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A set S of vertices of a graph G is a dominating set of G if every vertex in V(G) is adjacent to some vertex in S. A minimum
dominating set in a graph G is a dominating set of minimum cardinality.*e cardinality of a minimum dominating set is called the
domination number of G and is denoted by c(G). Let G1 and G2 be disjoint graphs, H1 be a subgraph of G1, H2 be a subgraph of
G2, and f be an isomorphism from H1 to H2. *e amalgamation (the glued graph) of G1 and G2 at H1 and H2 with respect to f is
the graph G � G1⊲⊳G2

H1�fH2

obtained by forming the disjoint union of G1 and G2 and then identifying H1 and H2 with respect to f. In

this paper, we determine the domination numbers of the amalgamations of two cycles at connected subgraphs.

1. Introduction

Studying on several graph parameters is an interesting topic in
graph theory. *e domination number is one of the most
importance parameter which was introduced from 1958 by
Berge [1], called as “coefficient of external stability.” In 1962,
Ore [2] studied the same concept and used the name
“dominating set” and “domination number” for a graph. In
1977, Cockayane and Hedetneimi [3] gave a survey of the
results about dominating sets and used the notation c(G) for
the domination number of a graph. In 1998, a text devoted to
this subject was introduced by Haynes et al. [4]. Over 2000
articles on graph domination numbers have been studied
extensively (see, for example, [2, 3, 5–16]), in particular, the

study of the domination number of product graphs such as
the Cartesian product of two cycles [12], the cross product of
two paths [8], and the lexicographic product of two graphs
[16]. It is natural to investigate the domination number of the
amalgamation of two graphs, especially, the domination
number of the amalgamation of two paths or two cycles.

Let G1 and G2 be disjoint graphs and H1 ⊆G1 and
H2 ⊆G2 such that H1 � H2. Let f be an isomorphism from
H1 to H2. *e amalgamation (the glued graph) of G1 and G2
at H1 and H2 with respect to f is the graph G � G1⊲⊳G2

H1�fH2

obtained by forming the disjoint union of G1 and G2 and
then identifying H1 and H2 with respect to f. Equivalently,
G � G1⊲⊳G2

H1�fH2

is the graph such that

V(G) � V G1(  − V H1( ( ∪ V G2(  − V H2( ( ∪ (v, f(v))|v ∈ V H1(  

E(G) � E G1 − V H1( ( ∪E G2 − V H2( ( ∪ u, (v, f(v)) | u, v{ } ∈ E G1(  
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∪ u, (v, f(v)) | u, f(v)  ∈ E G2(  

∪ (u, f(u)), (v, f(v)) | u, v{ } ∈ E G1(  or f(u), f(v)  ∈ E G2(  . (1)

Note that if u, v{ } ∈ E(G1) and f(u), f(v)  ∈ E(G2),
then u, v{ } ∈ E(H1) and f(u), f(v)  ∈ E(H2). As an ex-
ample, Figure 1 illustrates the amalgamation G1⊲⊳G2

H1�fH2

with

respect to the isomorphism f: H1⟶ H2 defined by
f(v1) � u1, f(v2) � u2, and f(v3) � u4. *e amalgamation
or the glued graph of two graphs was defined from 2003 by
Uiyyasathian [17] for solving the maximal-clique partition
problem. In 2006, Promsakon and Uiyyasathian [18] gave an
upper bound of the chromatic number of glued graphs in
terms of the chromatic numbers of their original graphs.
Here, we are interested in finding the domination number of
an amalgamation of two cycles at connected subgraphs.

2. Basic Definitions and Results

A graph H is a subgraph of a graph G if V(H)⊆V(G) and
E(H)⊆E(G). In this case, we write H⊆G, and we say that G

contains H. When H⊆G but H≠G, we write H ⊂ G and call
H a proper subgraph of G. For a vertex v of a graph G, a
neighbor of v is a vertex adjacent to v in G. *e neighborhood
(or open neighborhood) N(v) of v is the set of neighbors of v.
*e closed neighborhoodN[v] is defined asN[v] � N(v) ∪ v{ }.
A vertex v in a graph G is said to dominate itself and each of its
neighbors, that is, v dominates the vertices in its closed
neighborhood. *erefore, v dominates 1 + deg(v) vertices. For
a set S of vertices of a graph G, the closed neighborhood N[S] is
defined asN[S] � ∪ v∈SN[v]. A set S of vertices of a graphG is
said to dominate the vertices in N[S]. A set S of vertices of a
graph G is a dominating set of G if every vertex of G is
dominated by some vertex in S, i.e., every vertex in V(G) − S is
adjacent to some vertex in S. A minimum dominating set in a
graph G is a dominating set of minimum cardinality. *e
cardinality of a minimum dominating set is called the domi-
nation number of G, and is denoted by c(G). A dominating set
of a graph G with minimum cardinality is called a c− set of G.

Since the cardinality of the vertex set of a graph G is
finite, the number of dominating sets of G with minimum
cardinality is finite too. *is gives, for a given graph G of
order n, the domination number can have a value from the
following range: 1≤ c(G)≤ n. In particular, c(G) � 1 if and
only if Δ � n − 1, where Δ is the maximum degree of G. Let
Pn denote a path of order n such that
V(Pn) � v1, v2, . . . , vn  and E(Pn) � vi, vi+1 | i � 1, 2,

. . . , n − 1}. Let Cn denote a cycle of order n (n≥ 3) such that
V(Cn) � v1, v2, . . . , vn  and E(Cn) � vi, vi+1 | i � 1, 2,

. . . , n}, where + is the addition modulo n. It is easy to obtain
that c(Cn) � c(Pn) � ⌈n/3⌉, where ⌈x⌉ is the least integer
greater than or equal to x.

