
Research Article
Influence of the Selection of Reaction Curve’s Representative
Points on the Accuracy of the Identified Fractional-Order Model

Juan J. Gude 1 and Pablo Garcı́a Bringas 2

1Department of Computing, Electronics and Communication Technologies, Faculty of Engineering, University of Deusto,
48007 Bilbao, Spain
2Department of Mechanics, Design and Industrial Management, Faculty of Engineering, University of Deusto,
48007 Bilbao, Spain

Correspondence should be addressed to Juan J. Gude; jgude@deusto.es

Received 15 February 2022; Accepted 29 April 2022; Published 3 June 2022

Academic Editor: Mohammad Alomari

Copyright © 2022 Juan J. Gude and Pablo Garcı́a Bringas. �is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

In this paper, a general procedure for identifying a fractional �rst-order plus dead-time (FFOPDT) model is presented. �is
procedure is based on �tting three arbitrary points on the process reaction curve, where process information is obtained from a
simple open-loop test. A simpli�cation of the general identi�cation procedure is also considered, where only points symmetrically
located on the reaction curve are selected. �e proposed symmetrical procedure has been applied to the following sets of
representative points: (5–50–95%), (10–50–90%), (15–50–85%), (20–50–80%), (25–50–75%), and (30–50–70%). Analytical ex-
pressions of the corresponding FFOPDTmodel parameters for these sets of symmetrical points have been obtained. In order to
show the e�ectiveness and applicability of this procedure for the identi�cation of fractional-order models and to get insight into
the in�uence of selection of the set of symmetrical points on the accuracy of the identi�ed model, some numerical examples are
proposed. �is identi�cation procedure gives good results in comparison with other integer- and fractional-order identi�cation
methods. Finally, some conclusions and �nal remarks are o�ered in this context.

1. Introduction

Although it might be possible to obtain a model of the
process analytically—a physical model—, it is more frequent
that the dynamic information of the process is obtained
through experimental tests—empirical model—from the
process reaction curve, the critical gain and the period of
oscillations of the control system at the limit of stability, or
by feedback with a relay [1].

From the controller point of view, the controlled process
includes the process itself, the �nal controlling element, and
the measuring instrument. In control studies and for the
design and tuning of the controller in a feedback control
loop, it is necessary to have information about the dynamic
behaviour of the controlled process, usually in the form of a
reduced-order mathematical model [2]. �e controlled
process model provides the dynamic information between

the controller and the measuring instrument output signals.
�is model should be simple, but, at the same time, it should
provide reliable information about the controlled process
behaviour at the operating point. �is information usually
includes gain, time constant (s), and apparent dead-time of
the controlled process.

In spite of all the considerable advances in process
control over the past several decades, it is common
knowledge that proportional integral derivative (PID)
controllers are widely and successfully used in industrial
control applications, having become an industrial standard
for process control [3]. It is acknowledged by the academic
and industrial community that the most widely used con-
trolled process models for this control algorithm are �rst-
order, dual-pole, and second-order plus dead-time (FOPDT,
DPPDT, SOPDT) ones; however, in some cases, these
models cannot represent the process dynamics with the
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required accuracy. +is was already suggested in, e.g., [4],
where it is indicated that it is necessary to have better in-
formation about the process to obtain optimal PID tuning
rules for lag-dominated processes.

Practical experience shows that controller tuning can be
generally accomplished with very little information about
the plant from the point of view of standard design tech-
niques. Experimental process model identification using an
open-loop step test is widely covered in the technical lit-
erature; see, e.g., the identification procedures described in
[5–8].

Some papers also reported identification algorithms
based on fitting several representative points in the process
transient response to a step change [9–11]. In the technical
literature, there are several two- or three-point identification
methods for FOPDT, DPPDT, and SOPDTmodels based on
information taken from the reaction curve.

In the case of two-point procedures, the following
methods and times can be considered: [12] (35–85%), [13]
(28.3–63.2%), or [14] (33–70%).

In the case of three-point methods, the following ref-
erences and corresponding times can be considered: [15]
(2–70–90%) and (5–70–90%), [16] (15–45–75%) by Stark,
and [17] (14–55–91%).

+e 123c identification method [11] uses the times sets
(25–75%) for FOPDT and DPPDT and (25–50–75%) for
SOPDTmodels, respectively. +is method has been recently
extended in [18] for the identification of repeated-pole plus
dead-time (RPPDT) model.

In the previously mentioned references, the location of
such points is diverse: in some cases, no explanation is given
for the selection; in others, significant points closely related
to model parameters are selected. In some methods, see, e.g.,
[11], these points are not arbitrarily fixed but have been
selected in order to optimize the identified model param-
eters. It is obvious that the accuracy of the identified model
depends on the selection of these points on the process
reaction curve, as will be discussed later.

Over the last decades, the emergence of fractional cal-
culus has made possible a great deal of academic and in-
dustrial effort focused on obtaining methods for more
accurate modelling and identification of real-world phe-
nomena; see, for example, [19–21]. +ere is a wide variety of
fractional-order modelling techniques based on the reaction
curve in the technical literature, the most common approach
being the one based on nonlinear optimization; see, for
example, [22–25]. In these methods, the fractional-order
model parameters are generally obtained by minimizing the
error between the process reaction curve and the fractional-
order model step response. +ese techniques require a
higher computational effort compared to existing analytical
methods, whose main characteristic is the simplicity of their
application. However, there are not many analytical tech-
niques for modelling fractional-order processes based on the
process reaction curve. In [26], some strategies have been
proposed in order to determine the parameters of a FFOPDT
model by making use of the step response data. It combines
numerical computation and graphical estimation. +is
reference can be considered as a pioneering work in the

fractional-order case. Integral-based estimating methods are
proposed in [27, 28], which are robust against the presence
of measurement noise. +ese last two methods can be
considered as an extension of the area methods existing in
the classical case [3].

Even though the fractional model has been proven
technologically superior, industrial adoption for fractional
approach requires more analysis [29].

In addition, recent surveys have outlined fractional-
order PID controllers as an emerging tool in the field of
process control, with the major reason for its success
being the intrinsic robustness they offer at a higher
degree of freedom to operate and tune the parameters
[30–33]. In this context, several recent applications of
this control algorithm can be considered in [34–37]. In
some of the existing methodologies of designing frac-
tional-order PID controllers, a simple model of the
process is utilized to tune the parameters of the intended
controller [38–43].

According to all the above, obtaining a simple-structure
fractional-order model for a process is of significant im-
portance and would be very useful in practically designing
integer- and fractional-order control systems. Since the
physical interpretation of a process step response is
straightforward and identification algorithms for integer-
order models based on fitting several representative points
on the process reaction curve are easy to apply, it can be
considered natural to extend such methods for the frac-
tional-order case. For that purpose, a general identification
procedure for FFOPDT models has been conducted in this
paper based on fitting three points in the transient process
response to a step input. In the same framework, a sim-
plification of the general identification procedure is pro-
posed, considering that the points are selected symmetrically
on the process reaction curve. Analytical expressions of the
corresponding FFOPDTmodel parameters for several sets of
symmetrical points are obtained in order to show the ap-
plicability of the proposed procedure and to get insight into
the influence of the set of symmetrical points on the accuracy
of the identified model.

+is paper is organized as follows: Section 2 is devoted to
present mathematical fundamentals and background. In
Section 3, a general procedure for identifying a FFOPDT
model from any three points on the process reaction curve is
presented. In Section 4, a simplification of the general
identification procedure is considered, where the points are
selected symmetrically on the process reaction curve. An-
alytical expressions of the corresponding FFOPDT model
parameters for several sets of symmetrical points are also
obtained in this section. Some examples are provided in
Section 5 to show the effectiveness and applicability of the
proposed procedure in obtaining identification methods for
determining FFOPDT model parameters in comparison
with other integer- and fractional-order identification
methods. Furthermore, results of several numerical simu-
lations are also illustrated in this section in order to get
insight into the influence of selection of the set of sym-
metrical points on the accuracy of the identified model.
Conclusions and final remarks are presented in Section 6.
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2. Theoretical Background

In this section, some basic concepts and definitions in
fractional calculus are briefly discussed.

