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In this work, the direct theorem of approximation theory in variable exponent Morrey–Smirnov classes of analytic functions,
defined on a doubly connected domain of the complex plane bounded by two sufficiently smooth curves, is investigated.

1. Introduction

)e classical Morrey spaces were introduced by Morrey in
[1] in order to investigate the local behavior of the solutions
of elliptic differential equations. Recently, many researchers
have investigated function spaces with variable exponents
due to their use in several fields of applied mathematics. In
particular, function spaces with variable exponents have
many applications in areas involving the modeling of
electrorheological fluids [2] and image restoration [3]. )e
variable exponent Morrey spaces introduced in [4] have
been studied intensively by various authors (see, for ex-
ample, [5–7]). )e fundamental problem in approximation
theory is to express complicated functions by simple
functions such as polynomials, wavelets, or rational func-
tions with more useful structures. )e theory of approxi-
mation is strongly related with the operators and has a
considerable number of applications in areas including
general marginal distributions such as sampling and ma-
chine learning (see [8–10]). Also, the approximation
problems in the variable Morrey–Smirnov classes of analytic
functions defined on a simply connected domain with a
Dini-smooth boundary are proved in [11]. )e direct and
converse theorems of approximation theory in the classical
Morrey–Smirnov classes defined on a simply connected
domain with a Dini-smooth boundary were obtained in
[12, 13]. Similar results in the variable exponent Smirnov
classes were studied in [14, 15].

On a doubly connected domain, the rate of approximation
by p−Faber–Laurent rational function in Smirnov classes
was studied in [16]. Also, the rate of approximation by
Faber–Laurent rational function in Smirnov–Orlicz classes
and Smirnov classes with variable exponent was obtained in
[17]. )e approximation property of (p − ϵ)−Faber–Laurent
rational functions in the weighted generalized grand
Smirnov classes on doubly connected domains is proved
in [18].

In the current paper, approximation one direct theorem
of approximation theory in variable exponent Morrey–S-
mirnov classes of analytic functions, defined on a doubly
connected domain bounded by two Dini-smooth curves, is
obtained.

2. Preliminaries

Let J denote the interval [0, 2π] or a Jordan rectifiable curve
Γ, and let ℘ denote the class of all Lebesgue measurable
functions p(.): Γ⟶ [1,∞[ such that

1<p− � essinf
z∈J

p(z)≤p
+

� esssup
z∈J

p(z)<∞. (1)

We denote by |J| to the Lebesgue measure of J. We say
p(.) ∈ ℘log if there is a constant c such that

p z1( 􏼁 − p z2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 ln
|J|

z1 − z2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼠 􏼡≤ c, (2)
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for all z1, z2 ∈ J.
For p(.) ∈ ℘log(Γ), we define Lp(.)(Γ) the set of all

measurable functions f such that

􏽚
Γ
|f(z)|

p(z)
|dz|<∞. (3)

Lp(.)(Γ) is a Banach space with respect to the norm

fLp(.)(Γ) � inf λ> 0, 􏽚
Γ

f(z)

λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

p(z)

|dz|≤ 1􏼨 􏼩. (4)

Let U be a finite simply connected domain with a rec-
tifiable Jordan curve boundary Γ. Denote U− � ext Γ,
c0 � w ∈ C: |w| � 1{ }, D � int c0, and D− � ext c0. Let Γr be
the image of circle w ∈ C: |w| � r, 0< r< 1{ } under some
conformal mapping of D onto U.

For given 1≤p<∞, we denote by Ep(U) the class of
analytic functions f in U which satisfies

􏽚
Γr

|f(t)|
p
|dt|<∞, (5)

uniformly in r.
It is known that every function of class Ep(U) has

nontangential boundary values almost everywhere on Γ and
the boundary function belongs to Lp(Γ) ([19], pp. 438–453).

