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In this work, we apply the operational matrix based on shifted Legendre polynomials for solving Prabhakar fractional di�erential
equations. �e Prabhakar derivative is de�ned in three-parameter Mittag-Le�er function. We achieve this by �rst deriving the
analytical expression for Prabhakar derivative of xp where p is positive integer, via integration. Hence, for the �rst time, the
operational matrix method for Prabhakar derivative is derived by using the properties of shifted Legendre polynomials. Hence, we
transform the Prabhakar fractional di�erential equations into a system of algebraic equations. By solving the system of algebraic
equations, we were able to obtain the numerical solution of fractional di�erential equations de�ned in Prabhakar derivative. Only
a few terms of shifted Legendre polynomials are needed for achieving the accurate solution.

1. Introduction

�e operational matrix method is one of the powerful tools for
solving fractional di�erential equations. �is method uses the
concept of replacing a symbol with another symbol, i.e.,
replacing symbol fractional derivative, Dα, with another
symbol, which is an operational matrix, Pα. In [1], the authors
had derived shifted Legendre operational matrix for solving
fractional di�erential equations, de�ned in Caputo sense.
�en, researchers started to apply the various types of poly-
nomials to derive the operational matrix for solving various
types of fractional calculus problems, including Genocchi
operational matrix for fractional partial di�erential equations
[2], Laguerre polynomials operational matrix for solving
fractional di�erential equations with non-singular kernel [3],
and Müntz–Legendre polynomial operational matrix for
solving distributed order fractional di�erential equations [4].

Recently, apart from the fractional di�erential equation
de�ned in Caputo sense, this kind of operational matrix
method had been extended to tackle another type of frac-
tional derivative or operator, which includes the

Caputo–Fabrizio operator [5] and Atangana–Baleanu de-
rivative [6, 7]. In this research direction, the operational
matrix method is either an operational matrix of derivative
or operational matrix of integration based on certain
polynomials. �e operational matrix method is possible to
apply to another type of fractional derivatives if there is an
analytical expression for xp (where p is integer positive) in
the sense of certain fractional derivatives or operators.
Hence, we extend this operational matrix to tackle operator
de�ned by one parameter Mittag–Le�er function, i.e.
Antagana–Baleunu derivative [6] to the operator that de-
�ned by using three-parameter Mittag–Le�er function, so-
called Prabhakar fractional integrals or derivative. In short,
we aim to solve the following fractional di�erential equation
de�ned in Prabhakar sense:

Dc
α,β,ωy(x) � g(x, y(x)), (1)

subject to the initial condition y(0) � a.
On top of that, Prabhakar introduced a type of con-

volution-type integral operator, called Prabhakar integral in
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[8]. Recently, Prabhakar fractional integrals or derivative
had received more and more attention by the researchers
[9–11]. 'is kind of integral had been applied in anomalous
dielectrics [12], viscoelasticity [13], kinetic equation [14],
and diffusion equation [15]. Besides that, some new concepts
or theories were derived to suit this Prabhakar operator, for
example, in [16], Hyers–Ulam stability of fractional differ-
ential equations with Prabhakar derivatives was investigated,
and stability analysis of fractional differential equations with
Prabhakar derivative was studied in [17]. Furthermore, since
this Prabhakar operator involves more parameters, existing
numerical methods may not be applicable for solving the
fractional differential equation defined in the Prabhakar
sense. Hence, some works had been done including nu-
merical approximation to Prabhakar fractional
Sturm–Liouville problem [18], and the Prabhakar derivative
was approximated by using series representations in [19].
However, the work for solving numerically the Prabhakar
fractional differential equations is still less. Hence, we intend
to derive a new operational matrix based on shifted Legendre
polynomials to approximate Prabhakar derivative, hence
solving the Prabhakar fractional differential equations by
using a collocation scheme.