Fractional calculus is a generalization of integration and
differentiation to noninteger fundamental operator aDα

t . +e
continuous integrodifferential operator is defined as

aD
α
t �

dα

dt
α, α> 0,

1, α � 0,


t

a
(dτ)

α
, α< 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where a and t are bounds of the operation and α ∈R.
+ere are several different definitions of fractional op-

erators [44]. One of the most used definitions of the frac-
tional integration is the Riemann–Liouville definition:

0I
α
t f(t) � 0D

−α
t f(t) �

1
Γ(α)


t

0
(t − τ)

α− 1
f(τ)dτ, (2)

where t≥ 0, α ∈R+, and Γ(·) is the Gamma function [44].
From relation (2), the Riemann–Liouville definition of

fractional derivative of the order α can be written in the
following form:

0D
α
t f(t) �

1
Γ(n − α)

d
n

dtn


t

0
(t − τ)

n− α− 1
f(τ)dτ, (3)

where n−1<α<n, n∈Z+. In definitions (2) and (3), the
subscripts 0 and t are the limits of operation and known as
the terminals of fractional integration and differentiation,
respectively. For the sake of simplicity, 0D

−α
t is denoted by

D− α and 0D
α
t by Dα.

+e Laplace transform of the Riemann–Liouville-based
fractional derivative is

L D
α
f(t)  � s

α
L f(t)  − 

n−1

k�0
s

k
D

α− k− 1
f(0), (4)

where n− 1≤ α< n, which for zero initial conditions is re-
duced to

L D
α
f(t)  � s

α
L f(t) . (5)

A general fractional-order system can be described by a
fractional differential equation of the form



n

k�0
akD

αk y(t) � 
m

k�0
bkD

βk u(t). (6)

+e corresponding fractional-order transfer function of
incommensurate real orders has the following form [44]:

G(s) �
Q s

βk 

P s
αk( 

�
bms

βm + bm−1s
βm−1 + · · · + b0s

β0

ans
αn + an−1s

αn−1 + · · · + a1s
α1 + a0s

α0 ,
(7)

where P(sαk) and Q(sβk) have no common zeros, ak
(k� 0,. . .,n) and bk(k� 0, . . ., m) are constants, and αk(k� 0,

. . ., n) and ßk(k� 0, . . ., m) are arbitrary real or rational
numbers and without loss of generality, they can be arranged
as αn> αn − 1> · · ·> α0, and βm> ßm − 1> · · ·> ß0.

+e strictly proper transfer function G(s) given by (7) is
BIBO stable if and only if P(s) has no root in {Re(s)≥ 0} [45].

In particular case, when there is a real number α as the
greatest common divisor of αk, k� 1, . . ., n, and ßk, k� 1, . . .,
m, it is called the commensurate order. It holds that αk � kα
and βk � kα, 0< α< 1, ∀k ϵZ, and incommensurate order
system (7) can also be rewritten in the commensurate form
as follows:

G(s) �
Q s

α
( 

P s
α

( 
�


m
k�0 bks

kα


n
k�0 aks

kα. (8)

It has been proven that the commensurate system G(s)
brought in (8) is BIBO stable if all the roots of polynomial
equation P(x)� 0, in which x� sα are positioned out of the
sector |arg(x)|≤ απ/2 [45].

Considering n>m, the function G(s) becomes a proper
rational function in the complex variable sα, and if it is
supposed that roots of P(x)� 0 are distinct, the partial
fraction expansion of transfer function (8) can be written in
the following general form:

G s
α

(  � 
n

i�1

ri

s
α

+ λi

, (9)

where λi, i� 1, . . ., n are the roots of P(x)� 0 and ri, i� 1, . . .,
n are the corresponding residues. Taking inverse Laplace
transform from (9) results in the impulse response of G(sα)
which is given in [44].

h(t) � L
− 1



n

i�1

ri

s
α

+ λi

⎧⎨

⎩

⎫⎬

⎭ � 

n

i�1
rit

α− 1
Eα,α −λit

α
( , (10)

where Eα,α(z) denotes the so-called two-parameter Mit-
tag–Leffler function, which for an arbitrary value z is defined
as

Eα,β(z) � 
∞

r�0

z
r

Γ(αr + β)
. (11)

Integrating the right-hand side of (10), the following step
response of the transfer function G(sα) is obtained:

g(t) � 
n

i�1
ri

Eα,1 −λit
α

(  − 1
λi

. (12)

Each component of the step response g(t) in (12)
converges to its final value in a similar way as function t–α
does, as has been shown in [41].

3. General Identification Method

A general identification procedure for identifying a frac-
tional-order model from the process reaction curve is
presented in this section.

+e controlled processes considered have an S-shaped
step response, and they can be well characterized by a

Journal of Mathematics 3



FFOPDT model, for which the differential equation can be
expressed as

T · D
α
y(t) + y(t) � K · u(t − L), (13)

where initial conditions are generally taken as zero to obtain
the standard FFOPDT transfer function model:

P(s) �
Ke

− Ls

1 + Ts
α, (14)

where K is the process gain, T> 0 is the apparent time
constant, L≥ 0 is the apparent dead-time, and α is the
fractional order of the model.

+e set of parameters

θP � K, T, L, α{ }, (15)

represents the FFOPDT model parameters, which will be
identified in this paper using information taken from the
process reaction curve.

+e standard FOPDT

P(s) �
Ke

− Ls

1 + Ts
, (16)

can be considered as a particular case of the FFOPDTmodel
(14) with α� 1. +e step responses of FFOPDT models for
increasing values of α, from α� 0.2 to 1.8, are shown in
Figure 1. +e step response of the considered system for
α� 1 is represented in the dashed line.

FOPDTmodel (16) has been broadly used in practice to
capture the essential dynamic response of industrial pro-
cesses for the purpose of control design [3]. In this paper, the
set of parameters in (15) characterize the dynamic behaviour
of the considered controlled process. +e FFOPDT model
(14) can be considered as a generalization of the classical
FOPDT, and the relevance of this generalization has great
implications in both the identification of dynamic processes
as well as in the controller parameter design of dynamic
feedback loops [46].

It is also useful to consider a few parameters to char-
acterize process dynamics. Tar is the average residence time,
which can be defined in the context of a fractional-order
model as

Tar _�

∞
0 tg(t)dt


∞
0 g(t)dt

� L + T
1/α

, (17)

where g(t) is the impulse response of the system.+e average
residence time is essentially a rough measure of how long it
takes the input to have a significant influence on the output.

In the same context, the normalized dead-time τ, which
has the property 0≤ τ ≤1, can also be extended for a
FFOPDT model as

τ _�
L

Tar

�
L

L + T
1/α. (18)

+is parameter can be used to characterize the difficulty
of controlling a process. Roughly speaking, processes with
small τ are easy to control, and the difficulty in controlling
the system increases as τ increases. For the particular case
α� 1, Tar and τ parameters correspond to their standard
definition for a FOPDT model [3].

Although the step response of the considered fractional
model can conveniently describe both monotonic or non-
monotonic behaviours depending on the fractional-order α,
this identification procedure is only applied to a process
having an S-shaped step response, since systems with es-
sentially monotone step responses are very common in
process control [3]. Furthermore, it is suggested in [4] that
the class of processes where PID is suitable can be char-
acterized as having essentially monotone step responses.
One way to characterize such processes is to introduce the
monotonicity index:

αm _�

∞
0 g(t)dt


∞
0 |g(t)|dt

, (19)

where g(t) is the impulse response of the system. Systems
with α� 1 have monotone step responses, and systems with
α> 0.8 are considered essentially monotone.

Figure 2 shows the normalized step responses of
FFOPDT model (14) for different values of the fractional-
order α and different values of the normalized dead-time τ.
Notice that all curves intersect at one point t�Tar because of
the normalization.

3.1.Model IdentificationUsing theControlledProcessReaction
Curve. A step signal u(t) with amplitude Δu will be con-
sidered as input and a signal yα(t) with an amplitude Δy as
the response of the system, as shown in Figure 3. FFOPDT
model (14) response to a ∆u step input change is

yα(t) �

0, 0 ≤ t<L,

K 1 − Eα,1 −
1
T

(t − L)
α

  Δu, t≥ L,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(20)
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Figure 1: Step responses of the considered fractional-order system
with α ∈ [0.2, 1.8]. +e step response for α� 1 is in the red dashed
line.
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where Eα,β is the two-parameter Mittag–Leffler function
defined in (11).

From process reaction curve (20), the gain is given by

K �
Δy
Δu

, (21)

where ∆u is the amplitude of the input signal and ∆y is the
total process output change, as shown in Figure 3.