Also, suppose that ϕ∗ is the conformal mapping of U−

onto D− normalized by

ϕ∗(∞) �∞, lim
z⟶∞

ϕ∗(z)

z
> 0, (6)

and let ψ∗ be the inverse of ϕ∗. Let ϕ∗1 be the conformal
mapping of U on to D− , normalized by

ϕ∗1(0) �∞, lim
z⟶0

zϕ∗1(z)> 0. (7)

)e inverse mapping of ϕ∗1 will be denoted by ψ∗1 .
)e functions ψ∗ and ψ∗1 have in some deleted neigh-

borhood of ∞ representations

ψ∗(w) � αw + α0 +
α1
w

+
α2
w

2 + · · · +
αk

w
k

+ · · · , α> 0,

ψ∗1(w) �
β1
w

+
β2
w

2 + · · · +
βk

w
k

+ · · · , β1 > 0.

(8)

)e functions

ψ∗′(w)

ψ∗(w) − z
, z ∈ U,

ψ ∗′1 (w)

ψ∗1(w) − z
, z ∈ U

−
,

(9)

are analytic in the domain D− , and the following expansions
hold [20–23]:

ψ∗′(w)

ψ∗(w) − z
� 􏽘
∞

k�0

Fk(z)

w
k+1 , z ∈ U, w ∈ D

−
,

ψ ∗′1 (w)

ψ∗1(w) − z
� 􏽘
∞

k�1
−

􏽥Fk(1/z)

w
k+1 , z ∈ U

−
, w ∈ D

−
,

(10)

where Fk(z) and 􏽥Fk(1/z) are the Faber polynomials of
degree k with respect to z and 1/z for the continuums U and
C\U, respectively.

Let Γ be a rectifiable Jordan curve in the complex plane
with length ℓ and let Γ(t, r) � Γ ∩ B(t, r), t ∈ Γ, r> 0, where
B(t, r) � z ∈ C: |z − t|< r{ }. %e classical Morrey spaces
Lp,λ(Γ) for given 0≤ λ≤ 1 and 1≤p<∞ are defined as the
set of functions f ∈ L

p

loc(Γ) such that

‖f‖Lp,λ(Γ) � sup
z∈Γ 0<r<ℓ

r
− λ/p

‖f‖Lp(Γ(t,r)) <∞. (11)

Let U � int Γ, we define the classical Morrey–Smirnov
classes Ep,λ(U) for 0< λ≤ 1 and 1<p<∞ as

E
p,λ

(U) � f ∈ E
1
(U), f ∈ L

p,λ
(Γ)􏽮 􏽯. (12)

We define ‖f‖Ep,λ(U) ≔ ‖f‖Lp,λ(Γ).

Definition 1. Let p(.): Γ⟶ [1,∞[ be a Lebesgue mea-
surable function satisfying the condition (1), and let
λ(.): Γ⟶ [0, 1] be a measurable function. We define the
variable exponent Morrey spaces Lp(.,)λ(.)(Γ) as the set of
Lebesgue measurable functions f defined on Γ, such that

μp(.,)λ(.)(f) � sup
t∈Γ, 0<r≤ℓ

r
− λ(t)

􏽚
Γ(t,r)

|f(s)|
p(s) ds<∞. (13)

Lp(.,)λ(.)(Γ) becomes a Banach space with respect to the
norm:

‖f‖Lp(.,)λ(.)(Γ) � inf u> 0: μp(.,)λ(.)

f

u
􏼠 􏼡≤ 1􏼨 􏼩. (14)

We define the variable exponent Morrey–Smirnov class
Ep(.,)λ(.)(U) as

E
p(.,)λ(.)

(U) ≔ f ∈ E
1
(U), f ∈ L

p(.,)λ(.)
(Γ)􏽮 􏽯. (15)

If we define ‖f‖Ep(.,)λ(.)(U) ≔ ‖f‖Lp(.,)λ(.)(Γ), the class
Ep(.,)λ(.)(U) becomes a Banach space.