A graph G is isomorphic to a graph H if there is a bi-
jection f: V(G)⟶ V(H) such that u, v{ } ∈ E(G) if and
only if f(u), f(v)  ∈ E(H). If such a function exists, it is
called an isomorphism from G to H and written by G � H. A
graph automorphism is simply an isomorphism from a graph

to itself. Let Iso(G, H) denote the set of all isomorphisms
from a graph G to a graph H and Aut(G) denote the set of all
automorphisms on a graph G. It is easy to see that if H is a
connected subgraph of Cn, then either
H � P1, P2, . . . , Pn− 1, Pn or Cn. Moreover, Aut(Pn, Pn) �

f1, f2  such that f1(vi) � vi and f2(vi) � vn− i+1 for all
i � 1, 2, . . . , n. Let H1 be a connected proper subgraph of Cr

and H2 a connected proper subgraph of Ct such that
V(Cr) � v1, v2, . . . , vr , E(Cr) � vi, vi+1 | i � 1, 2, . . . ,

r}, V(Ct) � u1, u2, . . . , ut , and E(Ct) � ui, ui+1 | i �

1, 2, . . . , t}. It follows that if H1 � H2, then H1 and H2 are
paths of order s for some s≤min r, t{ } such that V(H1) �

vi+1, vi+2, . . . , vi+s  and V(H2) � uj+1, uj+2, . . . , uj+s , for
some i ∈ 1, 2, . . . , r{ } and j ∈ 1, 2, . . . , t{ }. We thus get
Iso(H1, H2) � f1, f2  such that f1(vi+q) � uj+q and
f2(vi+q) � uj+(s− q)+1, for all q � 1, 2, . . . , s. Figures 2 and 3
illustrate Cr⊲⊳Ct

H1�f1H2

and Cr⊲⊳Ct
H1�f2H2

, respectively.

It is easily seen that Cr⊲⊳Ct
H1�f1H2

� Cr⊲⊳Ct
H1�f2H2

. Moreover, if

H1, H1′ ⊆Cr and H1 � H1′, then Cr⊲⊳Ct
H1�fH2

� Cr⊲⊳Ct

H1′�f′H2′
for all

f ∈ Iso(H1, H2) and f′ ∈ Iso(H1′, H2′). *is implies the

following lemma.

Lemma 1. Let H1 ⊆Cr, H1′ ⊆Cr, H2 ⊆Ct, and H2′ ⊆Ct be
connected such that H1 � H1′ � H2 � H2′. "en c(Cr⊲⊳Ct

H1�fH2

) �

c(Cr⊲⊳Ct

H1′�f′H2′
) for all f ∈ Iso(H1, H2) and f′ ∈ Iso(H1′, H2′).

*e next lemma gives the domination number of
Cr⊲⊳Ct
H1�fH2

for the case H1 � Cr.

Lemma 2. If H1 � Cr, then r � t and c(Cr⊲⊳Ct
H1�fH2

) � ⌈r/3⌉.

Proof. Let H1 � Cr and G � Cr⊲⊳Ct
H1�fH2

. Since H1 � H2, it

follows easily that r � t and G � Cr. We thus get

c(G) � c(Cr) � ⌈r/3⌉.
We now turn to the case H1 ≠Cr. So, H1 � H2 � Ps, for

some s≤min r, t{ }. Assume, without loss of generality, that
min r, t{ } � r, i.e., 3≤ r≤ t. For simplicity of notation, we
write G instead of Cr⊲⊳Ct

H1�fH2

. Based on the result of Lemma 1,

from now on, we can assume that V(H1) � v1, v2, . . . , vs 

and V(H2) � u1, u2, . . . , us , and the isomorphism
f: H1⟶ H2 is defined by f(vi) � ui, for all i � 1, 2, . . . , s.
So, (v1, u1), (v2, u2), . . . , (vs, us) ∈ V(G). Now, we consider
c(G) with H1 � P1. □

Lemma 3. If H1 � P1, then c(G)�⌈(r− 3)/3⌉+⌈(t− 3)/3⌉+1.
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Figure 2: *e amalgamation of Cr and Ct at connected proper subgraphs H1 and H2 with respect to f1.
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Figure 1: An amalgamation of G1 and G2 at H1 and H2 with respect to f.
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Figure 3: *e amalgamation of Cr and Ct at connected proper subgraphs H1 and H2 with respect to f2.
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Proof. Suppose that H1 � P1. *en, (v1, u1) ∈ V(G) (see
Figure 4(a)).

Let S � (v1, u1) ∪ vi| i ≡ 1 (mod3), 3≤ i≤ r − 1}∪
ui| i ≡ 1 (mod3), 3≤ i≤ t − 1}. We check at once that S is a
dominating set of G and |S| � ⌈(r − 3)/3⌉ +⌈(t − 3)/3⌉ + 1.
*is gives c(G)≤ ⌈(r − 3)/3⌉ + ⌈(t − 3)/3⌉ + 1. Let S′ be a c −

set of G.*us, (v1, u1) ∈ S′ since otherwise S′ is not a c− set of
G. In order to dominate the vertices in G − N[ (v1, u1) ], then
S − (v1, u1)  must contain at least ⌈(r − 3)/3⌉ + ⌈(t− 3)/3⌉

vertices.*is gives c(G) � |S′|≥ ⌈(r − 3)/3⌉ + ⌈(t− 3)/3⌉ + 1.
It follows that c(G) � ⌈(r − 3)/3⌉ + ⌈(t − 3) /3⌉ + 1.

Now, we consider c(G) with H1 � Pr and define sets S

and S′ as follows:

S � (vi, ui)|i ≡ 1 (mod3), 1≤ i≤ r ∪ ui|i ≡ 2

(mod3), r + 1≤ i≤ t},

S′ � (vi, ui)|i ≡ 1 (mod3), 1≤ i≤ r ∪ ui|i ≡ 1

(mod3), r + 1≤ i≤ t}.

Note that |S| � ⌈r/3⌉ + ⌈(t − r − 1)/3⌉ and |S′| � ⌈t/3⌉. □

Lemma 4. Let H1 � Pr. "en,

c(G) �
⌈r/3⌉ +⌈(t − r − 1)/3⌉ if r ≡ 0(mod3) and t ≡ 1(mod3),

⌈t/3⌉ otherwise.


(2)

Proof. Suppose that H1 � Pr. *en, (v1, u1), . . . ,

(vr, ur) ∈ V(G) (see Figure 5(a)).
If r � t, then G is the graph obtained from Ct by joining

v1 and vt with a new edge. It follows easily that
c(G) � c(Ct) � ⌈t/3⌉. For r≠ t, we consider two cases. □

Case 1. r ≡ 0 (mod3) and t ≡ 1 (mod3). We check
at once that the set S defined above is a dominating set
of G. *us, c(G)≤ ⌈r/3⌉ + ⌈(t − r − 1)/3⌉. We now
prove that c(G)≥ ⌈r/3⌉ + ⌈(t − r − 1)/3⌉. Let S1 be a c−

set of G. In order to dominate (v1, u1), S1 must contain
at least one vertex of (v1, u1), (v2, u2), (vr, ur), ut .
*ere are two possible cases: either (v1, u1) ∈ S1 or
(vr, ur) ∈ S1 since otherwise S1 is not a c− set of G. We
give the proof only for the case (v1, u1) ∈ S1; the proof
of the case (vr, ur) ∈ S1 is similar. Consider the vertices
of G − N[ (v1, u1) ] � Pr− 3 ∪Pt− r− 1. In order to dom-
inate (v3, u3), . . . , (vr− 1, ur− 1) and ur+1, . . . , ut− 1, there
are at least ⌈(r − 3)/3⌉ + ⌈(t − r − 1)/3⌉ vertices of
(v2, u2), . . . , (vr− 1, ur− 1)}∪ ur+1, . . . , ut  in S1 − (v1,

u1)}. *is gives |S1|≥ 1 + ⌈(r − 3)/3⌉ + ⌈(t − r − 1)/3⌉,
so c(G)≥ ⌈r/3⌉ +⌈(t − r − 1)/3⌉. Hence, c(G) � ⌈r/3⌉