'is paper is organized as follows.We will briefly explain
some preliminary concepts including the Prabhakar frac-
tional integral and derivative in Section 2. Section 2.3
presents analytical expression for Prabhakar integral and
derivative for xp. Section 3 discusses the derivation of a new
operational matrix based on shifted Legendre polynomials
for Prabhakar fractional derivative. In Section 4, we explain
the new scheme and the error analysis. Some examples for
solving fractional differential equations defined in Prabhakar
derivative using our proposed method via the new opera-
tional matrix will be presented in Section 5. Conclusion and
some recommendations are highlighted in Section 6.

2. Preliminaries

2.1. Prabhakar Fractional Integral and Derivative. In this
section, we will present some basic concepts related to
Prabhakar fractional integral and derivative.

Definition 1. 'e one-parameter Mittag-Leffler function is
defined as follows:

Eαz � 􏽘
∞

k�0

z
k

Γ(αk + 1)
, Re(α)> 0. (2)

Definition 2. 'e three-parameter generalization of Mittag-
Leffler function is given by

E
c

α,β(z) � 􏽘

∞

k�0

Γ(c + k)

Γ(c)Γ(αk + β)

z
k

k!
, Re(α)> 0. (3)

Definition 3. For f ∈ L1(a, b), Prabhakar fractional integral
is defined by

I
c

α,β,ω,a+f(x) � 􏽚
x

a
(x − τ)

β− 1
E

c

α,β ω(x − τ)
α

( 􏼁f(τ)dτ, (4)

where Re(α)> 0, Re(β)> 0, and c, α, β,ω ∈ C.
Normally, the definition in (4) can be written as

I
c

α,β,ω,a+
f(x) � 􏽚

x

a
e

c

α,β(x − τ;ω)f(τ)dτ, (5)

where

e
c

α,β(x;ω) � x
β− 1

E
c

α,β ωx
α

( 􏼁. (6)

Using (6), we have the following Prabhakar fractional
derivative and regularized Prabhakar derivative.

Definition 4. For 0< β< 1, f(x) ∈ L1[a, b], and Prabhakar
fractional derivative (in Riemann–Liouville sense) is defined
by

R
D

c

α,β,ω,a+f(x) �
d

m

dx
m 􏽚

x

a
e

− c

α,m− β(x − τ;ω)f(τ)dτ, (7)

where Re(α)> 0, Re(β)> 0, and c, α, β,ω ∈ C.

Definition 5. For f(x) ∈ ACm(a, b), 0≤ a<x< b≤∞, the
regularized Prabhakar derivative (in Caputo sense) is de-
fined by

c
D

c

α,β,ω,a+f(x) � 􏽚
x

a+
e

− c

α,m− β(x − τ;ω)
dm

f(τ)

dτm dτ, (8)

where Re(α)> 0, Re(β)> 0, and c, α, β,ω ∈ C.

2.2. Shifted Legendre Polynomials. 'e analytical form of the
shifted Legendre polynomials Lj(x) of degree j is given by

Lj(x) � 􏽘

j

h�0

(− 1)
j+h

(j + h)!

(j − h)!(h!)
2 x

h
. (9)

A function y(x), which is square integrable in [0, 1], can
be expressed in terms of shifted Legendre polynomials as

y(x) � 􏽘
∞

j�0
cjLj(x), (10)

where the coefficient cj is given by

cj � (2j + 1) 􏽚
1

0
y(x)Lj(x)dx, j � 0, 1, 2, . . . . (11)

(11) can be written like that due to the orthogonality
condition of shifted Legendre polynomials

􏽚
1

0
Li(x)Lj(x)dx �

1
2i + 1

for i � j,

0 for i≠ j.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(12)

In this work, only the first N + 1 term of shifted Leg-
endre polynomials is considered. So, we have
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y(x) � 􏽘
N

j�0
cjPj(x)

� CTL(x),

(13)

where

CT
� c0, c1, c2, . . . , cN􏼂 􏼃,

L(x) � L0(x), L1(x), L2(x), . . . , LN(x)􏼂 􏼃
T
.