Definition 2. A smooth curve Γ is called Dini-smooth if

􏽚
δ

0

Ω(σ, s)

s
ds<∞, δ > 0, (16)

where σ(s) is the angle, between the tangent line of Γ and the
positive real axis expressed as a function of arclength s with
the modulus of continuity Ω(σ, s), where
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Ω(σ, s) ≔ sup
s1−s2| |≤ s

σ s1( 􏼁 − σ s2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, s> 0.
(17)

Definition 3. Let p(.): c0⟶ [1,∞) and λ(.): c0⟶ [0, 1]

be measurable functions such that

0≤ λ− ≔ essinf
t∈c0

λ(t)≤ λ+ ≔ esssup
t∈c0

p(t)< 1. (18)

Also, assume that p(.) ∈ ℘log. For f ∈ Lp(.,)λ(.)(c0), we
define the operator

vhf( 􏼁(w) �
1
h

􏽚
h

0
f w e

it
􏼐 􏼑dt, w ∈ c0, 0< h< π. (19)

)e operator vh is bounded linear operator on
Lp(.,)λ(.)(c0) [24]. Hence, we can define the modulus of
smoothness of f ∈ Lp(.,)λ(.)(c0) as

Ω(f, δ)p(.,)λ(.) � sup
0<h≤δ

f − vhf
����

����Lp(.,)λ(.) c0( ), δ > 0. (20)

)e function Ω(f, δ)p(.,)λ(.) is a continuous, nonnega-
tive, and nondecreasing on [0,∞) satisfying the following
properties for any f, g ∈ Lp(.,)λ(.)(c0):

lim
δ⟶0
Ω(f, δ)p(.,)λ(.) � 0,

Ω(f + g, δ)p(.,)λ(.) ≤Ω(f, δ)p(.,)λ(.) +Ω(g, δ)p(.,)λ(.), δ > 0,

Ω(f, nδ)p(.,)λ(.) ≤ nΩ(f, δ)p(.,)λ(.), n � 1, 2, . . . , δ > 0.

(21)

Suppose that G is an arbitrary doubly connected domain
in the complex plane C, bounded by two rectifiable Jordan
curves L1 and L2. Without loss of generality, we may assume
that the closed curve L2 is inside the closed curve L1 and
0 ∈ intL2. Let G0

1 ≔ intL1, G∞1 ≔ extL1, G0
2 ≔ intL2,and

G∞2 ≔ ext L2.
We denote by w � ϕ(t)(w � ϕ1(t)) the conformal

mapping of G∞1 (G0
2) onto domain D− normalized by the

conditions:

ϕ(∞) �∞, lim
t⟶∞

ϕ(t)

t
> 0, ϕ1(0) �∞, lim

t⟶0
tϕ1(t)> 0.

(22)

Moreover, ψ and ψ1 will denote the inverse mappings of
ϕ and ϕ1, respectively.

)e level lines of the domains G0
1 and G0

2 are defined for
r, R> 1, by

Cr ≔ t: |ϕ(t)| � r􏼈 􏼉, CR ≔ t: ϕ1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � R􏽮 􏽯. (23)

)e Faber polynomials Fk(t) and 􏽥Fk(1/z) have the
following integral representations [22].

If t ∈ intCr, then

Fk(t) �
1
2πi

􏽚
Cr

[ϕ(ξ)]
k

ξ − t
dξ �

1
2πi

􏽚
|w|�r

ψ′(w)w
k

ψ(w) − t
dw. (24)

If t ∈ extCr, then

Fk(t) � [ϕ(t)]
k

+
1
2πi

􏽚
Cr

[ϕ(ξ)]
k

ξ − t
dξ. (25)

If t ∈ intCR, then

􏽥Fk

1
t

􏼒 􏼓 � ϕ1(t)􏼂 􏼃
k

−
1
2πi

􏽚
CR

ϕ1(ξ)􏼂 􏼃
k

ξ − t
dξ. (26)

If t ∈ extCR, then

􏽥Fk

1
t

􏼒 􏼓 � −
1
2πi

􏽚
CR

ϕ1(ξ)􏼂 􏼃
k

ξ − t
dξ � −

1
2πi

􏽚
|w|�R

ψ1′(w)w
k

ψ1(w) − t
dw.