+⌈(t − r − 1)/3⌉.
Case 2. r ≡ 0 (mod3) or t ≡ 1 (mod3). We see at
once that the set S′ defined above is a dominating set of
G. *us, c(G)≤ ⌈t/3⌉. We now prove that c(G)≥ ⌈t/3⌉.
Let S2 be a c− set of G. We consider two subcases.

Case 2.1. r ≡ 0 (mod3) and t ≡ 0 (mod3) and
r ≡ 1 (mod3) and t ≡ a (mod3), for some
a ∈ 0, 1, 2{ }, or r ≡ 2 (mod3) and t ≡ a (mod3),
for some a ∈ 0, 2{ }.

Case 2.1.1 (v1, u1) ∈ S2 or (vr, ur) ∈ S2. If (v1,

u1) ∈ S2 and t> r + 1, then, in order to dominate
(v3, u3), . . . , (vr− 1, ur− 1) and ur+2, . . ., ut− 1, there are
at least ⌈(r − 3)/3⌉ + ⌈(t − r − 2)/3⌉ vertices of
(v2, u2), . . . , (vr, ur) ∪ ur+1, . . . , ut  in S2 − (v1, u1

)}. It follows that |S2|≥ 1 + ⌈(r− 3)/3⌉ + ⌈(t − r − 2)

/3⌉ � ⌈t/3⌉. If (v1, u1) ∈ S2 and t � r + 1, then
ur+2, . . . ut− 1  � ∅. So, in order to dominate the
vertices in G − N[ (v1, u1) ], there are at least
⌈(r − 3)/3⌉ vertices of (v2, u2), . . . , (vr, ur)  in
S2 − (v1, u1) . *is gives |S2|≥ 1 + ⌈(r − 3)/3⌉ � ⌈t

/3⌉. Similarly, if (vr, ur) ∈ S2, then |S2|≥ ⌈t/3⌉. *us,
c(G)≥ ⌈t/3⌉.
Case 2.1.2. (v1, u1) ∉ S2 and (vr, ur) ∉ S2. Clearly,
c(G) � |S2|≥ c(Ct) � ⌈t/3⌉.

Case 2.2. r ≡ 0 (mod3) and t ≡ 2 (mod3) or
r ≡ 2 (mod3) and t ≡ 1 (mod3).

Case 2.2.1. either (v1, u1) ∈ S2 or (vr, ur) ∈ S2. If
(v1, u1) ∈ S2, then, in order to dominate
(v3, u3), . . . , (vr, ur), ur+1, . . ., ut− 1 in G, there are at
least ⌈(t − 3)/3⌉ vertices of (v2, u2), . . . , (vr,

ur), ur+1, . . . , ut}, in S2 − (v1, u1) . It follows that
|S2|≥ 1 + ⌈(t − 3)/3⌉ � ⌈t/3⌉. Similarly, if (vr, ur) ∈
S2, then |S2|≥ ⌈t/3⌉. *us, c(G)≥ ⌈t/3⌉.
Case 2.2.2. (v1, u1) ∈ S2 and (vr, ur) ∈ S2. If r> 3 and
t> r + 1, then, in order to dominate (v3, u3), . . . ,

(vr− 2, ur− 2) and ur+2, . . . , ut− 1, there are at least
⌈(r − 4)/3⌉+ ⌈(t − r − 2)/3⌉ vertices of (v2, u2), . . . ,

(vr− 1, ur− 1)}∪ ur+1, . . . , ut  in S2. Hence,
|S2|≥ 2 + ⌈(r − 4)/3⌉ + ⌈(t − r − 2)/3⌉ � ⌈t/3⌉. If r �

3 and t> r + 1, then there are at least ⌈(t − r − 2)/3⌉

vertices of ur+1, . . . , ut  in S2. *e result is
|S2|≥ 2 + ⌈(t − r − 2)/3⌉ � ⌈t/3⌉. If r> 3 and t � r

+1, then there are at least ⌈(r − 4)/3⌉ vertices of
(v2, u2), . . . , (vr− 1, ur− 1) . We thus get |S2|≥
2 + ⌈(r − 4)/3⌉ � ⌈t/3⌉. Clearly, if r � 3 and
t � r + 1, then t � 4 and |S2|≥ 2 � ⌈t/3⌉. *us,
c(G)≥ ⌈t/3⌉.
Case 2.2.3. (v1, u1) ∉ S2 and (vr, ur) ∉ S2. Clearly,
c(G) � |S2|≥ c(Ct) � ⌈t/3⌉.

Lemma 5. If H1 � P2, then

c(G) �

⌈r
3
⌉ +⌈t − 3

3
⌉ if r ≡ 0 (mod3) and t ≡ 0 (mod3),

⌈t + r − 2
3
⌉ otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

Proof. Suppose that H1 � P2. It is easy to check that G �

Cr⊲⊳Ct
H1�fH2

� Cr⊲⊳Ct′
H1′�f′H2′

where H1′ � Pr and t′ � t + r − 2 (see

Figures 4(b) and 5(a)). By Lemma 4, the result holds.
Next, we will give the domination number of G such that

H1 � P3 (r> 3). We define three sets S0, S1, and S2 as follows:
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S0 � (v1, u1) ∪ ui|i ≡ 1 (mod3), 4≤ i≤ t ∪ vi|i ≡ 2

(mod3), 4≤ i≤ r}.
S1 � (v1, u1) ∪ ui|i ≡ 2 (mod3), 4≤ i≤ t}∪ vi|i ≡ 1

(mod3), 4≤ i≤ r}.
S2 � (v1, u1) ∪ ui| i ≡ 0 (mod3), 4≤ i≤ t}∪ vi|i ≡ 0

(mod3), 4≤ i≤ r}.

Note that if t ≡ j (mod3), for some j ∈ 0, 1, 2{ }, then
|Sj| � ⌈(r + t − 7)/3⌉ + 1. □

Lemma 6. If H1 � P3 and r> 3, then c(G) �

⌈(r + t − 7)/3⌉ + 1.