+e process output yα(t) can be normalized to its final
value ∆y�K·∆u and using the shifted and normalized time
τ � (1/T)(t − L)α, and equation (20) is reduced to the
following expression:

yα(τ) � 1 − Eα,1(−τ), τ ≥ 0. (22)

If yα(τ) is the normalized process output, τx is the
normalized time required to reach some specific output
normalized value yα(τx) which is between 0 and 1, or 0%
and 100% of the process output total change. +e value of τx
can be easily obtained using (22).
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α = 1
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Figure 2: Normalized step responses yα/K of FFOPDTmodel (14) for different values of the fractional-order α and different values of the
normalized dead-time τ. +e normalized dead-times are τ � 0 (red), 0.25, 0.5, 0.75, and 1 (blue). Notice that time is normalized with respect
to the average residence time Tar.
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Figure 3: Step-input signal and arbitrary representative points on
the process reaction curve.
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Correspondingly, the time tx required for the process
output to reach x% of the process output total change is

tx � L + τxT( 
1/α

. (23)

As the remaining FFOPDT model parameters {T, L, α}
must be obtained, it is necessary to determine the times {tx1,
tx2, tx3} to reach three points {yα(tx1), yα(tx2), yα(tx3)} on the
process reaction curve. Considering equation (23), the
following equations set is defined:

tx1 � L + τx1T( 
1/α

,

tx2 � L + τx2T( 
1/α

,

tx3 � L + τx3T( 
1/α

.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(24)

+e so-called ratio index Δ in [18] can be adapted to this
fractional framework accordingly and can be used to de-
termine the fractional order α:

Δ _�
tx3 − tx1

tx2 − tx1
�
τ1/αx3 − τ1/αx1

τ1/αx2 − τ1/αx1
, (25)

where τx1, τx2, and τx3 are normalized times and can be
obtained using equation (22). Equation (25) can be
expressed as a function relating the fractional order α and
ratio index ∆, where α� f1(Δ).

+e time-based parameters {T, L} can be solved from
(24) by considering two points, {y α(tx1), tx1)}and {yα(tx3),
tx3)}, on the process reaction curve, for which the equivalent
normalized points are {~yα(τx1), τx1} and {~yα(τx3), τx3}. +en,
the expressions for these parameters are

T � a
α

tx3 − tx1( 
α
, (26)

L � tx3 − τ1/αx3 T
1/α

, (27)

where

a �
1

τ1/αx3 − τ1/αx1
. (28)

To conclude, the set of equations in (29) comprises the
general expressions for determining the parameters of the
FFOPDT model, θP � {K, T, L, α}, using the times required
for the response to reach any three points on the reaction
curve.

K �
Δy
Δu

,

α � f1(Δ),

T � f2(α) tx3 − tx1( 
α
,

L � max tx3 − f3(α)T
1/α

, 0 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

where f1 depends on ∆, which is defined as a function of the
generic three points in (25), f2(α)� aα and f3(α)� τx31/α are
functions that depend on the normalized times τx1 and τx3,
and τx3, respectively, and a parameter is defined in (28).

time [s]

va
ria

bl
es

 [%
]

tx t50 t100-x

Δu

Δyu (t)

0

(100-x)

50

x

100
yα (t)

yα (t100-x)

yα (t50)

yα (tx)

Figure 4: Step input signal and symmetrical representative points
on the process reaction curve.

Table 1: Numeric values of normalized times τ5, τ50, and τ95 for
different values of α.

α τ5 (s) τ50 (s) τ95 (s)
0.50 0.0021 0.5916 126.3400
0.55 0.0040 0.5990 69.3350
0.60 0.0060 0.6058 41.4000
0.65 0.0090 0.6150 26.3090
0.70 0.0130 0.6231 17.5400
0.75 0.0172 0.6340 12.1030
0.80 0.0225 0.6435 8.6100
0.85 0.0286 0.6560 6.2560
0.90 0.0355 0.6670 4.6920
0.95 0.0430 0.6810 3.6640
1.00 0.0513 0.6932 2.9980
1.05 0.0603 0.7080 2.5600
1.10 0.0699 0.7220 2.2633

Table 2: Numeric values of normalized times τ10, τ50, and τ90 for
different values of α.

α τ10 (s) τ50 (s) τ90 (s)
0.50 0.0093 0.5916 30.8550
0.55 0.0142 0.5990 19.7430
0.60 0.0203 0.6058 13.4810
0.65 0.0276 0.6150 9.6760
0.70 0.0359 0.6231 7.2250
0.75 0.0453 0.6340 5.5750
0.80 0.0558 0.6435 4.4280
0.85 0.0670 0.6560 3.6140
0.90 0.0791 0.6670 3.0310
0.95 0.0919 0.6810 2.6100
1.00 0.1059 0.6932 2.3040
1.05 0.1195 0.7080 2.0810
1.10 0.1350 0.7220 1.9150
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Notice in (29) how the values of T and L have a high de-
pendence on the value of α, which has a significant influence
on the shape of the response. +is fact emphasizes the
importance of determining the value of α parameter accu-
rately, as will be discussed later.

In (29), α> 0 and T> 0 are fulfilled in a natural way, since
τx1< τx2< τx3 and tx1< tx2< tx3. Another condition that must
be fulfilled in order to meet L≥ 0 is

tx3 ≥ τx3T( 
1/α

. (30)

4. Symmetrical Method

In the general development of the identification procedure
presented in the previous section, it has been assumed that
the required three points on the reaction curve could be any
value. In this section, a simplification of the general method
in which these points can be arbitrarily selected but located
symmetrically on the response curve is presented.

Note that, as depicted in Figure 4, the central point will
be located in the middle of the range and will correspond to
the time needed to reach 50% of the process output total
change on the reaction curve yα(t50) (tx2 � t50). +e
remaining points could be located arbitrarily but symmet-
rically placed with respect to the central point. One of the
symmetrical points will be denoted as x, the other being 100‒
x. +is means that the times to be determined will now be
tx1 � tx and tx3 � t100‒x, where tx and t100‒x denote the time
needed to reach x% and (100‒x)% of the process output total
change, respectively, where 0< x< 50.

Adapting equations (29) with these symmetry consid-
erations, the following expressions are obtained:

K �
Δy
Δu

,

α � f1(Δ),

T � f2(α) t100− x(  − tx 
α
,

L � max t100−x(  − f3(α)T
1/α

, 0 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

where f1 is the function that relates fractional order α with
the times ratio ∆.

Table 3: Numeric values of normalized times τ15, τ50, and τ85 for
different values of α.

α τ15 (s) τ50 (s) τ85 (s)
0.50 0.0229 0.5916 13.2100
0.55 0.0321 0.5990 9.3140
0.60 0.0428 0.6058 6.9304
0.65 0.0546 0.6150 5.3770
0.70 0.0677 0.6231 4.3117
0.75 0.0817 0.6340 3.5590
0.80 0.0966 0.6435 3.0097
0.85 0.1122 0.6560 2.6050
0.90 0.1285 0.6670 2.3004
0.95 0.1452 0.6810 2.0730
1.00 0.1626 0.6932 1.8973
1.05 0.1802 0.7080 1.7660
1.10 0.1984 0.7220 1.6626

Table 4: Numeric values of normalized times τ20, τ50, and τ80 for
different values of α.

α τ20 (s) τ50 (s) τ80 (s)
0.50 0.0450 0.5916 7.0390
0.55 0.0588 0.5990 5.3510
0.60 0.0750 0.6058 4.2490
0.65 0.0907 0.6150 3.4920
0.70 0.1082 0.6231 2.9493
0.75 0.1261 0.6340 2.5520
0.80 0.1448 0.6435 2.2526
0.85 0.1639 0.6560 2.0260
0.90 0.1834 0.6670 1.8501
0.95 0.2031 0.6810 1.7160
1.00 0.2232 0.6932 1.6096
1.05 0.2434 0.7080 1.5290
1.10 0.2639 0.7220 1.4642

Table 5: Numeric values of normalized times τ25, τ50, and τ75 for
different values of α.

α τ25 (s) τ50 (s) τ75 (s)
0.50 0.0780 0.5916 4.2100
0.55 0.0965 0.5990 3.4020
0.60 0.1170 0.6058 2.8480
0.65 0.1370 0.6150 2.4510
0.70 0.1590 0.6231 2.1580
0.75 0.1793 0.6340 1.9370
0.80 0.2021 0.6435 1.7662
0.85 0.2224 0.6560 1.6350
0.90 0.2450 0.6670 1.5310
0.95 0.2659 0.6810 1.4510
1.00 0.2880 0.6932 1.3870
1.05 0.3095 0.7080 1.3380
1.10 0.3314 0.7220 1.3000

Table 6: Numeric values of normalized times τ30, τ50, and τ70 for
different values of α.

