(πG(x))

2
e
cot(πG(x))

− 2πg(x)
2csc2(πG(x))cot(πG(x))e

cot(πG(x))

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

−
π

1 + e
cot(πG(x))

 
4 × πg(x)

2 csc2(πG(x)) 
2

e
cot(πG(x))

 
2
.

(21)

Using any numerical software and (18) and (20), we can
investigate local maximums and minimums, as well as in-
flexion points.

4.5. LinearRepresentation. (e cdf of LCG class presented in
(7) can be written as follows:

F(x) � 1 + e
cot(πG(x))

 
− 1

. (22)

Using the relation (1 + et)− 1 � 1 − (1 + et)− 1, F(x) may
be easily formulated as

F(x) � 1 − 1 + e
− cot(πG(x))

 
− 1

. (23)

(rough WolframAlpha, (1 + x)− 1 � 
∞
i�0 (− 1)ixi,

for|x|< 1.We can demonstrate the cdf (2.6) in this form after
applying this series and exponent series ex � 

∞
j�0 xj/j!,

respectively.

F(x) � 
∞

i�1


∞

j�0

(i)
j
(− 1)

i+j+1

j!
(cot(πG(x)))

j
. (24)

Now, for the term (cot(πG(x)))j, we will use the power
series to expand it (cot(x))s � 

∞
i�0 ai(s)(x)2i− s, such that

a0(s) � 1 , a1(s) � − (s/3) , a2(s) � s((5s − 7)/90), etc,. are
obtained by the aid of the highly speed MATHEMATICA
software see Tahir [17]. Hence, (cot(πG(x)))j � 

∞
k�0 ak

(j)(π)2k− j(G(x))2k− j, and

F(x) � 
∞

m�1
W(i,j,k,l)Hm(x). (25)

We know that Hm(x) is considered as the exponentiated
distribution function parameter (m) in the power and

Wi,j,k,l � 
∞

i,l�1


∞

j,k�0

(i)
j
(− 1)

(i+j+l+m+1)

j!

2k − j

l

⎛⎝ ⎞⎠
m

l

⎛⎝ ⎞⎠ak(j)(π)
2k− j

, Hm(x) � G(x)
m

. (26)

With the expansion of (8), the following formula may be
obtained from the previously mentioned idea of expo-
nentiated distributions:

f(x) � 
∞

m�1
vi,j,k,lh(m)(x), (27)

such that h(m)(x) can be noted as the exponentiated density
having a power parameter (m) and

vi,j,k,l � 
∞

i,l�1


∞

j,k�0

(i)
j
(− 1)

(i+j+l+m+1)

j!

2k − j

l

⎛⎝ ⎞⎠
m

l

⎛⎝ ⎞⎠ak(j)(π)
2k− j

,

a0(s) � 1, a1(s) � − s/3, a2(s) � s(5s − 7)/90,

(28)

and
h(m)(x) � mg(x)G(x)

(m− 1)
. (29)
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4.6. Moments, Incomplete Moments, Mean Deviation, Skew-
ness, and Kurtosis. Suppose that we have a random variable
called Y(m) that follows the the exp-G distribution that has a
power parameter m, i.e., having density hm(x). Now we gave
two formulas for the nth moment of X which follows (27),
and the first one can expressed as follows:

E X
n

(  �� 
∞

i,l�1


∞

j,k�0
vi,j,k,lE Y

n
m( . (30)

(e nth moment of X can be written in a second form as
it may be deduced from (30) in terms of the G qf like the
following equations:

E X
n

(  � 
∞

i,l�1


∞

j,k�0
vi,j,k,l(m) 

∞

− ∞
x

n
G(x)

(m− 1)
g(x)dx,

E X
n

(  � 
∞

m�0
d(m− 1)τ(n, m − 1),

(31)

where d(m− 1) � 
∞
i,l�1 

∞
j,k�0 (m) and

τn,(m− 1) � 
∞
− ∞ xnG(x)(m− 1)g(x)dx � 

1
0 QG(u)nu(m− 1)du.

(ese integrals can be calculated numerically.