Proof. Suppose that H1 � P3. *en,
(v1, u1), (v2, u2), (v3, u3) ∈ V(G) (see Figure 4(c)). Note that
if t ≡ j (mod3), for some j ∈ 0, 1, 2{ }, then the set Sj

defined above is a dominating set of G, so c(G)≤ ⌈(r +

t − 7)/3⌉ + 1. We now prove that c(G)≥ ⌈(r + t − 7)/3⌉ + 1.
Let S be a c− set of G. If r � 4, then, in order to dominate
vertices (v1, u1), (v2, u2), (v3, u3), u4, . . . , ut, there are at least
⌈t/3⌉ vertices of (v1, u1), (v2, u2), (v3, u3), u4, . . . , ut ∪ v4 

in S. *us, c(G) � |S|≥ ⌈t/3⌉ � ⌈(4 + t − 7)/3⌉ + 1. For r≥ 5,
we consider two cases. □

Case 1. (v1, u1) ∈ S. In this case, we consider two
subcases.

Case 1.1. (v3, u3) ∈ S. Consider the vertices in
G − N[ (v1, u1), (v3, u3) ] � Pr− 5 ∪Pt− 5. We see that
there are at least ⌈(r − 5)/3⌉ + ⌈(t − 5)/3⌉ vertices in
S − (v1, u1), (v3, u3) . *is gives |S|≥ ⌈(r − 5)/3⌉

+⌈(t − 5)/3⌉ + 2≥ ⌈(r + t − 7)/3⌉ + 1.

Case 1.2. (v3, u3) ∉ S. Consider the vertices in
G − N[ (v1, u1) ] � Pr+t− 7. We see at once that there
are at least ⌈(r + t − 7)/3⌉ vertices in S − (v1, u1) . It
follows that |S|≥ ⌈(r + t − 7)/3⌉ + 1.

Case 2. (v1, u1) ∉ S. In order to dominate (v1, u1), one
vertex of (v2, u2), vr, ut  must be in S.

Case 2.1. (v2, u2) ∈ S. Consider the vertices in
G − N[ (v2, u2) ]. In order to dominate v4, . . . , vr and
u5, . . . , ut, there are at least ⌈(r − 3)/3⌉ + ⌈(t − 4)/3⌉

vertices in S − (v2, u2) . It follows that |S|≥
⌈(r − 3)/3⌉ + ⌈(t − 4)/3⌉ + 1≥ ⌈(r + t − 7)/3⌉ + 1.
Case 2.2. vr ∈ S. If (v2, u2) ∈ S, then this case is the
same as Case 2.1. If (v2, u2) ∉ S, then, in order to
dominate ut, . . . , u4, (v3, u3), v4, . . . , vr− 2 in
G − N[ vr ], S − vr  contains at least ⌈(t + r − 7)/3⌉

vertices. *is gives |S|≥ ⌈(r + t − 7)/3⌉ + 1.
Case 2.3. ut ∈ S. By the same argument as in Case 2.2,
we also get |S|≥ ⌈(r + t − 7)/3⌉ + 1.

Lemma 7. If H1 � Pr− 1, then c(G) � ⌈(t − 3)/3⌉ + 1.

Proof. Suppose that H1 � Pr− 1. It is easy to check that
G � Cr⊲⊳Ct

H1�fH2

� Cr⊲⊳Ct′
H1′�f′H2′

, where H1′ � P3 and t′ � t − r + 4

(see Figures 4(c) and 5(b)). By Lemma 6, the result holds.
By Lemma 3–7, we know the domination number of G,

for all r such that 3≤ r≤ 5. We also know the domination
number of G, for all H1 such that H1 � P1, P2, P3, Pr− 1, Pr.
We now consider the case r≥ 6 and H1 � P4, P5, . . . , Pr− 2.

(v1, u1)

Cr

Ct

H1

(a)

(v1, u1) (v2, u2)

Cr

Ct

H1

(b)

(v1, u1) (v3, u3)

Cr

Ct

H1

(c)

Figure 4: Cr⊲⊳Ct
H1�fH2

with H1 � P1, H1 � P2, and H1 � P3.

(v1, u1) (vr, ur)
Cr

Ct

H1

(a)

(v1, u1) (vr–1, ur–1)
Cr

Ct

H1

(b)

Figure 5: Cr⊲⊳Ct
H1�fH2

with H1 � Pr and H1 � Pr− 1.

Journal of Mathematics 5



For n, k, m ∈ N − 1, 2{ }, let us denote by C(m, k, n) a
graph with V(C(m, k, n)) � 1, x{ }∪ 2m, 3m, . . . , mm ∪
2k, 3k, . . . , kk ∪ 2n, 3n, . . . , nn  and E(C(m, k, n))

� ∪ q∈ m,k,n{ } 1,{{ 2q}, 2q, 3q , . . . , (q − 1)q, qq , qq, x }.
Figure 6 illustrates C(m, k, n). □

Lemma 8. If H1 � Ps, for some s ∈ 4, 5, . . . , r − 2{ } and r≥ 6,
then G � C(m, k, n) where r � m + k, s � k + 1, and
t � n + k.

Proof. Suppose that H1 � Ps, for some s ∈ 4, 5, . . . , r − 2{ }

and r≥ 6. Let r � m + k, s � k + 1, and t � n + k. Define
f: V(G)⟶ V(C(m, k, n)) by

f(g) �

1 if g � v1, u1( ,

ik if g � vi, ui(  and 2≤ i≤ s − 1,

(m − i + 1)m if g � vs+i and 1≤ i≤ r − s,

(n − i + 1)n if g � us+i and 1≤ i≤ t − s,

x if g � vs, us( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

It is easy to check that f is an isomorphism. *en,
G � C(m, k, n). □

3. Domination Numbers of Amalgamations of
Cycles at Connected Subgraphs

In this section, we calculate the domination number
c(C(m, k, n)). *en, by Lemma 8, we thus get the domi-
nation number c(G) for the case r≥ 6 and
H1 � P4, P5, . . . , Pr− 2. *e following two lemmas provide
upper bounds of c(C(m, k, n)).

Lemma 9. Let m, k, n ∈ N − 1, 2{ } and S � 1, x{ }∪
∪ q∈ m,k,n{ } aq|a ≡ 1 (mod3), 3≤ a≤ q − 1 . "en, S is a
dominating set of C(m, k, n) and |S| � 2 + ⌈(m − 3)/3⌉

+⌈(k − 3)/3⌉ + ⌈(n − 3)/3⌉.