α τ30 (s) τ50 (s) τ70 (s)
0.50 0.1242 0.5916 2.6917
0.55 0.1478 0.5990 2.2940
0.60 0.1716 0.6058 2.0079
0.65 0.1952 0.6150 1.7980
0.70 0.2188 0.6231 1.6376
0.75 0.2422 0.6340 1.5160
0.80 0.2655 0.6435 1.4191
0.85 0.2884 0.6560 1.3450
0.90 0.3114 0.6670 1.2854
0.95 0.3341 0.6810 1.2410
1.00 0.3567 0.6932 1.2041
1.05 0.3792 0.7080 1.1780
1.10 0.4016 0.7220 1.1568
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In addition, Δ is defined as a function of the symmetrical
three-points as

Δ _�
t100−x(  − tx

t50 − tx

�
τ100− x( 

1/α
− τx( 

1/α

τ50( 
1/α

− τx( 
1/α , (32)

and it depends on the normalized times τx, τ50, and τ100‒x.
f2(α)� aα, where

a �
1

τ100− x( 
1/α

− τx( 
1/α, (33)

and f3 (α) � (τ100‒x)1/α are functions that depend on the
normalized times τx and τ100‒x, and τ100‒x, respectively.

In this paper, the following sets of symmetrical points
will be considered: (5–50–95%), (10–50–90%), (15–50–85%),
(20–50–80%), (25–50–75%), and (30–50–70%), which cor-
respond to the following values of x� 5, 10, 15, 20, 25, and
30, respectively. +e objective is to get insight into the in-
fluence of the selection of representative points on the ac-
curacy of the obtained fractional-order model, as has been
mentioned previously.

Tables 1–6 contain the values of the normalized times τx,
τ50, and τ100‒x, for values of x� 5, 10, 15, 20, 25, and 30,
respectively.

Hereafter, considering values of the corresponding
normalized times, data sets {Δ, α}, {α, aα}, and {α, (τ100‒x)
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Figure 5: Data sets {Δ, α}, where Δ is defined in (32) and x� 5, 10, 15, 20, 25, and 30, and results of curve fitting for f1 (∆).

Table 7: Parameters {pi, qi} of the rational function f1(Δ) for the different sets of symmetrical points.

5–50–95% 10–50–90% 15–50–85% 20–50–80% 25–50–75% 30–50–70%
p1 � 0.5786 p1 � 0.4882 p1 � 0.4767 p1 � 0.4613 p1 � 0.4424 p1 � 0.4174
p2 � 93.2 p2 �109.6 p2 � 38.15 p2 �17.04 p2 � 8.106 p2 � 3.942
p3 �133.9 p3 � 201.7 p3 � 24.63 p3 � −0.0419 p3 � −3.652 p3 � −3.208
q1 � 114.3 q1 � 152.6 q1 � 52.91 q1 � 23.18 q1 � 10.40 q1 � 4.384
q2 � 26.59 q2 � 30.39 q2 � −29.59 q2 � −22.93 q2 � −14.00 q2 � −8.02
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1/α} are obtained for each one of the considered sets of
symmetrical points. From these data, the analytical ex-
pressions for f1(Δ), f2(α), and f3(α) are estimated using
curve fitting. Finally, fractional-order model parameters
{T, L, α} can be determined from expressions (31) and
experimental values tx, t50, and t100‒x collected from the
reaction curve.
Δ values for different values of α, 0.5≤ α≤1.1, have been

obtained in Figure 5, according to expression (32) and using
the normalized times τx, τ50, and τ100‒x, for x� 5, 10, 15, 20,

25, and 30, obtained from Tables 1–6. Note that Δ index
represents the ratio between the time difference in reaching
from x to (100‒x)% and from x to 50% of the total variation
of the process output, as indicated in (32).

+e data set {Δ, α} allows establishing a relationship be-
tween α and Δ in the form of an analytic function, α� f1 (Δ).

Figure 5 shows the data sets {∆, α} obtained from
equation (32) for different values of α, where 0.5≤ α≤1.1,
and their corresponding results of least-squares curve fitting
for the different sets of symmetrical points. Note that Δ
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Figure 6: Data sets {α, aα}, where a is defined in (33) and x� 5, 10, 15, 20, 25, and 30, and results of curve fitting for f2(α).

Table 8: Parameters {pi, qi} of the rational function f2(α) for the different sets of symmetrical points.

5–50–95% 10–50–90% 15–50–85% 20–50–80% 25–50–75% 30–50–70%
p1 � 0.06589 p1 � 0.2417 p1 � 0.9406 p1 � 9746 p1 � 1.715·104 p1 � 3.691·104

p2 � −0.03054 p2 � −0.0986 p2 � −0.3488 p2 � −3199 p2 � −3675 p2 � −426.5
q1 � −2.23 q1 � −2.338 q1 � −2.722 q1 � −5405 q1 � −1.074·104 q1 � −3.276·104

q2 �1.333 q2 �1.651 q2 � 2.745 q2 �1.445·104 q2 � 2.544·104 q2 � 6.349·104
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depends on normalized times {τx, τ50, and τ100‒x}, as in-
dicated in (32), and has a strong dependence on α parameter.

Data is fitted using the Levenberg–Marquardt least-
squares curve-fitting algorithm in all graphs in Figure 5, and
the following rational function is considered in all cases:

α � f1(Δ) �
p1Δ

2
+ p2Δ + p3

Δ2 + q1Δ + q2
, (34)

where Table 7 shows the values of the parameters {pi, qi} for
function f1(Δ) and each one of the selected sets of sym-
metrical points.

It is important to note that for increasing values of x, Δ
range becomes shorter. f1(Δ) is a nonlinear function whose
slope is steeper for increasing values of x, indicating that the
sensitivity is greater.

Figure 6 shows the data sets {α, aα}, where a parameter is
obtained from equation (33), for different values of α,
0.5≤ α≤1.1, and their corresponding results of least-squares
curve fitting for the different sets of symmetrical points. Note
that f2(α)� aα depends on α and normalized times τx and τ100‒x.

In Figure 6, it can be seen that the amplitude of f2 in-
creases for increasing values of x. On the other hand, for
decreasing values of x, function f2 presents a more pro-
nounced curvature for small values of α.

Data is fitted using the Levenberg–Marquardt least-
squares curve-fitting algorithm in all graphs in Figure 6, and
the following rational function is used in all cases:

f2(α) �
p1α + p2

α2 + q1α + q2
, (35)

where the values of the parameters {pi, qi} for function f2(α)
and each one of the selected sets of symmetrical points are
shown in Table 8.

Figure 7 shows data sets {α, (τ100−x)1/α}, where nor-
malized times τ100‒x can be obtained from Tables 1−6, for
different values of α, 0.5≤ α≤1.1, and their corresponding
results of least-squares curve fitting for the different sets of
symmetrical points. Note that f3(α)� (τ100−x)1/α depends on
α and normalized time τ100‒x. +e range of amplitudes in f3
is reduced for increasing values of x, as can be shown in
Figure 7. Data is fitted using the Levenberg–Marquardt least-
squares curve-fitting algorithm in all graphs in Figure 7, and
the following rational function is used for all cases:

f3(α) �
p1α

2
+ p2α + p3

α2 + q1α + q2
, (36)

where the values of the parameters {pi, qi} for function f3(α)
and each one of the selected sets of symmetrical points are
shown in Table 9.

It is important to emphasize that estimated values of α, T,
and L obtained from expressions (31) depend on functions
f1(Δ), f2(α), and f3(α). +us, these functions play a significant
role in the process identification procedure as the features of
normalized step responses (22) can be well characterized due
to their contribution. Note that, for any different choice of
times set {tx1, tx2, tx3} to reach three points {yα(tx1), yα(tx2),
and yα(tx3)} on the reaction curve, the accuracy of the

identification results only depends upon the fitting precision.
In this context, an accurate determination of α-value is of
primary importance since, subsequently, functions f2 and
f3—and thereforeTand L—depend on the estimated value of α.