(14)

2.3. Analytical Expression for Prabhakar Integral and De-
rivative for xp. In this section, we find the analytical ex-
pression for Prabhakar integration as well as Prabhakar
derivative for f(x) � xp where p is positive integer.

Theorem 1. 5e Prabhakar integration for f(x) � xp where
p is positive integer can be defined as follows:

I
c

α,β,ωx
p

� 􏽘
∞

k�0

Γ(c + k)ωk
p!x

αk+β+p

Γ(c)Γ(αk + β + p + 1)Γ(k + 1)
. (15)

Proof. For sake of simplicity, we let a � 0 (that in equation
(4)); by using Definition 3 and equations (5) and (6),

I
c

α,β,ωx
p

� 􏽚
x

0
(x − τ)

β− 1
􏽘

∞

k�0

Γ(c + k)ωk
(x − τ)

αk

Γ(c)Γ(αk + β)k!
τpdτ

� 􏽘
∞

k�0

Γ(c + k)ωk
􏽒

x

0 (x − τ)
β− 1

(x − τ)
αkτpdτ

Γ(c)Γ(αk + β)k!
.

(16)

By using integration by parts, we obtain

􏽚
x

0
(x − τ)

αk+β− 1τpdτ �
Γ(αk + β)p!x

αk+β+p

Γ(αk + β + p + 1)
. (17)

Substituting (17) into (16) and after some algebra ma-
nipulation, we obtain

I
c

α,β,ωx
p

� 􏽘

∞

k�0

Γ(c + k)ωkΓ(αk + β)p!x
αk+β+p/Γ(αk + β + p + 1)

Γ(c)Γ(αk + β)k!

� 􏽘
∞

k�0

Γ(c + k)ωk
p!x

αk+β+p

Γ(c)Γ(αk + β + p + 1)Γ(k + 1)
.

(18)

'e expression in 'eorem 1 is equivalent to that in
Lemma 4 [20]. If c � α � 1, β � 2,ω � 3, p � 2, 'eorem 1,
Definition 3, or Lemma 4 in [20] gives the same result which
is 2/81e3x − 1/9x3 − 1/9x2 − 2/27x − 2/81. □

Theorem 2. 5e Prabhakar derivative of order 0< c, α, β< 1
for f(x) � xp where p is positive integer can be defined as
follows:

D
c

α,β,ωx
p

� 􏽘
∞

k�0

Γ(− c + k)ωkΓ(p + 1)x
αk− β+p

Γ(− c)Γ(αk − β + p + 1)Γ(k + 1)
, (19)

where c is not equal to integer positive and α≠ β.

Proof. Taking m � 1 in Definition 4, for sake of simplicity,
we let a � 0 (that in equation (7)), and using equation (6)
and applying the similar approach as in the proof of 'e-
orem 1, we obtain the following results:

D
c

α,β,ωx
p

�
d
dx

􏽚
x

0
e

− c

α,1− β(x − τ;ω)τpdτ

� 􏽚
x

0
− (x − τ)

− β− 1β 􏽘

∞

k�0

Γ(− c + k)ωk
(x − τ)

αk

Γ(− c)Γ(αk − β + 1)k!
τp

dτ

+ 􏽚
x

0
(x − τ)

− β
􏽘

∞

k�0

Γ(− c + k)ωk
(x − τ)

αk
kα

(x − τ)Γ(− c)Γ(αk − β + 1)k!
τpdτ

� − β 􏽘
∞

k�0

Γ(− c + k)ωk
􏽒

x

0 (x − τ)
αk− β− 1τpdτ

Γ(− c)Γ(αk − β + 1)k!

+ α 􏽘
∞

k�0

Γ(− c + k)ωk
􏽒

x

0 (x − τ)
αk− β− 1

x
pdτ

Γ(− c)Γ(αk − β + 1)Γ(k)
.