Proof. Let v ∈ V(C(m, k, n)) − S. If v � 2q, for some
q ∈ m, k, n{ }, then there is 1 ∈ S such that
1, v{ } ∈ E(C(m, k, n)). If v � qq, for some q ∈ m, k, n{ }, then
there is x ∈ S such that x, v{ } ∈ E(C(m, k, n)). If v � uq, for
some q ∈ m, k, n{ }, such that u ≡ 0 (mod3) and
u ∉ m, k, n{ }, then u + 1 ≡ 1 (mod3) and thus (u + 1)q ∈ S.
It follows that there is (u + 1)q ∈ S such that
v, (u + 1)q  ∈ E(C(m, k, n)). If v � uq, for some

q ∈ m, k, n{ }, such that u ≡ 2 (mod3) and u ∉ 2, m, k, n{ },
then u − 1 ≡ 1 (mod3) and thus (u − 1)q ∈ S. Hence, there
is (u − 1)q ∈ S such that v, (u − 1)q  ∈ E(C(m, k, n)).
*erefore, S is a dominating set of C(m, k, n). It is easily seen
that |S| � 2 + ⌈(m − 3)/3⌉ + ⌈(k − 3)/3⌉ + ⌈(n − 3)/3⌉. □

Lemma 10. Let n, k, m ∈ N − 1, 2{ } and S � 1{ }∪
∪ q∈ m,k,n{ } aq|a ≡ 1 (mod3), 3≤ a≤ q . If m, k, n

≡ 0 (mod3) and z ≡ 1 (mod3), for some z ∈ m, k, n{ },
then S is a dominating set of C(m, k, n) and
|S| � 1 + ⌈(m − 2)/3⌉ + ⌈(k − 2)/3⌉ + ⌈(n − 2)/3⌉.

Proof. Suppose that m, k, n ≡ 0 (mod3) and
z ≡ 1 (mod3), for some z ∈ m, k, n{ }. Without loss of
generality, we can assume that m ≡ 1 (mod3). We will
prove that S is a dominating set of C(m, k, n). *ere are four
cases for k and n. We give the proof only for the case
k ≡ 1 (mod3) and n ≡ 2 (mod3); the proofs of the other
cases are similar. Let v ∈ V(C(m, k, n)) − S. If v � 2q, for
some q ∈ m, k, n{ }, then there is 1 ∈ S such that
1, v{ } ∈ E(C(m, k, n)). If v � uq, for some q ∈ m, k, n{ } such
that u ≡ 0 (mod3), then u + 1 ≡ 1 (mod3) and so
(u + 1)q ∈ S. *us, there is (u + 1)q ∈ S such that
v, (u + 1)q  ∈ E(C(m, k, n)). If v � uq, for some

q ∈ m, k, n{ } such that u ≡ 2 (mod3) and u≠ 2, then
u − 1 ≡ 1 (mod3), and thus, (u − 1)q ∈ S. Consequently,
there is (u − 1)q ∈ S such that v, (u − 1)q  ∈ E(C(m, k, n)).
If v � x, then there is mm ∈ S such that
mm, v  ∈ E(C(m, k, n)). *erefore, S is a dominating set of

C(m, k, n). It is easy to check that |S| � 1+

⌈(m − 3)/3⌉ + ⌈(k − 3)/3⌉ + ⌈(n − 3)/3⌉.
*e following lemmas about c− set will be used in

*eorem 1 to determine lower bounds of c(C(m, k, n)). □

Lemma 11. Let n, k, m ∈ N − 1, 2{ } such that
y ≡ 0 (mod3), for all y ∈ m, k, n{ } and z ≡ 1 (mod3), for
some z ∈ m, k, n{ }, and let S be a c− set ofC(m, k, n). "en, the
following hold:

(1) |S∩ 1, x{ }|≤ 1.

(2) If 1 ∈ S, then qq ∈ S for some q ∈ m, k, n{ } such that
q ≡ 1 (mod3).

(3) If x ∈ S, then 2q ∈ S for some q ∈ m, k, n{ } such that
q ≡ 1 (mod3).

Proof. Without loss of generality, we can assume that
m ≡ 1 (mod3).

(1) *ere are four cases for k and n. We give the proof
only for the case k ≡ 1 (mod3) and
n ≡ 2 (mod3); the proofs of the other cases are
similar. On the contrary, suppose that |S∩ 1, x{ }| � 2.
*is gives 1, x ∈ S, and thus, every vertex in
N[ 1, x{ }] � 1, 2m, 2k, 2n, x, mm, kk, nn  is dominated
by S. Obviously, C(m, k, n) − N[ 1, x{ }]

� Pm− 3 ∪Pk− 3 ∪Pk− 3 (see Figure 7).
In order to dominate the vertices in
C(m, k, n) − N[ 1, x{ }], then S − 1, x{ } must contain at
least ⌈(m − 3)/3⌉ + ⌈(k − 3)/3⌉ + ⌈(n − 3)/3⌉ vertices.
*is gives |S|≥2+ ⌈(m − 3)/3⌉ + ⌈(k − 3)/3⌉ + ⌈(n − 3)

/3⌉ � 2+ ⌈(m − 2)/3⌉ + ⌈(k − 2)/3⌉ + ⌈(n − 2)/3⌉. From
Lemma 10, we know that C(m,k,n) contains a
dominating set of order 1+ ⌈(m − 2)/3⌉+

⌈(k − 2)/3⌉ + ⌈(n − 2)/3⌉. *is contradicts the fact that
S is a c− set of C(m,k,n).

(2) Let 1 ∈ S. By (1), x ∉ S. Suppose, by contrary, qq ∉ S,
for all q ∈ m, k, n{ } such that q ≡ 1 (mod3). In
order to dominate x, then there exists zz ∈ S − 1{ },
for some z ∈ m, k, n{ } such that z≠m and
z ≡ 2 (mod3). *ere are two cases for z. We give
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the proof only for the case z � n; the proof of the case
z � k is similar. Since 1, nn ∈ S, every vertex in
N[ 1, nn ] � 1, 2m, 2k, 2n, (n − 1)n, nn, x  is domi-
nated by S. It is clear that C(m, k, n) − N[ 1, nn ] �

Pm− 2 ∪Pk− 2 ∪Pn− 4 (see Figure 8).
In order to dominate the vertices in C(m,

k, n) − N[ 1, nn ], then S − 1, nn  must contain at
least ⌈(m − 2)/3⌉ + ⌈(k − 2)/3⌉ + ⌈(n − 4)/3⌉ verti-
ces. We thus get |S|≥2+ ⌈(m − 2)/3⌉ + ⌈(k − 2) /3⌉ +

⌈(n − 4)/3⌉ � 2+ ⌈(m − 2)/3⌉ + ⌈(k − 2)/3⌉ + ⌈(n − 2)/
3⌉. From Lemma 10, we know that C(m,k,n) con-
tains a dominating set of order 1+ ⌈(m − 2)/ 3⌉ +

⌈(k − 2)/3⌉ +⌈(n − 2)/3⌉. *is contradicts the fact
that S is a c− set of C(m,k,n).