In the curve-fitting process, it has been found that, in
general, functions f1(Δ), f2(α), and f3(α) for low values of x
require more parameters than those with higher x values to
be able to fit the data with the rational function. Although
some of the data sets could have been adjusted with fewer
parameters, for each function (f1(Δ), f2(α), and f3(α)), the
same expressions with the same number of parameters have
been used for curve fitting, respectively. In this manner,
comparison of estimated values of α, T, and L, which directly
depend on functions f1, f2, and f3 for different sets of
symmetrical points, can be made in the same conditions. In
this section, it has been verified that rational expressions
used fit well data sets in Figures 5–7.

Remark 1. Expressions (34)–(36), with parameters in
Tables 7–9, for functions f1, f2, and f3 have been obtained for
0.5≤ α≤1.1. +is range includes the dynamics for the majority
of the representative processes encountered in process control,
which can be characterized as having essentiallymonotone step
responses; see, for example, the test batch considered in [4]. For
values of α outside this range, the considered curve fittings are
not valid. A significant fact observed is that the step response of
a FFOPDTsystem for α values less than 0.5 becomes extremely
slow, as can be seen in Figure 1. Note that values of the
normalized time τ100‒x increase as α decreases, especially in a
very significant way for small values of x.

Although the step response of a FFOPDT model is
overdamped only for α values between 0 and 1, the value 1.1
has also been included since it has been observed in nu-
merous experiments that for some processes, generally lag-
dominated, with high-order integer-order transfer func-
tions, values of α are slightly greater than 1. In this way, a
better fit of the transient response of the model is obtained in
relation to the reaction curve of the process. Specifically, the
behavior of the step response of a FFOPDT system when
α� 1.1 can be observed in Figure 2.

4.1. Algorithm for Determining FFOPDT Model Parameters.
To facilitate software implementation of the proposed
identification method, an algorithm is developed in Table 10.
In this method, the variation in input signal Δu and process
output Δy and times necessary to reach x% (tx), 50% (t50),
and (100‒x)% (t100‒x) of the total change of the process
output on the reaction curve must be collected in order to
determine FFOPDT model parameters θP � {K, T, L, α}.

5. Illustrative Examples

In this section, the proposed identification method for
FFOPDT models was tested for several sets of symmetrical
points on the reaction curve and compared with other
identification methods for integer- and fractional-order
models.
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+e following process models were selected in order to
show the effectiveness of the proposed procedure in finding
an approximated four-parameter model (14) and to get
insight into the influence of the selected set of symmetrical
points on the accuracy of the identified model:

P1,i(s) �
K1

1 + T1s
λi 

2e
− L1s

, (37)

P2(s) �
K2

1 + T2s
λ2 

n. (38)

On the one hand, processes P1,i are used to compare the
proposed identification procedure for several symmetrical
points with some two- and three-point identification
methods for FOPDT, DPPDT, and SOPDT models and to
get insight into the influence of the location of symmetrical
points on the accuracy of the fractional-order identified
model.

On the other hand, process P2 is used to compare the
model performance of the method proposed in this paper
with other integer- and fractional-order methods.

A step-change input signal was applied to these processes in
order to register the process reaction curve. +e output
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Figure 7: Data sets {α, (τ100‒x)1/α}, where x� 5, 10, 15, 20, 25, and 30, and curve fitting for f3(α).

Table 9: Parameters {pi, qi} of the rational function f3(α) for the different sets of symmetrical points.

5–50–95% 10–50–90% 15–50–85% 20–50–80% 25–50–75% 30–50–70%
p1 � 5.492 p1 � 3.351 p1 � 1.7 p1 � 1.302 p1 � 1.243 p1 � 1.315
p2 � −11.05 p2 � −6.134 p2 � −2.584 p2 � −1.629 p2 � −1.368 p2 � −1.306
p3 � 6.092 p3 � 3.36 p3 �1.42 p3 � 0.846 p3 � 0.666 p3 � 0.6238
q1 � −1.154 q1 � −0.9959 q1 � −0.9406 q1 � −0.8693 q1 � −0.7536 q1 � −0.5318
q2 � 0.3351 q2 � 0.2491 q2 � 0.2235 q2 � 0.1919 q2 � 0.1433 q2 � 0.05728
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responses of the processes were then used to calculate the
parameters of the corresponding models. Note that the sample
period used in all the experiments was set to TS� 10ms.

Given the experimental data from an identification test,
it is necessary to verify the effectiveness of the model
structure adopted for fitting and the accuracy of the cor-
responding model parameters. A number of fitting objective
functions and model validation methods using a step ex-
citation signal for system identification have been presented
in the literature [8].

Without loss of generality, the following time-domain
fitting criterion was used to evaluate the performance of the
model identification:

S(θ) �
1

Ns



Ns

k�1
e kTs, θ  

2
�

1
Ns



Ns

k�1
y kTs(  − ym kTs, θ  

2
,

(39)

where θ is the vector of process model parameters, e(kTs, θ)

is the open-loop step response difference between the actual
process and the identified process model output signal,
y(kTs) and ym(kTs, θ), respectively, TS is the sampling
period, and NSTS is the time length of the dynamic (tran-
sient) response. Although in the context of a step response
test, NSTS may be taken as the settling time that is usually
defined as the time to move into an error band of 2% or 5%
with respect to the final steady-state output deviation in
response to a step change, the upper limit of the time interval
is the instant in which the response has reached its final
value.

+is time-domain criterion is the Mean Squared Error
(MSE) and gives a measure of the average of the squares of
errors. How accurately a model reproduces the process
reaction curve is evaluated with this index.

In this context, a relative performance index is more
important than their absolute values since the goodness of an
identification method with respect to another can be
quantified.

In this paper, the following relative performance index is
used:

Sx,y θx, θy  �
Sx θx 

Sy θy 
, (40)

where Sx(θx) and Sy(θy) are the MSE values in (39) and θx

and θy are the vectors of process model parameters for x and
y models, respectively.

+e simulation of these illustrative examples has been
implemented using MATLAB and FOTF (Fractional Order
Transfer Function) toolbox. FOTF is a control toolbox for
fractional-order systems developed by Xue et al. [47] which
extends many MATLAB built-in functions to deal with
fractional-order models. +e reference text for the FOTF
toolbox is [48], where the author explains thoroughly all its
commands and applications.

5.1. Example 1. +e fractional-order process model (37),
where K1 � 1, T1 � 1 s, L1 � 0.1 s, and λi � 0.60, 0.65, . . ., 1.00,
is considered in this example. Model (37) is a fractional
second-order process with dead time (FSOPDT) to provide
some modelling error or deviation from FFOPDTdynamics,
which is the model structure selected in the proposed
identification method.

+e procedure that has been followed with this example
is as follows:

(1) Nine process plants P1,i, where i� 1, . . ., 9, and
λi � 0.60, 0.65, . . ., 1.00, are considered.

(2) +e FFOPDTmodel parameters θij for each process
P1,i are obtained using the proposed identification
method for each of the sets of points. θij is expressed
as follows:

Table 10: Algorithm for determining FFOPDTmodel parameters
θP � {K, T, L, α} when three symmetrical points {tx, t50, t100‒x} on the
reaction curve are specified.

Algorithm: identification method for three symmetrical points
Input: {tx, t50 and t100‒x}, Δy, and Δu from the process reaction
curve
Output: FFOPDT model parameters θP � {K, T, L, α}
1: Calculate the process gain K using (21).
2: Collect tx, t50, and t100‒x from the process reaction curve.
3: Calculate the value of Δ using equation (32).
4: Calculate the value of α� f1(Δ) using equation (34).
5: Calculate the value of functions f2(α) and f3(α) using equations
(35) and (36), respectively.
6: Determine the value of T�f2(α)·(t100‒x – tx)α.
7: Determine the value of L� t100‒x – f3(α)·T1/α.

Table 11: Set of process fractional orders, sampling periods,
number of samples, and time length used in FFOPDT step re-
sponses for processes P1,i (i� 1, . . ., 9).

i λi TS (s) NS NSTS (s)
1 0.60 0.01 58278 582.77
2 0.65 0.01 29312 293.12
3 0.70 0.01 15816 158.15
4 0.75 0.01 8960 89.59
5 0.80 0.01 5224 52.23
6 0.85 0.01 3067 30.66
7 0.90 0.01 1760 17.60
8 0.95 0.01 965 9.64
9 1.00 0.01 594 5.93

Table 12: Set of symmetrical points used for FFOPDT model
identification.

j Method# Set of points
1 1 5–50–95%
2 2 10–50–90%
3 3 15–50–85%
4 4 20–50–80%
5 5 25–50–75%
6 6 30–50–70%
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θij � Kij, Tij, Lij, αij , (41)

where i� 1, . . ., 9 represents the value of λi process
parameter, as indicated in Table 11, and j� 1, . . ., 6
represents the identification method employed, as
indicated in Table 12. In short, a set of 54 process
model parameters is obtained.