(27)

If f(z) is an analytic function in the doubly connected
domain bounded by the curves Cr and CR, then

f(t) � 􏽘
∞

k�0
akFk(t) + 􏽘

∞

k�1
bk

􏽥Fk

1
t

􏼒 􏼓, (28)

where

ak �
1
2πi

􏽚
|w|�r1

f(ψ(w))

w
k+1 dw, 1< r1 < r, k � 0, 1, 2, . . . ,

bk �
1
2πi

􏽚
|w|�R1

f ψ1(w)( 􏼁

w
k+1 dw, 1<R1 <R, k � 1, 2, . . . .

(29)

Let L � L1⋃ L−
2 and let G be a doubly connected domain

bounded by L1 and L2, where L2 is in L1. We define the
variable exponent Morrey–Smirnov classes Ep(.,)λ(.)(G) as

E
p(.,)λ(.)

(G) � f ∈ E
1
(G), f ∈ L

p(.,)λ(.)
(L)􏽮 􏽯. (30)

For f ∈ Ep(.,)λ(.)(G), the norm is defined by

‖f‖Ep(.,)λ(.)(G) � ‖f‖Lp(.,)λ(.)(L). (31)

Let U be a simply connected domain in the complex
plane C, bounded by a rectifiable Jordan curve Γ, and let U−

be the exterior of Γ. )en, for f ∈ L1(Γ), the functions f+

and f− defined by

f
+
(t) ≔

1
2πi

􏽚
Γ

f(ξ)

ξ − t
dξ, t ∈ U,

f
−

(t) ≔
1
2πi

􏽚
Γ

f(ξ)

ξ − t
dξ, t ∈ U

−
.

(32)

are analytic in U and U− , respectively, f− (∞) � 0.
For a given t ∈ Γ, the operator SΓ defined by

SΓ(f)(t) ≔ lim
ε⟶0+

1
2πi

􏽚
Γ∩ ξ: |ξ−t|>ε{ }

f(ξ)

ξ − t
dξ, (33)

is called the Cauchy singular operator.
According to the Privalov theorem [19] if one of the

functions f+ or f− has the nontangential limits a.e. on Γ,
then SΓ(f)(t) exists a.e. on Γ and also the other one has the
nontangential limits a.e. on Γ. Conversely, if SΓ(f)(t) exists
a.e. on Γ, then the functions f+ and f− have nontangential
limits a.e. on Γ. In both cases, the following formulae:
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f
+
(t) � SΓf(t) +

1
2

f(t), f
−

(t) � SΓf(t) −
1
2

f(t),

f(t) � f
+
(t) − f

−
(t),

(34)

hold a.e. on Γ.
In Kokilashvili andMeskhi [25], it is proved that, if Γ is a

Dini-smooth curve, then the operator SΓ is bounded on
Lp(.,)λ(.)(Γ), i.e., there exists a positive constant c1 such the
following inequality holds for any f ∈ Lp(.,)λ(.)(Γ):

SΓ(f)
����

����Lp(.,)λ(.)(Γ)≤ c1‖f‖Lp(.,)λ(.)(Γ). (35)

If L1 and L2 are Dini-smooth curves, then by [26] there
are positive constants c2, c3, c4, and c5 such

c2 < ψ′(w)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< c3, c4 < ψ1′(w)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< c5. (36)