4.7. Weighted Moments. In this section, we introduce the
equation of the weighted moments. So, we can write the
(r, s)th probability weighted moment (PWM) of X as

ρr,s � E X
r
F(X) 

s
� 
∞

0
x

r
F(x)

s
f(x)dx. (32)

(en,

F(x)
s

� 1 + ecot(πG(x))
 

− s
. (33)

Putting the pdf of LCG class (given below)

f(x) � πg(x) csc2(πG(x)) ecot(πG(x)) 1 + ecot(πG(x))
 

− 2
,

(34)

in (32), after applying the binomial expansion and expo-
nential series, we get

ρr,q � 
∞

i,j�0
π

− (s + 2)

i

⎛⎝ ⎞⎠
(i + 1)

j

j!

∞

− ∞
x

r
g(x) csc2(πG(x)) [cot(πG(x))]

j
dx. (35)

Regarding [cot(πG(x))]j, we can use power series ex-
pansion [cot(x)]s � 

∞
k�0 ak(s)(x)2k− s, such that a0(s) � 1,

a1(s) � − s/3, a2(s) � s(5s − 7)/90, etc. Similarly, for
[csc2(πG(x))] � 

∞
l�0 cl(2)(x)2l− 2, we get

ρr,q � 
∞

i,j,k,l

− (s + 2)

i

⎛⎝ ⎞⎠
(i + 1)

j

j!
π(2(k+l)− j− 1)

ak(j)cl(2) 
∞

− ∞
x

r
g(x)G(x)

2(k+l)− j− 2
dx,

ρr,q � 
∞

i,j,k,l

Ui,j,k,l 
∞

− ∞
x

r
(2(k + l) − j − 1)g(x)G(x)

2(k+l)− j− 2
dx,

(36)

where Ui,j,k,l �
− (s + 2)

i
 ((i + 1)j/j!)π(2(k+l)− j− 1)

ak(j)cl(2)/2(k + l) − j − 1.

4.8. Generating Function. (is section is devoted to intro-
duce the moment generating function (mgf), and it can be
written as follows:

MX(t) � E etx
  � 

∞

− ∞
etx

 f(x)dx � 
∞

− ∞
etx

  

∞

i,l�1


∞

J,k�0
vi,J,k,lmG(x)

(m− 1)
g(x)dx. (37)

4.9. Order Statistics. In this section, we will focus our
attention on one of the most important properties which
is the order statistics. We can easily write the form of Ith

order statistic density function as follows:

fI: N(x) � D 

N− I

J�0
(− 1)

J
N − I

J
 f(x)F(x)

J+I− 1
, (38)

such that D � N!/[(I − 1)!(N − I)!].Considering the math-
ematical advancements described in PWM, fI: N(x) becomes
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fI: N(x) � 
∞

m,N,p�0
W∗J,l,m,N,ph(2(p+N)− m− 1)(x), (39)

such that h(2(p+N)− m− 1)(x) is exp-G density possessing power
parameter (2(p + N) − m − 1) for J, l, m, N, p≥ 0.

W∗J,l,m,N,p � 
∞

J,l�0

D(− 1)
J

N − I

J

⎛⎝ ⎞⎠
− (J + I + 1)

l

⎛⎝ ⎞⎠(l + 1)
mπ2(p+N)− (m+1)

ap(2)dn(m)

m!(2(p + N) − (m + 1))
,

(40)

and

h(2(p+N)− m− 1)(x) � (2(p + N) − m − 1)g(x)G(x)
(2(p+N)− m− 1)− 1

. (41)

It should come as no surprise that the density of the LCG
order statistics is a linear combination of exp-G densities;
this is extremely evident, as revealed by (39), which is the
main result to be demonstrated.

4.10. Entropy Measures. (e Shannon entropy is defined as
ηX � E − log[f(X)] , and for the LCG class, it may be
formulated as the following equation:

ηX � E[− log f(x)] � − log π − E(log g(x)) − E log csc2(πG(x))   − E[cot(πG(x))] + 2E log 1 + ecot(πG(x))
  . (42)

Proof. Alzaatreh et al. [16] deduced Shannon entropy of
T-X family. Since hereW[G(x)] � [− cot(πG(x))], adopting
the same methodology, we get ηX as

ηX � E log g G
− 1 e− eT

     − E eT
  + μT + ηT, (43)

where μT is the mean of r.v. T. Using (43), we can easily
prove the Shannon entropy of the LCG class given in (42)
where T follows logistic distribution.