(3) +e step responses for each of the 54 models are
obtained, and their respective values of the model
performance index S(θij) are determined.

+is batch of processes is used, on the one hand, to
validate the proposed identification method for the different
sets of symmetrical points and, on the other hand, to get
insight into the influence of the selection of representative
points on the accuracy of the obtained fractional-order
model.

Note that Table 11 contains sampling period, number of
samples, and time length that have been considered in step
responses for each of the processes. Table 12 lists the set of
points considered for the identification of the FFOPDT
models. Figure 8 illustrates the values of the model per-
formance index S(θij) that have been obtained with the
proposed procedure for each process (i� 1, . . ., 9) and using
the different methods (j� 1, . . ., 6).

Note that the values S(θij) in Figure 8 decrease sub-
stantially when they move from method #6 to #1. +is be-
havior occurs for all the processes considered, except for
those where λi is close to 1, that is, when the process ap-
proaches one of the integer order.+is behaviour has already
been observed in the technical literature. +e 123c method
[11] uses time sets (25–75%) to identify FOPDTand DPPDT
models and (25–50–75%) for SOPDTmodels. In [18], points
(25–50–75%) are proposed to identify RPPDT models. In
these two papers, these points have not been chosen arbi-
trarily but rather those that optimize the identified model
parameters have been selected, i.e., FOPDT, DPPDT,
SOPDT, and RPPDT models, respectively. In Figure 8, the
lowest value of S(θij) for P1,9, which is an integer-order
model, corresponds to method #5 (25–50–75%).

Figure 8 also shows that the proposed identification
method gives good fit between the corresponding identified
models and the actual process reaction curves. +is is
confirmed by the low values in time-domain model per-
formance indices S(θij) for all processes P1,i.

From the results obtained in Figure 8, it can be observed
that method #1 is the one that provides the best results and,
therefore, the set of points (5–50–95%) is the one that is
recommended to be selected when using this symmetrical
identification procedure. In this regard, relative performance
indices between method #6 (j� 6) and method #1 (j� 1),
S6,1(θi6, θi1), for i� 1, . . ., 9, are represented in Figure 9,
where it can be noticed that method #1 is approximately 2.0,
2.25, 2.5, 3.5, 4.0, 2.75, and 1.5 times better in terms of S than
the one obtained with method #6, for i� 1, . . ., 7,
respectively.

+e case λ5 � 0.8 for process P1,5 is considered among
processes P1,i. +e process reaction curve for this model is

shown in Figure 10. From this data, the information is
summarized in Table 13.

Considering data from Table 13, the FFOPDT process
parameters θi5 � Ki5, Ti5, Li5, αi5 , where i� 1, . . ., 6, have
been obtained in Table 14 for each one of the proposed sets
of symmetrical points in Table 12.

+e proposed identification method will be compared
with various two- and three-point identification methods for
FOPDT, DPPDT, and SOPDTmodels based on information
also obtained from the reaction curve.

In the case of two-point methods [11,14], both FOPDT
and DPPDT models are used.

Table 15 contains the parameters of the FOPDT model
identified using the two-point identification methods pro-
posed by Alfaro and by Viterková, respectively. Table 16
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Figure 10: Step-input signal and process reaction curve for process P1,5.

Table 13: Process information for fractional-order model identification of process P1,5.

Method #1:
5–50–95%

Method #2:
10–50–90%

Method #3:
15–50–85%

Method #4:
20–50–80%

Method #5:
25–50–75%

Method #6:
30–50–70%

Δu� 1
Δy� 1

t5 � 0.3310 s t10 � 0.4890 s t15 � 0.6410 s t20 � 0.7940 s t25 � 0.9540 s t30 �1.1250 s
t50 �1.9900

t95 �19.123 s t90 � 9.7230 s t85 � 6.7390 s t80 � 5.2090 s t75 � 4.2430 s t70 � 3.5600 s

Table 14: FFOPDT model parameters for the considered sets of representative points (5–50-95%), (10–50–90%), (15–50–85%),
(20–50–80%), (25–50–75%), and (30–50–70%), respectively.

Method #1:
5–50–95%

Method #2:
10–50–90%

Method #3:
15–50–85%

Method #4:
20–50–80%

Method #5:
25–50–75%

Method #6:
30–50–70%

K1 � 1.0000 K2 �1.0000 K3 �1.0000 K4 �1.0000 K5 �1.0000 K6 �1.0000
T1 � 2.3318 s T2 � 2.3011 s T3 � 2.2834 s T4 � 2.2688 s T5 � 2.2666 s T6 � 2.2418 s
L1 � 0.3742 s L2 � 0.4724 s L3 � 0.4041 s L4 � 0.4057 s L5 � 0.3901 s L6 � 0.4175 s
α1 � 0.8719 α2 � 0.8882 α3 � 0.8992 α4 � 0.9067 α5 � 0.9122 α6 � 0.9143

Table 15: FOPDT model parameters obtained using Alfaro’s and
Viterková’s two-point methods, respectively.

Method #7: Alfaro 1 (25–75%) Method #8: Viterková 1 (33–70%)
K7 �1.0000 K8 �1.0000
T7 � 2.9936 s T8 � 2.8959 s
L7 � 0.0923 s L8 � 0.0757 s

Table 16: DPPDT model parameters obtained using Alfaro’s and
Viterková’s two-point methods, respectively.

Method #9: Alfaro 2 (25–75%) Method #10: Viterková 2
(33–70%)

K9 �1.0000 K10 �1.0000
T9 �1.8997 s T10 �1.8468 s
L9 � 0 s L10 � 0 s
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Table 17: SOPDT model parameters obtained using Stark’s and Jahanmiri and Fallahi’s three-point methods, respectively.

Method #11: Stark (15–45–75%) Method #12: Jahanmiri and Fallahi 1 (2–70–90%) Method #13: Jahanmiri and Fallahi 2 (5–70–90%)
K11 � 1.0000 K12 �1.0000 K13 �1.0000
T11a � 2.8764 s T12a � 3.9984 s T13a � 4.0453 s
T11b � 0.3714 s T12b � 0.0362 s T13b � 0.0362 s
L11 � 0 s L12 � 0.2220 s L13 � 0.3310 s
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Figure 11: Process reaction curve and step responses for FFOPDT
model methods #1 and #2 and SOPDT methods #12 and #13,
respectively.
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Figure 12: Process reaction curve and step responses for FFOPDT
model methods #3 and #4 and SOPDT method #11, respectively.
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Figure 13: Process reaction curve and step responses for FFOPDT
model method #5 and FOPDT and DPPDTmodel methods #7 and
#9, respectively.
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Figure 14: Process reaction curve and step responses for FFOPDT
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#10, respectively.
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shows the parameters of the DPPDTmodel obtained using
the same methods.

In the case of three-point methods in [15] and Stark in
[16], the SOPDT model is considered.

Table 17 contains the parameters of the SOPDT model
obtained using the three-point identification methods
proposed by Jahanmiri and Fallahi and by Stark,
respectively.

Figures 11–14 compare the process reaction curve with
the step responses of the FFOPDTmodels obtained with the
proposed method for different sets of symmetrical points
and those of the FOPDT, DPPDT, and SOPDT models
proposed by Alfaro, Viterková, Stark, and Jahanmiri and
Fallahi, respectively. +e step responses have been grouped
in graphs based on the similarity in the points on the re-
action curve that have been used in each of the identification
methods.

Table 18 shows the values of the time-domain model
performance index S(θ) for the different identification

methods applied to process P1,5. +e relative performance
index values Sx,y(θx, θy), which allow the comparison
between different identification methods, are listed in
Table 19.

Figures 11–14 illustrate that the step response of the
models identified with the proposed method for the different
sets of representative points give a good fit with the process
reaction curve, particularly in the interval [x− (100 ‒ x)].

For smaller values of x, the interval [x− (100 ‒ x)] is
larger and, therefore, the step response for these models fits
better with the process reaction curve, which translates into a
lower value in the model performance index S, as can be seen
in Table 18.