(20)

By using integration by parts, we obtain

􏽚
x

0
(x − τ)

αk− β− 1τpdτ �
Γ(αk − β)p!x

αk− β+p

Γ(αk − β + p + 1)
. (21)

Substituting (21) into (20) and after some algebra ma-
nipulation, we obtain

D
c

α,β,ωx
p

� − β 􏽘
∞

k�0

Γ(− c + k)ωkΓ(p + 1)x
αk− β+p

Γ(− c)Γ(αk − β + p + 1)(αk − β)Γ(k)k

+ α 􏽘
∞

k�0

Γ(− c + k)ωkΓ(p + 1)x
αk− β+p

Γ(− c)Γ(αk − β + p + 1)Γ(k)(αk − β)
,

(22)

where α≠ β. (22) can be further reduced as follows:

D
c

α,β,ωx
p

� 􏽘
∞

k�0

Γ(− c + k)ωkΓ(p + 1)x
αk− β+p

Γ(− c)Γ(αk − β + p + 1)Γ(k + 1)
. (23)

In (22), since the denominator consists of αk − β, we
must have α≠ β. For m � 1, 'eorem 2 for xp is applicable
for both Prabhakar derivative and regularized Prabhakar
derivative. For regularized Prabhakar derivative [10], we
have,

C
D

c

α,β,ωx
p

� 0, p � 0, 1, . . . , m − 1, m � ⌈β⌉. (24)

'e result obtained here can be verified via the series
representation of fractional calculus operators involving
generalized Mittag-Leffler functions (see 'eorem 2.1 in
19). □
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3. Operational Matrix for Prabhakar
Fractional Derivative

In this section, we will derive the new operational matrix
based on shifted Legendre Polynomials for Prabhakar
fractional derivative.

Theorem 3. Suppose L(x) is the shifted Legendre Polyno-
mials vector

L(x) � L0(x), L1(x), L2(x), . . . , LN(x)􏼂 􏼃
T
. (25)

Let 0< α< 1, m � 1. 5en,

D
c

α,β,ωy(x) � Pc

α,β,ωL(x), (26)

where Pα is (N + 1) × (N + 1) operational matrix of frac-
tional derivative of order α in Prabhakar sense and is defined
as follows:

Pc

α,β,ω �

0 0 · · · 0

⋮ ⋮ · · · ⋮

0 0 · · · 0

􏽘

⌈β⌉

h�⌈β⌉

θc

j,h,α,β,ω,0 􏽘

⌈β⌉

h�⌈β⌉

θc

j,h,α,β,ω,1 · · · 􏽘

⌈β⌉

h�⌈β⌉

θc

j,h,α,β,ω,N

⋮ ⋮ · · · ⋮

􏽘

j

h�⌈β⌉

θc

j,h,α,β,ω,0 􏽘

j

h�⌈β⌉

θc

j,h,α,β,ω,1 · · · 􏽘

j

h�⌈β⌉

θc

j,h,α,β,ω,N

⋮ ⋮ · · · ⋮

􏽘

N

h�⌈β⌉

θc

j,h,α,β,ω,0 􏽘

N

h�⌈β⌉

θc

j,h,α,β,ω,1 · · · 􏽘
N

h�⌈β⌉

θc

j,h,α,β,ω,N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(27)

where θc

j,h,α,β,ω,l is given by

θc

j,h,α,β,ω,l � 􏽘

j

h�⌈α⌉

(− 1)
j+h

(j + h)!

(j − h)!(h!)
2 􏽘

∞

k�0

·
Γ(− c + k)ωkΓ(h + 1)

Γ(− c)Γ(αk − β + h + 1)Γ(k + 1)
cl,

(28)

and cl can be obtained from inner product via (11) and ⌈⌉ is
the ceiling function.

Proof. From (9), we can write the shifted Legendre poly-
nomials in analytical form and its fractional derivative in
Prabhakar sense is given as in the following equation:

D
c

α,β,ωL(x) � 􏽘

j

h�0

(− 1)
j+h

(j + h)!

(j − h)!(h!)
2 D

c

α,β,ω x
h

􏼐 􏼑. (29)

D
c

α,β,ω(xh) can be calculated using 'eorem 2.