Rényi entropy is

Iδ(f) �
1

1 − δ
log[I(δ)], (44)

such that Iδ(f) � 
R

fδ(x)dx, δ > 0 and δ ≠ 1.

f
δ
(x) � πg(x) csc2(πG(x)) ecot(πG(x)) 1 + ecot(πG(x))

 
− 2

 
δ
.

(45)

We get the following result after performing the ex-
pansion by the aid of power series:

f
δ
(x) � πδ



∞

i�0


∞

j�0

− 2δ

i

⎛⎝ ⎞⎠
(δ + i)

j

j!
[g(x)]

δ csc2(πG(x)) 
δ
cot (πG(x))

j
. (46)

After incorporating the result, the Rényi entropy will
reduce to

Iδ(f) �
1

1 − δ
log 

∞

− ∞
πδ 

∞

i�0


∞

j�0

− 2δ

i

⎛⎝ ⎞⎠
(δ + i)

j

j!
[g(x)]

δ csc2(πG(x)) 
δ
cot (πG(x))

j⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (47)

Now, we can write the final equation of the Rényi en-
tropy as follows:
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Iδ(f) �
1

1 − δ
log 
∞

i,j�0
Di,j,δ 

∞

− ∞
[g(x)]

δ csc2(πG(x)) 
δ
cot (πG(x))

j⎡⎢⎢⎣ ⎤⎥⎥⎦, (48)

where Di,j,δ � πδ − 2δ
i

 (δ + i)j/j!. □

4.11. Some Transformations to Develop New G-Classes

(i) If the r.v Y ∼ standard logistic distribution, then
X � cot− 1(Y)/π ∼ logistic cotangent-G class of
distributions.

(ii) If the r.v Y ∼ standard logistic distribution, then
X � (cot− 1(Y)/π)(1/α) ∼ logistic cotangent expo-
nentiated-G class of distributions.

(iii) If the r.v Y ∼ standard logistic distribution, then
X � (cot− 1(log Yα)/π) ∼ generalized logistic co-
tangent-G class of distributions.

(iv) If the r.v Y � (u1/α − 1) ∼ standard logistic distri-
bution, then X � (cot− 1(log Y)/π) ∼ generalized
logistic cotangent exponentiated-G class of
distributions.

5. LCW Distribution

In this section, a two-parameter special model logistic cot
Weibull (LCW) with its properties is presented.

5.1. Methodology. Taking G(x), as the cdf of Weibull dis-
tribution while g(x) as the corresponding density, it follows
the two-parameter LCWm we can write three of cdf, and its
corresponding pdf and associated with its hazard function,
as formulated below respectively, are:

F(x) � 1 + ecot π 1− e− λxα( )( ) 
− 1

, x> 0,

f(x) � πλαx
α− 1e− λxα

csc2 π 1 − e− λxα
  ecot π 1− e− λxα( )( ) 1 + ecot π 1− e− λxα( )( ) 

− 2
,

h(x) � πλαx
α− 1e− λxα

csc2 π 1 − e− λxα
   1 + ecot π 1− e− λxα( )( ) 

− 1
.

(49)

(e graphs represented in Figure 5 demonstrate the plots
of the LCW.

5.2. Reliability Functions. We have

S(x) � 1 − F(x) � 1 − 1 + ecot π 1− e− λxα( )( ) 
− 1

, x> 0.

h(x) � πλαx
α− 1e− λxα

csc2 π 1 − e− λxα
   1 + ecot π 1− e− λxα( )( ) 

− 1
,

r(x) �
πλαx

α− 1e− λxα
csc2 π 1 − e− λxα

  ecot π 1− e− λxα( )( ) 1 + ecot π 1− e− λxα( )( ) 
− 2

1 + ecot π 1− e− λxα( )( ) 
− 1 ,

H(x) � − ln[S(x)] � ln 1 − 1 + ecot π 1− e− λxα( )( ) 
− 1

 

− 1

,

m(x) �
1 − 1 + ecot π 1− e− λxα( )( ) 

− 1

πλαx
α− 1e− λxα

csc2 π 1 − e− λxα
  ecot π 1− e− λxα( )( ) 1 + ecot π 1− e− λxα( )( ) 

− 2.