(3) *e proof is similar to that for 2. □

Lemma 12. Let n, k, m ∈ N − 1, 2{ } and let S be a c− set of
C(m, k, n) and |S∩ 1, x{ }| � 0. "en, the following hold:

(1) If m, k, n ≡ 1 (mod3), then either 2m, mm ∈ S,
2k, kk ∈ S, or 2n, nn ∈ S.

(2) If m ≡ 2 (mod3) and k, n ≡ 1 (mod3), then
2m, mm ∈ S.

(3) If k ≡ 2 (mod3) and m, n ≡ 1 (mod3), then
2k, kk ∈ S.

(4) If n ≡ 2 (mod3) and m, k ≡ 1 (mod3), then
2n, nn ∈ S.

Proof. We give the proofs only for (1) and (2); the proofs of
(3) and (4) are similar to that of (2).

(1) Let m, k, n ≡ 1 (mod3). Suppose, by contrary, that
neither 2m, mm ∈ S, 2k, kk ∈ S nor 2n, nn ∈ S. So, in
order to dominate 1 and x, we get 2q, zz ∈ S for some
q, z ∈ m, k, n{ } such that q≠ z. *ere are nine cases
for q and z. We give the proof only for the case q � m

and z � k; the proofs of the other cases are similar.
Since 2m, kk ∈ S, every vertex in
N[ 2m, kk ] � 1, 2m, 3m, (k − 1)k, kk, x  is domi-
nated by S. We check at once that
C(m, k, n) − N[ 2m, kk ] � Pm− 3 ∪Pk− 3 ∪Pn− 1 (see
Figure 9).
In order to dominate the vertices in
C(m, k, n) − N[ 2m, kk ], then S − 2m, kk  must
contain at least ⌈(m − 3)/3⌉ + ⌈(k − 3)/3⌉ + ⌈(n−

1)/3⌉ vertices. *is gives |S|≥ 2 + ⌈(m − 3)/3⌉ + ⌈(k

− 3)/3⌉ + ⌈(n − 1)/3⌉ � 2 + ⌈(m − 2)/3⌉ + ⌈(k − 2)/3⌉

+⌈(n − 2)/3⌉. From Lemma 10, we know that
C(m, k, n) contains a dominating set of order
1 + ⌈(m − 2)/3⌉ + ⌈(k − 2)/3⌉ + ⌈(n − 2)/3⌉. *is
contradicts the fact that S is a c− set of C(m, k, n).

(2) Let m ≡ 2 (mod3) and k, n ≡ 1 (mod3). On the
contrary, suppose that 2m, mm ∉ S. In order to
dominate 1 and x, then 2q, zz ∈ S, for some
q, z ∈ m, k, n{ } such that q≠ z or q � z ∈ k, n{ }. If
q≠ z, then the proof is similar to that for 1. Let
q � z ∈ k, n{ }. *ere are two cases for q and z. We
give the proof only for the case q � z � k; the proof
of the case q � z � n is similar. Since 2k, kk ∈ S, every
vertex in N[ 2k, kk ] � 1, 2k, 3k, (k − 1)k, kk, x  is
dominated by S. If k≥ 5, then C(m, k, n) − N

[ 2k, kk ] � Pm− 1 ∪Pk− 5 ∪Pn− 1 (see Figure 10).
In order to dominate the vertices in C(m,

k, n) − N[ 2k, kk ], then S − 2k, kk  must contain at
least ⌈(m − 1)/3⌉ + ⌈(k − 5)/3⌉ + ⌈(n − 1) /3⌉ verti-
ces. We thus get |S|≥ 2 + ⌈(m − 1)/3⌉+ ⌈(k − 5)/3⌉ +

⌈(n − 1)/3⌉ � 3 + ⌈(m − 2)/3⌉ + ⌈(k − 2)/3⌉+ ⌈(n −

2)/3⌉. If k< 5, then k � 4. It is easily seen that
C(m, k, n) − N[ 2k, kk ] � Pm− 1 ∪Pn− 1. In order to
dominate the vertices in C(m, k, n) − N[ 2k, kk ],
then S − 2k, kk  must contain at least ⌈(m − 1)/3⌉ +

⌈(n − 1)/3⌉ vertices. *is gives |S|≥ 2 + ⌈(m − 1)/3⌉+

⌈(n − 1)/3⌉ � 2 + ⌈(m − 2)/3⌉ +⌈(k − 2)/3⌉+ ⌈(n −

3m 4m 5m (m – 3)m (m – 2)m (m – 1)m
≅ Pm–3

3k 4k 5k (k – 3)k (k – 2)k (k – 1)k
≅ Pk–3

3n 4n 5n (n – 3)n (n – 2)n (n – 1)n
≅ Pn–3

Figure 7: C(m, k, n) − N[ 1, x{ }].

2m

1

3m 4m 5m (m – 3)m (m – 2)m (m – 1)m mm

2k 3k 4k 5k (k – 3)k (k – 2)k (k – 1)k kk

2n 3n 4n 5n (n – 3)n (n – 2)n (n – 1)n nn

x

Figure 6: C(m, k, n).
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2)/3⌉. From Lemma 10, we know that C(m, k, n)

contains a dominating set of order 1 + ⌈(m − 2)/3⌉

+⌈(k − 2)/3⌉ + ⌈(n − 2)/3⌉. *is contradicts the fact
that S is a c− set of C(m, k, n). □

Lemma 13. Let n, k, m ∈ N − 1, 2{ } and let S be a c− set of
C(m, k, n). "en, |S∩ 1, x{ }| � 1 if one of the following holds:

(1) m ≡ 1 (mod3) and k, n ≡ 2 (mod3).

(2) k ≡ 1 (mod3) and m, n ≡ 2 (mod3).

(3) n ≡ 1 (mod3) and m, k ≡ 2 (mod3).