Let Li(i � 1, 2) be a Dini-smooth curve, we define the
following functions f0 ≔ f ∘ψ for f ∈ Lp(.,) λ(.)(L1), p0 �

p ∘ψ and f1 ≔ f ∘ψ1 for f ∈ Lp(.,)λ(.)(L2), p1 � p ∘ψ1.
If f ∈ Lp(.,)λ(.)(L1) and f ∈ Lp(.,)λ(.)(L2), then by (36),

f0 ∈ Lp0(.),λ(.)(c0) and f1 ∈ Lp1(.,)λ(.)(c0). From (34), we get
f−
0(∞) � 0, f−

1(∞) � 0 and the following relations hold a.e.
on c0:

f0(w) � f
+
0(w) − f

−
0(w), f1(w) � f

+
1(w) − f

−
1(w). (37)

Using)eorem 6.1 from [24] and taking into account the
proof of a similar result in [20], we deduce the following
lemma.

Lemma 1. Let p(.): c0⟶ [1,∞[ and λ(.): c0⟶ [0, 1]

be measurable functions. Let g ∈ Ep(.,)λ(.)(D) with
p(.) ∈ ℘log(c0) and 0≤ λ− ≤ λ

+ < 1. If 􏽐
n
k�0ak(g)wk is the n −

th partial sum of the Taylor series of g at the origin, then for
any n � 1, 2, . . ., there is a constant c6 such the following
estimate:

g(w) − 􏽘
n

k�0
ak(g)w

k

���������

���������
Lp(.,)λ(.) c0( )

≤ c6Ω g,
1
n

􏼒 􏼓
p(.,)λ(.)

, (38)

holds.

3. Main Result

From now on, we will assume that the set of rational
functions is dense in the space Ep(.,)λ(.)(L). Our main result
is the following.

Theorem 1. Let G be a finite doubly connected domain with
the Dini-smooth boundary, L � L1⋃ L−

2 , and let
p(.): L⟶ [1,∞[ , and λ(.): L⟶ [0, 1]. Ep(.,)λ(.)(L) be
the variable Morrey–Smirnov space with p(.) ∈ ℘log(L) and
0≤ λ− < λ

+ < 1. If f ∈ Ep(.,)λ(.)(G), then for every n ∈ N, there
are a rational function Rn(f, .) and a constant c7 such that

f − Rn(f, .)
����

����Ep(.,)λ(.)(G)
≤ c7 Ω f0,

1
n

􏼒 􏼓
p0(.,)λ(.)

+Ω f1,
1
n

􏼒 􏼓
p1(.,)λ(.)

􏼢 􏼣.

(39)

Proof. Let f ∈ Ep(.,)λ(.)(L), then f0 ∈ Ep0(.,)λ(.)(c0) and
f1 ∈ Ep1(.,)λ(.)(c0).

Putting ϕ(ξ) and ϕ1(ξ) in place of w in (37), we obtain

f(ξ) � f
+
0(ϕ(ξ)) − f

−
0(ϕ(ξ)), ξ ∈ L1, (40)

f(ξ) � f
+
1 ϕ1(ξ)( 􏼁 − f

−
1 ϕ1(ξ)( 􏼁, ξ ∈ L2. (41)

Let t ∈ ext L1, then from (24), we have

􏽘

n

k�0
akFk(t) � 􏽘

n

k�0
akϕ

k
(t) +

1
2πi

􏽚
L1

􏽐
n
k�0akϕ

k
(ξ)

ξ − t
dξ, (42)

and using (40), we get

􏽘

n

k�0
akFk(t) � 􏽘

n

k�0
akϕ

k
(t) +

1
2πi

􏽚
L1

􏽐
n
k�0 akϕ

k
(ξ) − f

+
0(ϕ(ξ))

ξ − t
dξ

+
1
2πi

􏽚
L1

f(ξ)

ξ − t
dξ +

1
2πi

􏽚
L1

f
−
0(ϕ(ξ))

ξ − t
dξ.