(50)

5.3. Quantile Function. (is section is devoted to demon-
strate the quantile function equation of LCW which is

Q(u) � QG(v), (51)

where QG(v) � G− 1(v) is the parent qf and
v � [(− 1/λ)ln(1 + (1/π)cot− 1(ln((1 − u)/u)))]− α.
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5.4. Residual and Reverse Residual Life. (e residual life has
several uses in probability and statistics and risk assessment.
Suppose that X represents a unit’s lifespan and X≥ 0 with
P(X � 1); then, the r.v. Xt � (t − X|X≤ t), for a fixed t> 0,
is known as time since failure. (e residual lifetime of LCW
r.v. X is denoted by Rt(x) and is defined as

Rt(x) �
ecot π 1− e− λ(x+t)α( )( ) 1 + ecot π 1− e− λxα( )( ) 

ecot π 1− e− λxα( )( ) 1 + ecot π 1− e− λ(x+t)α( )( ) 

. (52)

Additionally, the reversed hazard rate function Rt(x) is
written as

Rt(x) �
ecot π 1− e− λ(x− t)α( )( ) 1 + ecot π 1− e− λxα( )( ) 

ecot π 1− e− λxα( )( ) 1 + ecot π 1− e− λ(x− t)α( )( ) 

. (53)

5.5. Stochastic Ordering. Stochastic ordering is a tool for
analysing the constitutional properties of stochastic struc-
tures that are intricate. (ere are several forms of stochastic
orderings that can be used to sort random variables
according to their distinguished properties. Suppose S and K

are independent random variables with cdfs F(S) and F(K),
respectively; then, S is said to be smaller than K iff it satisfies
the following.

(i) Stochastic order (S ≤ st (K)) if FS(S)≥FK(S) for all
S.

(ii) Hazard rate order (S ≤ hr (K)) if hs(S)≥ hK(S) for all
S.

(iii) Mean residual life order (S ≤ mrl (K)) if
ms(S)≥mk(S) for all S.

(iv) Likelihood ratio order (S ≤ lr (K)) if fX(S)/fy(S)

decrease in S.

(e LCW distribution (λ, α) is ordered according to the
strongest “likelihood ratio” ordering, as demonstrated in the
following theorem. (e versatility of two-parameter LCW
distribution (λ, α) is demonstrated. Let S follow LCW
(λ1, α1) and K follow LCW (λ2, α2). (en, the likelihood
ratio is

fS(S)

fK(S)
�
λ1α1π1 − 1/λ1log 1 − w1/π1( ( 

1− 1/α1

λ2α2π2 − 1/λ2log 1 − w2/π2( ( 
1− 1/α2

, (54)

where w1 � π1(1 − e− λ1Sα1 ) and w2 � π2(1 − e− λ2Sα2 ). Again,

d

dx
log

fS(S)

fK(S)
�

− α1 − α2(  log π1 e− λ1Sα1
 /π1  

− 1
log π2 e− λ2Sα2

 /π2  
− 1

α1α2π1 e− λ1Sα1
 π2 e− λ2Sα2

 
. (55)

If λ1 � λ2 � λ and α1 ≥ α2, then (d/ds)[(logfs(S)/
fK(S))]< 0, and hence S≤ lr(K), S≤ hr(S), S≤mrl(Y) and
S≤ st(K).

5.6. Stress-Strength Reliability. In this section, we will in-
troduce and define one of the most important properties of
any distribution which is the reliability function R; this
function may be represented as
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Figure 5: Graphical representation for the plots of the LCW: (a) density and (b) hazard rate for some parametric values.
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R � P(X>K) � 
∞

− ∞
F2(x)f1(x)dx. (56)

Suppose both X and K are LCW independent random
variables with parameters α1, λ1 and α2, λ2 and fixed scale
parameter σ. (en,

R � 
∞

0
π1λ1α1x

α1− 1e− λ1xα1 csc2 π1λ1α1x
α1− 1e− λ1xα1

 ecot π1 λ1α1xα1 − 1e− λ1xα1( )( )

1 + ecot π1 1− e− λ1xα1( )( ) 
− 2

1 + ecot π2 1− e− λ2xα2( )( ) 
− 1

dx.

(57)

After applying the binomial and exponent series ex-
pansion, then substituting u1 � π1λ1α1xα1− 1e− λ1xα1 and
u2 � π2λ2α2xα2− 1e− λ2xα2 , the above equation reduces to

R � 
∞

i�0


− 2

j�0

∞

0
π1λ

i+1
1 α1(− 1)

i
i!