Proof. We give the proof only for the case m ≡ 1 (mod3)

and k, n ≡ 2 (mod3); the proofs of the other cases are
similar. Suppose, by contrary, that |S∩ 1, x{ }|≠ 1. By Lemma
11 (1), |S∩ 1, x{ }| � 0. We thus get 1, x ∉ S. So, in order to
dominate 1 and x, we get 2q, zz ∈ S, for some q, z ∈ m, k, n{ }.
*ere are two cases: q≠ z and q � z. Following in a same
manner as the proof of Lemma 12 (2), we can obtain
|S|≥ 1 + ⌈(m − 2)/3⌉ + ⌈(k − 2)/3⌉ + ⌈(n − 2)/3⌉, which
contradicts the fact that S is a c− set of C(m, k, n). □

Theorem 1. Let n, k, m ∈ N − 1, 2{ }, D � m, k, n{ }, and
C � C(m, k, n). "en,

c(C) �

2 +⌈m − 3
3
⌉ +⌈k − 3

3
⌉ +⌈n − 3

3
⌉ if y ≡ 0 (mod3) for somey ∈ D orm, k, n ≡ 2 (mod3),

1 +⌈m − 2
3
⌉ +⌈k − 2

3
⌉ +⌈n − 2

3
⌉ if m, k, n ≡ 0 (mod3) andy ≡ 1 (mod3) for somey ∈ D.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

Case 1. y ≡ 0 (mod3), for some y ∈ D or
m, k, n ≡ 2 (mod3). By Lemma 9,
c(C)≤ 2 + ⌈(m − 3)/3⌉ + ⌈(k − 3)/3⌉ + ⌈(n − 3)/3⌉. We
next prove that c(C)≥ 2 + ⌈(m − 3)/3⌉ + ⌈(k − 3)/3⌉

+⌈(n − 3)/3⌉. Let S be a c− set of C.

Case 1.1. y ≡ 0 (mod3) for some y ∈ D. Without
loss of generality, we can assume that
m ≡ 0 (mod3). In order to dominate 1 and x, there
are sixteen cases, u, v ∈ S, for some u ∈ 1, 2m, 2k, 2n 

and v ∈ x, mm, kk, nn . We give the proofs only for the

4m 5m (m – 3)m (m – 2)m (m – 1)m
≅ Pm–3

≅ Pk–3

≅ Pn–1

3k2k 4k 5k (k – 3)k (k – 2)k

nn

mm

3n2n 4n 5n (n – 3)n (n – 2)n (n – 1)n

Figure 9: C(m, k, n) − N[ 2m, kk ].

4m 5m (m – 3)m (m – 2)m (m – 1)m
≅ Pm–1

≅ Pk–5

≅ Pn–1

3m2m

4k 5k (k – 3)k (k – 2)k

nn

mm

3n2n 4n 5n (n – 3)n (n – 2)n (n – 1)n

Figure 10: C(m, k, n) − N[ 2k, kk ].

3m 4m 5m (m – 3)m (m – 2)m (m – 1)m
≅ Pm–2

≅ Pk–2

≅ Pn–4

3k 4k 5k (k – 3)k (k – 2)k (k – 1)k kk

mm

3n 4n 5n (n – 3)n (n – 2)n

Figure 8: C(m, k, n) − N[ 1, nn ].
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four cases 1, x ∈ S, 1, mm ∈ S, 2m, mm ∈ S, and
2m, kk ∈ S; the proofs of the other cases are similar.

Case 1.1.1. 1, x ∈ S. *en, every vertex in N[ 1, x{ }] �

1, 2m, 2k, 2n, x, mm, kk, nn  is dominated by S. *us,
C − N[ 1, x{ }] � Pm− 3 ∪Pk− 3 ∪Pk− 3, so c(C) � |S|≥ 2
+ ⌈(m − 3)/3⌉ + ⌈(k − 3)/3⌉ + ⌈(n − 3)/3⌉.
Case 1.1.2. 1, mm ∈ S. It follows that every vertex in
N[ 1, mm ] � 1, 2m, 2k, 2n, (m − 1)m, mm, x  is
dominated by S. If m≥ 4, then it is easy to check that
C − N[ 1, mm ] � Pm− 4 ∪Pk− 2 ∪Pn− 2. *is gives |S|

≥ 2 + ⌈(m − 4)/3⌉ + ⌈(k − 2)/3⌉ + ⌈(n − 2)/3⌉. For m

� 3, C − N[ 1, mm ] � Pk− 2 ∪Pn− 2. It follows that |S|

≥ 2 + ⌈(k − 2)/3⌉ + ⌈(n − 2)/3⌉. Since m ≡ 0 (mod
3), c(C) � |S|≥ 2 + ⌈(m − 3)/3⌉ + ⌈(k − 3)/3⌉ + ⌈(n

− 3)/3⌉.
Case 1.1.3. 2m, mm ∈ S. *en, every vertex in N[ 2m,

mm}] � 1, 2m, 3m, (m − 1)m, mm, x  is dominated by
S. We can see that C − N[ 2m,

mm}] � Pm− 5 ∪Pk− 1 ∪Pn− 1 if m≥ 5, and C − N

[ 2m, mm ] � Pk− 1 ∪Pn− 1 otherwise. It follows that
|S|≥ 2 + ⌈(m − 5)/3⌉ + ⌈(k − 1)/3⌉ + ⌈(n − 1)/3⌉ if
m≥ 5, and |S|≥ 2 + ⌈(k − 1)/3⌉ + ⌈(n − 1)/3⌉ other-
wise. Since m ≡ 0 (mod3), c(C) � |S|≥ 2+

⌈(m − 3)/3⌉ + ⌈(k − 3)/3⌉ + ⌈(n − 3)/3⌉.
Case 1.1.4. 2m, kk ∈ S. We thus get every vertex in
N[ 2m, kk ] � 1, 2m, 3m, (k − 1)k, kk, x  is domi-
nated by S. Since C − N[ 2m, kk ]

� Pm− 3 ∪Pk− 3 ∪Pn− 1, c(C) � |S|≥ 2 + ⌈(m − 3)/3⌉ +

⌈(k − 3)/3⌉ + ⌈(n − 3)/3⌉.
Case 1.2. m, k, n ≡ 2 (mod3). In order to dominate 1
and x, there are sixteen cases as above. In the same
manner, we can prove that c(C) � 2+

⌈(m − 3)/3⌉ + ⌈(k − 3)/3⌉ + ⌈(n − 3)/3⌉.

Case 2. m, k, n ≡ 0 (mod3) and y ≡ 1 (mod3), for
some y ∈ D. By Lemma 10, c(C)≤ 1 + ⌈(m − 2) /3⌉ +

⌈(k − 2)/3⌉ + ⌈(n − 2)/3⌉. We next show that
c(C)≥ 1 + ⌈(m − 2)/3⌉ + ⌈(k − 2)/3⌉ + ⌈(n − 2)/3⌉.
Without loss of generality, we can assume that
m ≡ 1 (mod3). Let S be a c− set of C. By Lemma 11

(1), |S∩ 1, x{ }|≤ 1. It follows that |S∩ 1, x{ }| � 1 or
|S∩ 1, x{ }| � 0. Consider the following four cases.