(43)

Since f−
0(ϕ(ξ)) ∈ Ep0(.,)λ(.)(G∞1 ),

1
2πi

􏽚
L1

f
−
0(ϕ(ξ))

ξ − t
dξ � −f

−
0(ϕ(t)). (44)

)us,

􏽘

n

k�0
akFk(t) � 􏽘

n

k�0
akϕ

k
(t) +

1
2πi

􏽚
L1

􏽐
n
k�0akϕ

k
(ξ) − f

+
0(ϕ(ξ))

ξ − t
dξ

+
1
2πi

􏽚
L1

f(ξ)

ξ − t
dξ − f

−
0(ϕ(t)).

(45)

Now, for t ∈ ext L2, from (27) and (41), we have

􏽘

n

k�1
bk

􏽥Fk

1
t

􏼒 􏼓 � −
1
2πi

􏽚
L2

􏽐
n
k�1bkϕ

k
1(ξ)

ξ − t
dξ

�
1
2πi

􏽚
L2

f
+
1 ϕ1(ξ)( 􏼁 − 􏽐

n
k�1bkϕ

k
1(ξ)

ξ − t
dξ

−
1
2πi

􏽚
L2

f(ξ)

ξ − t
dξ.

(46)

For any t ∈ extL1, we have

1
2πi

􏽚
L1

f(ξ)

ξ − t
dξ �

1
2πi

􏽚
L2

f(ξ)

ξ − t
dξ. (47)

Because extL1 ⊂ extL2, the relations (45), (46), and (47)
are valid for any t ∈ ext L1, and this gives
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􏽘

n

k�0
akFk(t) + 􏽘

n

k�1
bk

􏽥Fk(1/t) �� 􏽘
n

k�0
akϕ

k
(t) − f

−
0(ϕ(t)) −

1
2πi

􏽚
L1

f
+
0(ϕ(ξ)) − 􏽐

n
k�0akϕ

k
(ξ)

ξ − t
dξ

+
1
2πi

􏽚
L2

f
+
1 ϕ1(ξ)( 􏼁 − 􏽐

n
k�1bkϕ

k
1(ξ)

ξ − t
dξ.

(48)

Taking the limit as t⟶ z ∈ L1 along nontangential
path outside L1 for almost every z ∈ L1, we get

f(z) − 􏽘
n

k�0
akFk(z) + 􏽘

n

k�1
bk

􏽥Fk

1
z

􏼒 􏼓⎛⎝ ⎞⎠

� f
+
0(ϕ(z)) − 􏽘

n

k�0
akϕ

k
(z) +

1
2

f
+
0(ϕ(z)) − 􏽘

n

k�0
akϕ

k
(z)⎛⎝ ⎞⎠

+ SL1
f

+
0(ϕ(z)) − 􏽘

n

k�0
akϕ

k
(z)⎛⎝ ⎞⎠ −

1
2πi

􏽚
L2

f
+
1 ϕ1(ξ)( 􏼁 − 􏽐

n
k�1bkϕ

k
1(ξ)

ξ − t
dξ.

(49)

)e rational function Rn(f,z) is defined as

Rn(f, z) � 􏽘
n

k�0
akFk(z) + 􏽘

n

k�1
bk

􏽥Fk

1
z

􏼒 􏼓. (50)

By (51), Minkowski’s inequality, and (35), we get

f − Rn(f, .)
����

����Lp(.,)λ(.) L1( )≤ c8 f
+
0(w) − 􏽘

n

k�0
akw

k

���������

���������
Lp0(.,)λ(.) c0( )

+ c9 f
+
1(w) − 􏽘

n

k�0
bkw

k

���������

���������
Lp1(.,)λ(.) c0( )

. (51)

And from Lemma 1, we obtain

f − Rn(f, .)Lp(.,)λ(.) L1( )≤ c10

Ω f0,
1
n

􏼒 􏼓
p0(.,)λ(.)

+Ω f1,
1
n

􏼒 􏼓
p1(.,)λ(.)

􏼨 􏼩.