(− 1)
− 2

j

⎛⎝ ⎞⎠
− 1
λ1
log 1 −

u1

π1
  

i

csc2 u1( e(j+1)cot u1( ) 1 + e(j+1)cot u1( ) 
− 1

du. (58)

Solving complicated integration is very hard but with the
aid of super computers and advanced mathematical soft-
ware, we easily find the value of the hard integral introduced
above (Table 2).

5.7. Submodels of LCW. 5.8. Estimation. One of the most
famous estimators is the maximum likelihood equation as

we can easily obtain and write the log-likelihood function
regarding the distribution’s parameters of the distribution
under consideration by getting the logarithms function for
the likelihood function Θ � (α, λ)⊤. So as a result, we may
formulate the log-likelihood function as follows:

ℓ � n log(αλπ) − (α − 1) 
n

i�1
log x − λ

n

i�1
x
α

+ 
n

i�1
log csc2 π 1 − e− λxα

   

+ 
n

i�1
cot π 1 − e− λxα

   − 2
n

i�1
log 1 + ecot π 1− e− λxα( )( ) .

(59)

Consider the following formulae to be the score vector's
components U(Θ), or in other words the derivative of the
vector with respect to the two parameters:

Uα �
n

α
+ 

n

i�1
log x − λ

n

i�1
x
αlog α − 2πλα



n

i�1
x

(α− 1)e− λxα
cot π 1 − e− λxα

  

+ πλα
n

i�1
x

(α− 1)e− λxα
csc2 π 1 − e− λxα

  

− 2πλα
n

i�1
x

(α− 1)e− λxα

csc2 π 1 − e− λxα
   ecot π 1− e− λxα( )( )  1 + ecot π 1− e− λxα( )( ) 

− 1
,

(60)

Uλ �
n

λ
− 

n

i�1
x
α

− 2πx
αe− λxα

+ πx
αe− λxα

csc2 π 1 − e− λxα
   − 2πx

αe− λxα

csc2 π 1 − e− λxα
  

ecot π 1− e− λxα( )( ) 1 + ecot π 1− e− λxα( )( ) 
− 1

.

(61)

(eMLEsmay be derived by putting the equations in the
previous sentence to zero and solving them concurrently
(see, for instance, [18]).

6. Results Deduced from the Simulation Work

In this phase of the study, we employed Monte Carlo
simulation to assess the distribution’s effectiveness all
across the estimation procedure. (e MLEs of the model
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Table 2: Submodels of LCW.

Serial No. α Submodel of LCW Remarks about model
1. 1 Logistic cot exponential (LCE) distribution New in literature
2. 2 Logistic cot Rayleigh (LCR) distribution New in literature

Table 3: MSEs, biases, lower bounds, and upper bounds.

Parameter n Biases MSEs Lower bounds Upper bounds
I

α

30 0.063 0.004 0.138 0.189
50 0.059 0.004 0.139 0.179
100 0.057 0.003 0.143 0.171
200 0.056 0.003 0.146 0.165
500 0.055 0.003 0.149 0.161
1000 0.055 0.003 0.151 0.159

λ

30 1.448 2.294 1.546 2.350
50 1.392 2.024 1.590 2.195
100 1.342 1.824 1.633 2.051
200 1.323 1.759 1.676 1.970
500 1.318 1.740 1.725 1.910
1000 1.316 1.733 1.750 1.881

II

α

30 0.320 0.111 0.690 0.950
50 0.296 0.092 0.698 0.895
100 0.282 0.081 0.714 0.850
200 0.280 0.079 0.732 0.828
500 0.276 0.076 0.746 0.806
1000 0.276 0.076 0.754 0.797

λ

30 1.467 2.364 1.559 2.374
50 1.394 2.021 1.590 2.198
100 1.335 1.804 1.627 2.043
200 1.327 1.771 1.680 1.974
500 1.319 1.743 1.726 1.911
1000 1.315 1.731 1.750 1.881

Table 4: Monte Carlo simulation results: biases, MSEs, lower bounds, and upper bounds.