Case 2.1. k, n ≡ 1 (mod3). If |S∩ 1, x{ }| � 1, then
1 ∈ S or x ∈ S. We give the proof only for the case 1 ∈ S;
the proof of the case x ∈ S is similar. By Lemma 11 (2),
mm ∈ S, kk ∈ S, or nn ∈ S. Here, we will give the proof
only for the case mm ∈ S; the proofs of the other two
cases are similar. Hence, 1, mm ∈ S. As in the proof of
Case 1.1.2, c(C) � |S|≥ 2+ ⌈(m − 4)/3⌉+ ⌈(k − 2)/3⌉ +

⌈(n − 2)/3⌉ � 1 + ⌈(m − 1)/3⌉ + ⌈(k − 2)/3⌉+ ⌈(n −

2)/3⌉ � 1 + ⌈(m − 2)/3⌉ + ⌈(k − 2)/3⌉ + ⌈ (n − 2)/3⌉.
If |S∩ 1, x{ }| � 0, then 2m, mm ∈ S, 2k, kk ∈ S, or 2n, nn

∈ S by Lemma 12 (1). We give the proof only for the
case 2m, mm ∈ S; the proofs of the other two cases are
similar. As in the proof of Case 1.1.3, we get that ifm≥ 5,
then c(C) � |S|≥ 2 + ⌈(m − 5)/3⌉+ ⌈(k − 1)/3⌉+

⌈(n − 1)/3⌉ � 1 + ⌈(m − 2)/3⌉ + ⌈(k − 2)/3⌉+

⌈(n − 2)/3⌉. Ifm ≤ 4, thenm � 4. It follows that c(C) �

|S|≥ 2 + ⌈(k − 1)/3⌉ + ⌈(n− 1)/3⌉ � 1 + ⌈(m − 2)/3⌉+

⌈(k − 2)/3⌉ + ⌈(n − 2)/3⌉.
Case 2.2. k ≡ 1 (mod3) and n ≡ 2 (mod3). If
|S∩ 1, x{ }| � 1, then 1 ∈ S or x ∈ S. We give the proof
only for the case 1 ∈ S; the proof of the case x ∈ S is
similar. By Lemma 11 (2), mm ∈ S or kk ∈ S. Here, we
will give the proof only for the case mm ∈ S; the proof
of the case kk ∈ S is similar. Hence, 1, mm ∈ S. As in
the proof of Case 2.1, c(C) � |S|≥ 1 +⌈(m − 2)/3⌉+

⌈(k − 2)/3⌉ + ⌈(n − 2)/3⌉. If |S∩ 1, x{ }| � 0, then
2n, nn ∈ S by Lemma 12 (4). *us, every vertex in
N[ 2n, nn ] � 1, 2n, 3n, (n − 1)n, nn, x  is dominated
by S. It is clear that C − N[ 2n, nn ]

� Pm− 1 ∪Pk− 1 ∪Pn− 5 (see Figure 11). In order to
dominate the vertices in C − N[ 2n, nn ], then
S − 2n, nn  must contain at least ⌈(m − 1)/3⌉+ ⌈(k −

1)/3⌉ + ⌈(n − 5)/3⌉ vertices. *is gives |S|≥ 2+ ⌈(m −

1)/3⌉ + ⌈(k − 1)/3⌉ + ⌈(n − 5)/3⌉ � 1 + ⌈(m − 2)/ 3⌉ +

⌈(k − 2)/3⌉ + ⌈(n − 2)/3⌉.
Case 2.3. k ≡ 2 (mod3) and n ≡ 1 (mod3). *e
proof is similar to that of Case 2.2.

4m 5m (m – 3)m (m – 2)m (m – 1)m
≅ Pm–1

≅ Pk–1

≅ Pn–5

3m2m

3k2k 4k 5k (k – 3)k (k – 2)k (k – 1)k kk

mm

4n 5n (n – 3)n (n – 2)n

Figure 11: C(m, k, n) − N[ 2n, nn ].
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Case 2.4. k, n ≡ 2 (mod3). By Lemma 13, |S∩ 1,{

x}| � 1. So, 1 ∈ S or x ∈ S. We give the proof only for
the case 1 ∈ S; the proof of the case x ∈ S is similar. By
Lemma 11 (2), mm ∈ S. Following in a samemanner as
the proof of Case 2.1, we can obtain c(C) � |S|

≥ 1 + ⌈(m − 2)/3⌉ + ⌈(k − 2)/3⌉ + ⌈(n − 2)/3⌉.

Summarizing, we get the domination number of
amalgamations of cycles at connected subgraphs Cr⊲⊳Ct

H1�fH2

.

From Lemmas 2-7 and*eorem 1, we then get the following
theorem.

Theorem 2. Let r, s, t ∈ N, 3≤ r≤ t, G � Cr⊲⊳Ct
H1�fH2

, and D �

a, b, c{ } where a � r − s + 1, b � s − 1, and c � t − s + 1. "en

c(C) �

⌈r
3
⌉ if H1 � Cr,

⌈r − 3
3
⌉ +⌈t − 3

3
⌉ + 1 if H1 � P1,

⌈r
3
⌉ +⌈t − 3

3
⌉ if H1 � P2 and r ≡ 0 (mod3) and t ≡ 0 (mod3),

⌈t + r − 2
3
⌉ if H1 � P2 and r ≡ 0 (mod3) or t ≡ 0 (mod3),

⌈r + t − 7
3
⌉ + 1 if H1 � P3 and r> 3,

⌈t − 3
3
⌉ + 1 if H1 � Pr− 1,

⌈r
3
⌉ +⌈t − r − 1

3
⌉ if H1 � Pr and r ≡ 0 (mod3) and t ≡ 1 (mod3),

⌈t
3
⌉ if H1 � Pr and r ≡ 0 (mod3) or t ≡ 1 (mod3),

2 +⌈a − 3
3
⌉ +⌈b − 3

3
⌉ +⌈c − 3

3
⌉ if H1 � Ps, 4≤ s≤ r − 2, andy ≡ 0 (mod3) for somey ∈ D or a, b, c ≡ 2 (mod3),

1 +⌈a − 2
3
⌉ +⌈b − 2

3
⌉ +⌈c − 2

3
⌉ if H1 � Ps, 4≤ s≤ r − 2, a, b, c ≡ 0 (mod3), andy ≡ 1 (mod3) for somey ∈ D.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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