D
c

α,β,ωL(x) � 􏽘

j

h�0

(− 1)
j+h

(j + h)!

(j − h)!(h!)
2 􏽘

∞

k�0

·
Γ(− c + k)ωkΓ(h + 1)x

αk− β+h

Γ(− c)Γ(αk − β + h + 1)Γ(k + 1)
.

(30)

Let f(x) � xαk− β+h; by using truncated shifted Legendre
polynomials, we have f(x) � 􏽐

N
l�0 clLl(x). Substituting this

in (30), we obtain

D
c

α,β,ωL(x) � 􏽘
N

l�0
􏽘

j

h�⌈β⌉

(− 1)
j+h

(j + h)!

(j − h)!(h!)
2 􏽘

∞

k�0

Γ(− c + k)ωkΓ(h + 1)

Γ(− c)Γ(αk − β + h + 1)Γ(k + 1)
cl

⎛⎝ ⎞⎠Ll(x)

� 􏽘
N

l�0
􏽘

j

h�⌈β⌉

θc

j,h,α,β,ω,l
⎛⎝ ⎞⎠Ll(x),

(31)

where θc

j,h,α,β,ω,l
is given in (28). Rewriting (31) in vector

form, we have

D
c

α,β,ωL(x) � 􏽘

j

h�⌈β⌉

θc

j,h,α,β,ω,0 􏽘

j

h�⌈β⌉

θc

j,h,α,β,ω,1 . . . 􏽘

j

h�⌈β⌉

θc

j,h,α,β,ω,N
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦L(x),

(32)

where j � ⌈β⌉ . . . N. For j � 0, 1, . . . , ⌈β⌉ − 1, we have

D
c

α,β,ωL(x) � [0, 0, . . . 0]L(x), j � 0, 1, . . . , ⌈β⌉ − 1. (33)

Hence, by combining (32) and (33), the Legendre op-
erational matrix for Prabhakar derivative is proved as in
(27).

Since this is the first time that operational matrix for
Prabhakar derivative is derived, to show that the operational
matrix of Prabhakar derivative is correct, we find the exact
solution of Prabhakar derivative with c � 1/2, α � 1/2, β �

1/4,ω � 1/4 for first few terms of shifted Legendre poly-
nomials. 'e corresponding operational matrix when N � 2
is given by
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0 0 0

1.141646881 0.8989013133 − 0.1256075578

− 0.8989013137 0.8036012368 1.256894671

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (34)

'e comparison between the exact solution for Prab-
hakar derivative for L1(x) and L2(x) with the approxima-
tion using operational matrix as in (27) is shown in Figures 1
and 2. 'e accuracy of the approximation can be increased
by using bigger N. □

4. Proposed Scheme and Error Analysis

Basically, in order to solve fractional differential equations in
Prabhakar sense as in equation (1) using the operational
matrix method, the following procedure can be applied.

Step 1. Write each terms of fractional differential equations
in terms of shifted Legendre polynomials, say D

c

α,β,ω

y(x) + y(x) � g(x). Using (26), we have D
c

α,β,ω

y(x) � Pc

α,β,ωL(x). Also, we can have y(x) � 􏽐
N
k�0 ckL(x)

and g(x) � 􏽐
N
k�0 gkL(x).

Step 2. From Pc

α,β,ωL(x) + 􏽐
N
k�0 ckL(x) � 􏽐

N
k�0 gkL(x), we

obtain a system of algebraic equation for the unknown
variables ck. Solving the system to obtain the values for ck,
the solution of fractional differential equations in Prabhakar
sense is given by y(x) � 􏽐

N
k�0 ckL(x).

For the error estimation for the numerical scheme, let us
consider the residual correction procedure which can be
used to estimate the absolute error. From equation (1), i.e.,
D

c

α,β,ωy(x) � g(x, y(x)),

D
c

α,β,ωy(x) − g(x, y(x)) � 0. (35)

If N⟶∞, using the operational matrix via shifted
Legendre polynomials and approximate g(x, y(x)) via
shifted Legendre polynomials, we obtain

Pc

α,β,ωL(x) − g x, yN(x)( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ≈ 0, N⟶∞. (36)

However, in practical, N is finite, say m term of shifted
Legendre polynomials had been used. 'ere will be a small
error, em.