Parameter n Biases MSEs Lower bounds Upper bounds
III

α

30 0.032 0.001 0.069 0.095
50 0.030 0.001 0.070 0.089
100 0.029 0.001 0.072 0.085
200 0.028 0.001 0.073 0.083
500 0.028 0.001 0.075 0.081
1000 0.027 0.001 0.075 0.080

λ

30 5.323 34.234 4.391 8.256
50 4.738 23.996 4.456 7.021
100 4.470 20.366 4.626 6.315
200 4.370 19.256 4.789 5.952
500 4.330 18.796 4.965 5.694
1000 4.316 18.654 5.060 5.573

IV

α

30 0.006 0.000 0.014 0.019
50 0.006 0.000 0.014 0.018
100 0.006 0.000 0.014 0.017
200 0.005 0.000 0.015 0.016
500 0.005 0.000 0.015 0.016
1000 0.005 0.000 0.015 0.016

λ

30 7.283 63.868 5.585 11.380
50 6.404 44.189 5.708 9.500
100 6.006 36.791 5.972 8.441
200 5.913 35.269 6.255 7.971
500 5.855 34.396 6.518 7.592
1000 5.847 34.245 6.668 7.426
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parameters of the LCW distribution are evaluated. For
each sample size n � 30, 50, 100, 200, 500, 1000, this
simulation study is repeated 1, 000 times. (e parametric
values are (I) α � 0.1, λ � 0.5, (II) α � 0.5, λ � 0.5, (III):
α � 0.05, λ � 1.0, and (IV) α � 0.01, λ � 1.2. (e outputs
related to the biases of the MLEs, mean square errors
(MSEs), lower bounds, and upper bounds are displayed
in Tables 3 and 4. As the sample size n increases, in
general, the biases, MSEs, L.bounds, and U.bounds of X

decrease while the CPs of the confidence intervals are
quite close to the 95% nominal levels which indicate that
the MLEs have good performance for estimating the
parameters of the LCW distribution; also, we will use the
conducted results to find the upper and lower bounds for
the estimates for the parameters of the model. Tables 3
and 4 contain a summary of all simulation outcomes.

7. Applications and Data Analysis

Two different applications to actual datasets were shown by
us in order to demonstrate the utility of the distribution that
was suggested (LCW). (e criteria of goodness of fit proved

that it can be used in place of famous two, three, and four-
parameter models and many others. All calculations are
performed using the R script Adequacy Model. Moreover,
the proposed LCW is compared with McDonald Weibull
(McW), Exponentiated Kumaraswamy Weibull (EKumW),
Burr Weibull (BurrW), Beta Weibull (BW), Gompertz
Weibull (GoW), Exponentiated OddWeibull (EOW), Topp-
Leone Weibull (TLW), Odd Log Logistic Weibull (OLLW),
Marshall Olkin Weibull (MOW), and many other Weibull
based models.

7.1. Application 1: Failure Time Data. (e first data corre-
spond to the failure time of 50 components (per 1000 h)
which were collected fromMurthy et al. [19].(e dataset can
be found easily in [19]. We avoid adding the data in the
paper as they can be easily accessed. We have provided some
statistics on the data used to make the reader comfortable in
reading the paper.(e summary statistics for this dataset are
as follows: n � 50, me di an � 1.4140, x � 3.3422, s � 4.18,
Q1 � 0.2075, Q3 � 4.4988, skewness� 1.38, and
kurtosis� 0.92.
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Figure 6: Histogram, TTT plot, box plot, and kernel density for failure time data.
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We can easily recognize that Figure 6 represents the
graphical representation of the histogram, TTT plot, box
plot, and kernel density for failure time data. Figure 7
represents the comparative cdf and pdf of LCW and
other models using failure time data.

Table 5 provides the MLEs of the parameters while Table 6
provides the values of AIC, CAIC, BIC, HQIC, A∗, W∗, K-S,
and P values for each model. On the basis of the statistics given
in these tables, the best fit model is LCW and has the potential
to fit right-skewed data with the increasing failure rate.

7.2. Application 2: Survival Time Data. (e upcoming data
are for the mortality periods, measured in weeks, of 33

individuals with acute myelogenous leukemia which were
used by Feigl and Zelen [20]. (e dataset is given below. 65,
156, 100, 134, 16, 108, 121, 4, 39, 143, 56, 26, 22, 1, 1, 5, 65, 56,
65, 17, 7, 16, 22, 3, 4, 2, 8, 4, 3, 30, 4, 43.

(e summary statistics for this data set are as follows:
n � 33, me di an � 22.00, x � 42.06, s � 46.94, Q1 � 4.0,
Q3 � 65.00, skewness� 1.07, and kurtosis� -0.16. Figure 8
represents the histogram, TTT plot, box plot, and kernel
density for survival time data. Figure 9 represents the
comparative cdf and pdf of LCW and other models using
survival time data.