+is is mainly due to the fact that the value of α identified
for smaller values of x is closer to its optimal value.

Note that α value of the model has a great influence on
the shape of the step response for a FFOPDTmodel, as can
be seen in Figure 2.

Table 18: Time-domain model performance indices for process P1,5.

Identification method# Set of points Model S
#1: proposed (5–50–95%) FFOPDT S1 � 7.78·10−5

#2: proposed (10–50–90%) FFOPDT S2 �1.51·10−4

#3: proposed (15–50–85%) FFOPDT S3 �1.79·10−4

#4: proposed (20–50–70%) FFOPDT S4 � 2.18·10−4

#5: proposed (25–50–75%) FFOPDT S5 � 2.47·10−4

#6: proposed (30–50–70%) FFOPDT S6 � 2.69·10−4

#7: Alfaro 1 (25–75%) FOPDT S7 � 5.98·10−4

#8: Viterková 1 (33–70%) FOPDT S8 � 6.30·10−4

#9: Alfaro 2 (25–75%) DPPDT S9 �1.40·10−3

#10: Viterková 2 (33–70%) DPPDT S10 �1.30·10−3

#11: Stark (15–45–70%) SOPDT S11 � 6.66·10−4

#12: Jahanmiri and Fallahi 1 (2–70–90%) SOPDT S12 � 9.25·10−4

#13: Jahanmiri and Fallahi 2 (5–70–90%) SOPDT S13 �1.10·10−3

Table 19: Relative performance index-based comparison between
some considered identification methods for process P1,5.

Compared methods Sx,y � Sx/Sy
Method #2-method #1 S2,1 � S2/S1 � 1.94
Method #3-method #1 S3,1 � S3/S1 � 2.30
Method #4-method #1 S4,1 � S4/S1 � 2.81
Method #5-method #1 S5,1 � S5/S1 � 3.17
Method #6-method #1 S6,1 � S6/S1 � 3.45
Method #7-method #1 S7,1 � S7/S1 � 7.69
Method #7-method #5 S7,5 � S7/S5 � 2.42
Method #8-method #1 S8,1 � S8/S1 � 8.10
Method #8-method #6 S8,6 � S8/S6 � 2.35
Method #9-method #1 S9,1 � S9/S1 � 17.76
Method #9-method #5 S9,5 � S9/S5 � 5.60
Method #10-method #1 S10,1 � S10/S1 � 16.75
Method #10-method #6 S10,6 � S10/S6 � 4.85
Method #11-method #1 S11,1 � S11/S1 � 8.57
Method #11-method #3 S11,3 � S11/S3 � 3.72
Method #12-method #1 S12,1 � S12/S1 � 11.89
Method #12-method #2 S12,2 � S12/S2 � 6.12
Method #13-method #1 S13,1 � S13/S1 � 14.07
Method #13-method #2 S13,2 � S13/S2 � 7.25
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Figure 15: Step-input signal and process reaction curve for process
P2.
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Regarding two-point methods, Figures 13 and 14 show
step responses of the models obtained by Alfaro’s (25–75%)
and Viterková’s (33–70%) methods, both for FOPDT and
DPPDT, respectively, compared to those of the proposed
method for (25–50–75%) and (30–50–70%).

Figures 11 and 12 show that Alfaro’s and Viterková’s
methods fit the reaction curve very well in the ranges
(25–75%) and (33–70%), respectively. However, the be-
haviour of both models outside these ranges deviates from
the reaction curve, resulting in a higher S-value.

+e value of S for method #1 is 7.7 and 8.1 times lower
than the ones proposed by Alfaro and Viterková for FOPDT
models, respectively. In turn, the value of S for methods #5
and #6 is 2.4 and 2.3 times lower than methods proposed by
Alfaro and Viterková for FOPDT models, respectively.

Method #1 is 17.8 and 16.7 times better in terms of S than
Alfaro’s and Viterková’s methods for DPPDT models, re-
spectively. On the other hand, methods #5 and #6 are 5.6 and
4.8 times better than those of Alfaro and Viterková for
DPPDTmodels. +e responses of DPPDTmodels for Alfaro
and Viterková have higher values in the model performance
index shown in Table 18 in comparison with the same
methods for FOPDT models.

Regarding three-point methods, Figure 11 shows step
responses of Jahanmiri and Fallahi’s methods (2–70–90%)
and (5–70–90%) for a SOPDT model, in comparison with
those of the proposed method for (5–50–95%) and
(10–50–90%).

+e value of S for method #1 is 11.9 and 14.1 times lower
than the one for methods #12 and #13, respectively. If both
three-point methods are compared with method #2, the
latter is 6.1 and 7.2 times better than methods #12 and #13,
respectively.

Figure 12 shows the step responses of Stark’s method
(15–45–75%) for a SOPDTmodel, in comparison with those
of the proposed method for (15–50–85%) and (20–50–80%).
+e value of S for methods #1 and #3 is 8.6 and 3.7 times
lower than the one for method #11.

+ere is an improvement in terms of S of 1.9, 2.3, 2.8, 3.2,
and 3.4 times for process P1 in using method #1 (5–50–95%)
with respect to methods #2, #3, #4, #5, and #6, respectively, as
illustrated in Table 19.

5.2. Example 2. In this example, the proposed identification
method is compared with another identification method for
the FFOPDT model.

+e higher-order lag-dominated fractional-order pro-
cess model (38), where K2 � 2, T2 �1 s, λ2 � 0.85, and n� 5, is
considered in this example as proposed in [26].

+e process reaction curve for this model is shown in
Figure 15. From this data, the process information needed
for model identification using the proposed procedure in
different sets of times is summarized in Table 20.

Considering data from Table 20, the FFOPDT process
parameters θi � Ki, Ti, Li, αi , where i� 1, . . ., 6, have been

Table 20: Process information for fractional-order model identification of process P2.

Method #1:
5–50–95%

Method #2:
10–50–90%

Method #3:
15–50–85%

Method #4:
20–50–80%

Method #5:
25–50–75%

Method #6:
30–50–70%

Δu� 1
Δy� 2

t5 �1.7910 s t10 � 2.3450 s t15 � 2.8000 s t20 � 3.2180 s t25 � 3.6240 s t30 � 4.0320 s
t50 � 5.9370 s

t95 � 34.790 s t90 �19.200 s t85 �14.170 s t80 �11.580 s t75 � 9.9300 s t70 � 8.7400 s

Table 21: FFOPDT model parameters for the considered sets of representative points (5–50–95%), (10–50–90%), (15–50–85%),
(20–50–80%), (25–50–75%), and (30–50–70%), respectively.

Method #1: 5–50–95% Method #2: 10–50–90% Method #3: 15–50–85% Method #4: 20–50–80% Method #5:
25–50–75%

Method #6:
30–50–70%

K1 � 2.0000 K2 � 2.0000 K3 � 2.0000 K4 � 2.0000 K5 � 2.0000 K6 � 2.0000
T1 � 5.3737 s T2 � 5.4182 s T3 � 5.3090 s T4 � 5.2366 s T5 � 5.2330 s T6 � 5.1383 s
L1 � 1.9617 s L2 � 2.1230 s L3 � 2.0287 s L4 � 2.0965 s L5 � 2.0972 s L6 � 2.1926 s
α1 � 0.9099 α2 � 0.9397 α3 � 0.9555 α4 � 0.9656 α5 � 0.9741 α6 � 0.9767

Table 22: FFOPDT model parameters for the different strategies proposed in [26].

Method #7: Tavakoli–
Kakhki 1

Method #8: Tavakoli–
Kakhki 2

Method #9: Tavakoli–
Kakhki 3

K7 � 2.00 K8 � 2.00 K9 � 2.00
T7 � 5.00 s T8 � 5.00 s T9 � 4.48 s
L7 �1.50 s L8 � 0.69 s L9 �1.50 s
α7 � 0.85 α8 � 0.85 α9 � 0.85
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obtained in Table 21 for each one of the proposed sets of
representative points on the reaction curve, i.e., (5–50–95%),
(10–50–90%), (15–50–85%), (20–50–80%), (25–50–75%),
and (30–50–70%), respectively.

Process (38) is approximated by a FFOPDT model fol-
lowing three different strategies proposed in [26], where
model process parameters θ7 − θ9 are given in Table 22.