(52)

Let t′ ∈ int L2. From (26) and (41), we get

􏽘

n

k�1
bk

􏽥Fk

1
t′

􏼒 􏼓 � 􏽘
n

k�1
bkϕ

k
1 t′( 􏼁 −

1
2πi

􏽚
L2

􏽐
n
k�1bkϕ

k
1(ξ)

ξ − t′
dξ

� 􏽘
n

k�1
bkϕ

k
1 t′( 􏼁 −

1
2πi

􏽚
L2

􏽐
n
k�1bkϕ

k
1(ξ) − f

+
1 ϕ1(ξ)( 􏼁

ξ − t′
dξ

−
1
2πi

􏽚
L2

f(ξ)

ξ − t′
dξ − f

−
1 ϕ1 t′( 􏼁( 􏼁.

(53)
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and for any t′ ∈ int L1, from (24) and (40), we have

􏽘

n

k�1
akFk t′( 􏼁 �

1
2πi

􏽚
L1

􏽐
n
k�0akϕ

k
(ξ)

ξ − t′
dξ

�
1
2πi

􏽚
L1

􏽐
n
k�0akϕ

k
(ξ) − f

+
0(ϕ(ξ))

ξ − t′
dξ

+
1
2πi

􏽚
L1

f(ξ)

ξ − t′
dξ.

(54)

Since int L2 ⊂ int L1, relations (19) and (20) are valid for
t′ ∈ intL2, and this gives

􏽘

n

k�0
akFk t′( 􏼁 + 􏽘

n

k�1
bk

􏽥Fk 1/t′( 􏼁 �
1
2πi

􏽚
L1

􏽐
n
k�0akϕ

k
(ξ) − f

+
0(ϕ(ξ))

ξ − t′
dξ −

1
2πi

􏽚
L2

􏽐
n
k�1bkϕ

k
1(ξ) − f

+
1 ϕ1(ξ)( 􏼁

ξ − t′
dξ

− f
−
1 ϕ1 t′( 􏼁( 􏼁 + 􏽘

n

k�1
bkϕ

k
1 t′( 􏼁.

(55)

Taking the limit as t′ ⟶ z ∈ L2 along nontangential
path inside L2 for almost every z ∈ L2, we get

f(z) − 􏽘
n

k�0
akFk(z) + 􏽘

n

k�1
bk

􏽥Fk

1
z

􏼒 􏼓⎛⎝ ⎞⎠ � f
+
1 ϕ1(z)( 􏼁 −

1
2

􏽘

n

k�1
bkϕ

k
1(z) − f

+
1 ϕ1(z)( 􏼁⎛⎝ ⎞⎠

− SL2
􏽘

n

k�1
bkϕ

k
1(z) − f

+
1 ϕ1(z)( 􏼁⎛⎝ ⎞⎠ −

1
2πi

􏽚
L1

􏽐
n
k�0akϕ

k
(ξ) − f

+
0(ϕ(ξ))

ξ − z
dξ.

(56)

Using Minkowski’s inequality and (35), we get

f − Rn(f, .)
����

����Lp(.,)λ(.) L2( )≤ c11 f
+
1(w) − 􏽘

n

k�1
bkw

k

���������

���������
Lp0(.,)λ(.) c0( )

+c12 f+
0(w) − 􏽘

n

k�0
akw

k

���������

���������
Lp1(.,)λ(.) c0( )

.

(57)

By Lemma 1, we obtain

f − Rn(f, .)
����

����Lp(.,)λ(.) ≤ c13

· Ω f0,
1
n

􏼒 􏼓
p0(.,)λ(.)

+Ω f1,
1
n

􏼒 􏼓
p1(.,)λ(.)

􏼨 􏼩.

(58)

From (52) and (58), we obtain

f − Rn(f, .)
����

����Ep(.,)λ(.)(G)
≤ c7

Ω f0,
1
n

􏼒 􏼓
p0(.,)λ(.)

+Ω f1,
1
n

􏼒 􏼓
p1(.,)λ(.)

􏼨 􏼩.

(59)
□
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