Table 7 provides theMLEs of the parameters, and Table 8
contains the values of AIC, CAIC, BIC, HQIC, A∗, W∗, K-S,

Table 5: MLEs and their standard errors (in parentheses) for failure time data.

Distribution δ α β λ θ

LCW 0.5515 — 0.5669 — —
(0.0510) — (0.0342) — —

McW 1.7077 0.1098 1.1321 0.0829 5.2260
(0.0269) (0.0304) (0.0029) (0.0144) (1.6100)

EKumW 4.8184 7.9489 0.7365 0.0624 0.3578
(0.2392) (8.3781) (0.0001) (0.0279) (0.2505)

BurrW 0.2564 56.4086 0.1954 3.4080 —
(3.5884) (161.976) (2.0084) (35.0251) —

BW 7.8468 0.0996 0.5128 3.6685 —
(0.0298) (0.0158) (0.0249) (1.6635) —

GoW 0.5845 — 0.4439 1.0618 0.3756
(0.1166) — (17.7316) (42.4056) (15.0100)

EOW 1.3143 0.8260 0.0920 — 0.4360
(1.1942) (0.6978) (0.2778) — (0.2273)

TLW 0.8427 0.0707 0.4825 — 22.5648
(1.2441) (0.0979) (0.4253) — (35.2538)

OLLW 0.3300 0.5287 1.1378 — —
(0.1721) (0.1784) (0.3284) — —

MOW 0.3805 0.6038 0.7274 — —
(0.2614) (0.5527) (0.1395) — —

LW 0.8904 — 0.9336 0.9755 —
(1.5009) — (13.3937) (13.9952) —

W 0.5412 — 0.6612 — —
(0.0994) — (0.0747) — —

Table 6: ℓ, AIC, CAIC, BIC, HQIC, A∗, W∗, K-S, and P values for failure time data.

Distribution ℓ AIC CAIC BIC HQIC A∗ W∗ K-S P value
LCW 94.8185 193.6372 193.8925 197.4612 195.0934 0.2433 0.0329 0.0851 0.8316
McW 99.1402 208.2805 209.6441 217.8406 211.9210 0.5940 0.0821 0.1174 0.4604
EKumW 100.6444 211.2888 212.6525 220.8489 214.9294 0.9032 0.1458 0.1616 0.1312
BurrW 102.4136 212.8272 213.7161 220.4753 215.7396 0.9604 0.1533 0.1263 0.3706
BW 100.9767 209.9534 210.8423 217.6015 212.8659 0.8871 0.1433 0.1266 0.3684
GoW 101.9336 211.8671 212.7560 219.5152 214.7796 0.9046 0.1415 0.1374 0.2754
EOW 101.6597 211.3194 212.2083 218.9675 214.2318 0.8983 0.1278 0.1494 0.1934
TLW 101.7022 211.4044 212.2933 219.0525 214.3168 0.8963 0.1429 0.1187 0.4473
OLLW 101.0825 208.1650 208.6867 213.9010 210.3493 0.8184 0.1204 0.1491 0.1953
MOW 102.2050 210.4099 210.9317 216.1460 212.5942 0.9519 0.1526 0.1146 0.4917
LW 105.4720 216.9440 217.4658 222.6801 219.1284 1.3274 0.2137 0.1354 0.2907
W 102.3533 208.7066 208.9619 212.5306 210.1628 0.9537 0.1521 0.1269 0.3649

Journal of Mathematics 15



and P values for each model. On the basis of the statistics presented in these tables, the best fitted model is LCW and
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Figure 8: Histogram, TTT plot, box plot, and kernel density for survival time data.
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Figure 9: (e comparative cdf and pdf of LCW and other models using survival time data.

Table 7: MLEs and their standard errors (in parentheses) for survival time data.