+e process reaction curve and the corresponding step
responses of the considered approximated models for
(5–50–95%), (10–50–90%), (15–50–85%), (20–50–80%),
(25–50–75%), and (30–50–70%), respectively, are compared

and illustrated in Figures 16–21. Moreover, the step re-
sponses for FFOPDTmodels proposed in [26] for process P2
in comparison with the process reaction curve are shown in
Figure 22.

Table 23 shows the values of the time-domain model
performance index S(θ) for the different identification
methods applied to process P2. +e relative performance
index values Sx,y(θx, θy), which show the comparison be-
tween different identification methods, are listed in Table 24.

In this example, a high-order fractional-order lag-
dominated process has been used in order to illustrate the
applicability and effectivity of the proposed identification
procedure for identifying FFOPDT models.

Figures 16–21 show that the proposed method gives
good results in the interval [x− (100− x)] for all the con-
sidered sets of representative points. We need to recall that
the method tries to place three symmetric points
(x− 50− (100− x)%) on the reaction curve.

+e location of the representative points on the reaction
curve is very good for higher values of x, with a slight de-
viation for x� 5, as can be seen in Figures 16–21.

However, the obtained model fits the reaction curve
better for low values of x, since α-value obtained is closer to
its optimal value, as has been commented previously. +is
results in lower values of S for low values of x in the con-
sidered sets of representative points, as shown in Table 23.

+ere is an improvement in S of 1.4, 1.7, 2.2, 2.6, and 2.8
times in using method #1 (5–50–95%) with respect to
methods #2, #3, #4, #5, and #6, respectively, as illustrated in
Table 24.

Figure 22 shows that Tavakoli–Kakhki’s methods give
similar results in terms of S to some of the proposed
methods, and this can be quantified in Table 23.

Method #1 is 1.8, 3.0, and 1.1 times better in terms of S
than Tavakoli–Kakhki’s methods #1, #2, and #3, respectively.
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Figure 17: Process reaction curve and FFOPDTmodel method #2
(10–50–90%) step response for process P2.
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Figure 16: Process reaction curve and FFOPDTmodel method #1
(5–50–95%) step response for process P2.
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Figure 18: Process reaction curve and FFOPDTmodel method #3
(15–50–85%) step response for process P2.
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Furthermore, the proposed method not only gives better
results than Tavakoli–Kakhki’s method in terms of S, but in
the authors’ opinion, it is easier to apply.

Remark 2. In the second example, the comparison is re-
stricted to analytical methods for FFOPDT models with a
simplicity and computational effort similar to the one
proposed in this paper. However, there are not many an-
alytical techniques for modelling fractional-order processes
based on the process reaction curve. +erefore, the com-
parison of the proposed symmetrical method is done with
the method in [26], which is a well-recognized reference and

where three strategies have been proposed in order to de-
termine the parameters of a FFOPDTmodel by making use
of the step response data. It combines numerical compu-
tation and graphical estimation.

In the introduction, there is a review of fractional-order
model identification methods that are based on the process
reaction curve; however, all of them use optimization to
obtain the model parameters. In these cases, the accuracy of
themodel is improved at the cost of increased computational
effort. In the authors’ opinion, the comparison of the
proposed method with these ones using optimization would
not be made under equal conditions.
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Figure 22: Process reaction curve and FFOPDT model methods
#7–#9 step responses for process P2.
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Figure 19: Process reaction curve and FFOPDTmodel method #3
(20–50–80%) step response for process P2.

(t25, y25)

(t50, y50)

(t75, y75)

P2(s)

50 100 150 200 250 3000
time [s]

0

0.5

1

1.5

2

Pr
oc

es
s o

ut
pu

t

Process
Proposed (25-50-75%)

Figure 20: Process reaction curve and FFOPDTmodel method #5
(25–50–75%) step response for process P2.
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Figure 21: Process reaction curve and FFOPDTmodel method #6
(30–50–70%) step response for process P2.
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Remark 3. Since processes are generally nonlinear, the
dynamic characteristics of the FFOPDT model—gain, time
constant, dead time, and fractional order—will vary when
the operating point of the control system changes, due to a
modification of the set point or due to the effect of
disturbances.

+e implicit uncertainty in the nominal model must
therefore be taken into consideration.

+ere are generally two approaches in the technical
literature when considering the parametric uncertainty of
the plant in an identification method.

+e first approach is to consider the uncertainty ex-
plicitly in the identification process.+is generally makes the
identification procedure more complicated.

+e second one involves considering possible model
uncertainties and variations in the dynamic characteristics of
the controlled process in the design of the control system;
see, e.g., [3] for integer-order controllers and [45] for the
fractional case. A usual way of applying this second ap-
proach is to guarantee a certain degree of robust-
ness—relative stability—of the control system designed to
ensure its stability in the presence of variations in the process
characteristics.

In this paper, a procedure for the identification of a
reduced-order fractional model of the FFOPDT type is
presented, where the main use of the identified model is for
control purposes. Accordingly, the uncertainty in the pa-
rameters of the identified model will be considered in the
design of the control system.

In the industrial context, large process industries have
hundreds or thousands of control loops. For this reason,

simplicity is a fundamental characteristic when identifying a
process model for control purposes. Considering this second
approach, it is possible to maintain the simplicity of the
identification procedure.

6. Conclusions

In this paper, a general procedure to identify a FFOPDT
model for industrial processes having S-shaped step re-
sponses and based on fitting three arbitrary points on the
process reaction curve has been proposed. A simplification
of the general identification procedure has also been con-
sidered, where only points symmetrically located on the
reaction curve have been selected. +e symmetrical method
provides an efficient way to obtain the parameters of the
model, by requiring the selection of the optimal location of
only one of the points (x), since the other is immediately
established by the requirement of symmetry.

Some numerical examples have been used in order to
show the effectiveness and applicability of this procedure for
the identification of fractional-order models and to get
insight into the influence of selection of the set of sym-
metrical points on the accuracy of the identified model.

+e proposed symmetrical procedure has been applied
to the following sets of representative points: (5–50–95%),
(10–50–90%), (15–50–85%), (20–50–80%), (25–50–75%),
and (30–50–70%). +e results of this paper verify that the
accuracy of the identified fractional-order model is sensitive
to the selection of the set of symmetrical points on the
reaction curve and it has been discussed that a more accurate
model is obtained for low values of x. New insights into this
selection of set of points have been offered in the context of
the proposed symmetrical procedure.

+is identification procedure gives good results in
comparison with other integer- and fractional-order iden-
tification methods.

Another aspect to highlight is that the proposed method
is analytical, which facilitates its applicability in terms of a
lower computational effort compared to complicated
identification algorithms generally based on optimization. In
the industrial context, large process industries typically have
hundreds or thousands of control loops. For this reason,
simplicity is of primary interest when identifying a process
model for control purposes.

Table 23: Time-domain model performance indices for process P2.

Identification method# Set of points Model S
#1: proposed (5–50–95%) FFOPDT S1 � 5.3·10−4

#2: proposed (10–50–90%) FFOPDT S2 � 7.4·10−4

#3: proposed (15–50–85%) FFOPDT S3 � 9.1·10−4

#4: proposed (20–50–70%) FFOPDT S4 �1.2·10−3

#5: proposed (25–50–75%) FFOPDT S5 �1.4·10−3

#6: proposed (30–50–70%) FFOPDT S6 �1.5·10−3

#7: Tavakoli–Kakhki’s method 1 — FFOPDT S7 � 9.5·10−4

#8: Tavakoli–Kakhki’s method 2 — FFOPDT S8 �1.6·10−3

#9: Tavakoli–Kakhki’s method 3 — FFOPDT S9 � 5.5·10−4

Table 24: Relative performance index-based comparison between
some considered fractional-order model identification methods for
process P2.

Compared methods Sxy � Sx/Sy
Method #2-method #1 S21 � S2/S1 � 1.40
Method #3-method #1 S31 � S3/S1 � 1.74
Method #4-method #1 S41 � S4/S1 � 2.19
Method #5-method #1 S51 � S5/S1 � 2.57
Method #6-method #1 S61 � S6/S1 � 2.80
Method #7-method #1 S71 � S7/S1 � 1.81
Method #8-method #1 S81 � S8/S1 � 2.97
Method #9-method #1 S91 � S9/S1 � 1.06
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It is the opinion of the authors that this type of iden-
tification methods, where simplicity is emphasized, will
encourage their industrial use and will help in bridging the
gap between theoretical research on fractional models and its
practical application in the process industry.

+is expectation is the primary motivation of the present
study.
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