D
c

α,β,ωy(x) − Pc

α,β,ωL(x)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌2

+ g x, y∞(x)( 􏼁 − g x, yN(x)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌2 � em, N � m.
(37)

Let e∗m is the approximation solution of (1) obtained by
the operational matrix method, if ‖em − e∗m‖ϵ are sufficiently
small, then the absolute errors em can be estimated by e∗m.
Hence, the optimal value m (i.e. N) can be obtained.

5. Numerical Examples

In this section, some examples are presented to illustrate the
applicability and accuracy of this new operational matrix for
the Prabhakar derivative. All the computations are done by
using the software Maple.

Example 1. Consider a simple fractional differential equa-
tion defined in Prabhakar derivative.

D
c

α,β,ωy(x) � −
32x

7/4

315Γ(3/4)π
7

���
2x

√
Γ

3
4

􏼒 􏼓􏼒 􏼓
2

2F2
1
4
,
3
4
;
3
2
,
13
4

; x􏼒 􏼓􏼠

− 152F2
− 1
4

,
1
4
;
1
2
,
11
4

; x􏼒 􏼓π􏼓,

(38)

where c � 1/2, α � 1/2, β � 1/4,ω � 1. 'e exact solution is
given by y(x) � x2.

By using the proposed method, we obtain the following
approximation as shown in Table 1. Here, we compare it
with the iteration method introduced recently in [17] with
h � 0.02. From the numerical result, by using very small
terms, i.e., N � 2, we were able to obtain a good result
compared to the iteration method in [17].

Exact Solution
Approximate Solution

0.2

0.4

0.6

0.8

1.0

1.2

D
 (x

)

1.4

1.6

1.8

0.2 0.4 0.6 0.8 10
x

Figure 1: Comparison of the exact solution and approximation for
L1(x).

Exact Solution
Approximate Solution

–1.5

–1

–0.5

0

0.5

1

D
 (x

) 0.4 0.6 0.8 10.2
x

Figure 2: Comparison of the exact solution and approximation for
L2(x).
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Example 2. Consider a simple fractional differential equa-
tion defined in Prabhakar derivative.

D
c

α,β,ωy(x) + y(x) � 2x
2

+
32

�
2

√
Γ(3/4)x

5/4

5π 3F3
− 1
6

,
1
6
,
1
2
;
1
3
,
2
3
,
9
4
;

x

64
􏼒 􏼓

−
72x

19/12

133Γ(7/12) 3F3
1
6
,
1
2
,
5
6
;
2
3
,
4
3
,
31
12

;
x

64
􏼒 􏼓 −

9x
23/12

506Γ(11/12) 3F3
1
2
,
5
6
,
7
6
;
4
3
,
5
3
,
35
12

;
x

64
􏼒 􏼓,

(39)

where c � 1/2, α � 1/3, β � 3/4,ω � 1/4. 'e exact solution
is given by y(x) � 2x2.

By using the proposed method, we obtain the following
approximation as shown in Table 2. Here, we compare it
with the iteration method introduced recently in [17] with
smaller h � 0.01. From the numerical result, by using very
small terms, i.e., N � 2, we were able to obtain a good result
compared to the iteration method in [17].

As can be seen from both examples, the absolute error
for iteration method introduced in [17] will increase when
the iteration step is increasing. 'is will not occur for the
operational matrix method.

6. Conclusion

In this paper, we had successfully derived a new operational
matrix based on shifted Legendre polynomials for solving
fractional differential equations in Prabhakar sense. Only a
few terms of shifted Legendre polynomials are needed to
obtain a good approximation. Using the same process, the

operational matrix can be derived using other types of
polynomials. For future work, we hope to extend the existing
fractional calculus problem such as in [21, 22] to Prabhakar
fractional derivative.
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