Distribution δ α β λ θ

LCW 0.0845 — 0.6684 — —
(0.0201) — (0.0513) — —

McW 0.8656 0.3334 0.7401 0.0840 10.8047
(0.0025) (0.1019) (0.0024) (0.0160) (0.1870)

EKumW 1.3657 2.5405 0.6500 0.0827 0.9868
(0.0057) (0.1880) (0.0027) (0.0188) (0.2236)

BurrW 0.2303 26.5926 0.1917 4.1946 —
(5.4000) (66.0689) (3.0635) (67.0145) —

BW 1.5107 0.0866 0.6303 4.0026 —
(0.0058) (0.5643) (0.0022) (2.2471) —

GoW 0.7010 — 0.1105 0.5851 0.2048
(0.1759) — (3.2008) (16.9612) (5.9728)

EOW 0.4654 0.0916 6.6955 — 5.2082
(0.01367) (0.0164) (0.0037) — (0.0037)

TLW 0.0072 3.1717 0.9891 — 0.3050
(0.0083) (7.1664) (0.2090) — (0.4779)
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has the potential to fit right-skewed data with increasing
failure rate.

8. Concluding Remarks

A novel logistic-G family of distributions is developed,
which employs trigonometric and algebraic generalizers
based on cotangent functions. (is class has been shown to
be more adaptable and useful in a variety of practical ap-
plications, particularly survival, dependability, and failure
modelling. Furthermore, a two-parameter model (LCW)
with various density shapes, as well as hazard rate different
shapes, is developed. (is work also derives and presents
many statistical and mathematical properties of the pro-
posed family.

In parametric estimating, the maximum likelihood
method is used, and a Monte Carlo simulation analysis is
used to determine whether or not the estimates are suitable.
To ascertain which distribution is most suitable for mod-
elling the real datasets, we employ a number of goodness-of-
fit measures that decide which one is the superior one among
all its competitors. We show that, even with a higher number
of parameters, this suggested distribution consistently de-
livers superior fits than other existing and competing
Weibull models. We believe that the suggested class and
related models would find wider applicability in sectors such
as dependability and survival studies, hydrology, geology,
and others.

9. Future Work

In the upcoming work, we will apply the proposed distri-
bution and the new family of distribution to censored
sample scheme. We will try different kinds of censoring
schemes like type-I and type-II censored sample and we will
generate random censored samples from the new distri-
bution. We can extend our work to apply the proposed
model to accelerated life test with different types such as
constant and partially constant and maybe progressive stress
accelerated life tests. At last, we will use different optimality
criteria to the censored samples generated from the pro-
posed model.
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Table 7: Continued.

Distribution δ α β λ θ

OLLW 0.0090 0.5640 1.2916 — —
(0.0113) (0.1806) (0.3135) — —

MOW 0.0319 0.6025 0.8728 — —
(0.0439) (0.6717) (0.2050) — —

LW 0.7210 — 0.1109 9.8869 —
(1.7845) — (0.8397) (74.8148) —

W 0.0845 — 0.6684 — —
(0.0201) — (0.0513) — —

Table 8: ℓ, AIC, CAIC, BIC, HQIC, A∗, W∗, K-S, and P values for survival time data.

Distribution ℓ AIC CAIC BIC HQIC A∗ W∗ K-S P value
LCW 146.0607 296.1215 296.5353 299.5300 297.0932 0.2228 0.0304 0.0910 0.9534
McW 148.3388 306.6776 308.9853 314.0063 309.1069 0.4105 0.0600 0.1165 0.7776
EKumW 149.4336 308.8673 311.1750 316.1959 311.2965 0.4994 0.0736 0.1163 0.7790
BurrW 150.2305 308.4611 309.9425 314.3240 310.4045 0.5570 0.0796 0.1275 0.6752
BW 149.0827 306.1654 307.6469 312.0284 308.1088 0.4860 0.0736 0.1283 0.6676
GoW 149.8920 307.7839 309.2654 313.6468 309.7273 0.5504 0.0775 0.1255 0.6943
EOW 147.0092 302.0183 303.4998 307.8813 303.9617 0.3088 0.0436 0.0983 0.9163
TLW 149.9365 307.8730 309.3545 313.7360 309.8164 0.5342 0.0765 0.1242 0.7064
OLLW 149.4551 304.9103 305.7674 309.3075 306.3678 0.5393 0.0753 0.1251 0.6983
MOW 150.0520 306.1041 306.9612 310.5013 307.5616 0.5446 0.0785 0.1252 0.6974
LW 152.1233 310.2465 311.1037 314.6437 311.7041 0.7593 0.1183 0.1284 0.6667
W 150.1510 304.3020 304.7158 307.2335 305.2737 0.5522 0.0787 0.1272 0.6784
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