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One of the classical questions in random graph theory is to understand the asymptotics of subgraph counts. In inhomogeneous
random graph, this question has not been well studied. In this study, we investigate the asymptotic distribution of m-cliques in a
sparse inhomogeneous random graph. Under mild conditions, we prove that the number of m-cliques converges in law to the
standard normal distribution.

1. Introduction

�e random graph theory was founded by Erdös–Rényi [1].
�e well-known Erdös–Rényi random graph G(n, p) is an
undirected graph on vertices’ (nodes) set [n] � 1, 2, . . . , n{ },
where any two nodes form an edge independently with
probability p. In random graph theory, one of the classical
questions concerns the asymptotics of the number of sub-
graphs [2–7]. Much attention has been paid to the limiting
distribution of subgraph counts. In a dense Erdös–Rényi
graph, the subgraph count converges in law to the standard
normal distribution under some conditions [3]. �is result
was proven to be true for sparse random graph [2]. Analogue
results exist for the number of strictly balanced subgraph or
short cycles in random regular graphs [4–6, 8].

In practice, a lot of real networks display the inhomo-
geneity property, that is, the vertex degrees vary a lot. In
many cases, the degree follows a power law [9]. To ac-
commodate the inhomogenity, the inhomogeneous random
graph has recently been introduced [10]. It is natural to study
the asymptotics of subgraphs in an inhomogeneous random
graph. Some of the �rst results concern the asymptotic clique
or cycle number in special inhomogeneous random graph
[9, 11, 12, 23, 24]. For example, the authors gave the upper
bound and lower bound of the average number of cycles in
[12]. �e authors of [9, 13] obtained the asymptotic order of

large cliques in scale-free random graph, and Janson [14]
studied the order of the largest component. In [12], the order
of expected number of cycles and cliques in a random graph
were given. Hu and Dong [15] derived the limiting distri-
bution of the number of edges in a generalized random
graph, and Liu and Dong [16] derived the asymptotic dis-
tribution of the number of triangles. However, to our
knowledge, the limiting distribution of the number of cli-
ques is unknown. In this study, we study this problem in
sparse inhomogeneous random graph and derive its as-
ymptotic distribution.

2. The Model and Main Result

In this section, we introduce the model and present the main
result. �e inhomogeneous random graph G(n, p,W) is
de�ned as follows: given a positive arrayW � Wij{ }1≤ i< j≤ n,
every pair of nodes i, j in G(n, p,W) are joined as an edge
with probability pWij independently. �e adjacency matrix
A of a graph is a symmetric (0, 1)-matrix with zeros on its
diagonal and Aij � 1 if (i, j) is an edge, Aij � 0 otherwise.
For G(n, p,W), the adjacency matrix A is a symmetric
random matrix, with elements following independent Ber-
noulli distributions, that is,

pij � P Aij � 1( ) � pWij, 1≤ i< j≤ n, (1)
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and Aij is independent of Akl if i, j ≠ k, l{ }. By symmetry,
pji � pij for i≠ j and pii � 0 for i � 1, 2, . . . , n. )is model
was introduced in [10], and it contains the models in
[9, 11, 18] as a special case. If Wij ≡ 1(1≤ i< j≤ n), the
random graph is the homogeneous Erdös–Rényi model,
where nodes i, j form an edge with probability p [1].

In graphG, an m-clique is a subgraph of m vertices such
that any two distinct vertices are adjacent. Given the ad-
jacency matrix A and vertices i1 < i2 < · · · < im, the node set
i1, i2, . . . , im  forms an m-clique if and only if


1≤ k< l≤m

Aikil
� 1. (2)

)en, the total number Nn of m-clique in G is

Nn � 
1≤ i1< i2 < ...<im ≤ n


1≤ k< l≤m

Aikil
. (3)

For the random graph G(n, p, W), Nn is a sum of de-
pendent random variables. )e asymptotic distribution of
Nn is given in the following theorem.

Theorem 1. Let Nn be the number of m-cliques in the
random inhomogeneous graph G(n, p, W) with expectation
E(Nn) and variance V(Nn). Suppose m≥ 3 is a fixed integer,
for some 0< ϵ< 1,

lim
n⟶∞

n
m− 2

p
(m+1)(m− 2)/2

� 0,

lim
n⟶∞

n
m(1− ϵ)

p
m(m− 1)/2

�∞,
(4)

for some positive constants c1, c2, 0≤Wij ≤ c2, 1≤ i< j≤ n,

and

c1
n

m
 ≤ 

1≤ i1< i2< ...< im ≤ n


1≤ k< l≤m

Wikil
. (5)

)en,

Nn − E Nn( 
������
V Nn( 

 ⇒N(0, 1), as n⟶∞, (6)

where ‘⇒’ represents convergence in distribution.
According to )eorem 1, the scaled and centered

number of m-cycle in G(n, p, W) converges in law to the
standard normal distribution. Note that )eorem 1 only
holds for sparse random graph. )e first equation in (4)
implies p � o(n− 2/m+1) and the second one requires the
average degree tends to infinity. Our proof relies on the
martingale central limit theorem.

)e conditions on W seem to be very restrictive. In fact,
there are many models which satisfy these conditions. Here,
we provide some of the examples that satisfy the conditions
of )eorem 1. Consider the rank one model with

pij � pWij, Wij �
ij

n
2, i≠ j, (7)

Wii � 0, 1≤ i≤ n. Suppose p satisfies (4). Straightforward
computation yields


1≤ i1 < i2...<im ≤ n


1≤ k< l≤m

Wikil
� 

1≤ i1 < i2...< im ≤n


1≤ k≤m

ik

n
 

m− 1
≍

n
2m

n
m(m−1)

� n
m

. (8)

Hence, (5) holds and )eorem 1 applies to this model.
)e average degree di of each vertex i is given by

di � 
j

pij �
ip

2
+

ip

2n
−

i
2
p

n
2 , i � 1, 2, . . . , n. (9)

)e degree dn is approximately n times of d1, that is,
dn≍nd1. Hence, this model is essentially different from the
homogeneous Erdös–Rényi model. Furthermore, suppose
p � log n/n, satisfying (4) for m � 3. )en, for some con-
stant κ> 0,

0< κ≤ max
i

di  �
log n

2
+ o(1)≤ η log n,max

i≠j
pij ≤ n

− 1+η
,

η ∈ (0.5, 1).

(10)

)is model is a special case in [17], where the authors
studied asymptotic behavior of the extreme eigenvalues.

Another interesting model is the power-law graphs [22]:

pij �
1
n

i

n
 

− 1/p j

n
 

− 1/p
, i≠ j, p> 0. (11)

Rewrite the probabilities as

pij �
an

n

n
2/p

an

1
i
1/p

1
i
1/p � pWij, (12)

where p � an/n and Wij � n2/p/an1/i1/p1/i1/p. If an≍n2/p,
then Wij ≤ c2 <∞ for some constant c2. For some generic
positive constant c3,


1≤ i1< i2...< im ≤ n


1≤ k< l≤m

Wikil
≥ c3 

1≤ i1< i2...< im ≤ n


1≤ k≤m

1
i
1/p
k

⎛⎝ ⎞⎠

m− 1

≍
n
2m

n
m(m−1)

� n
m

. (13)
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3. Proof of Main Result

In this section, we prove )eorem 1. For convenience,
denote αn≍βn if 0< c1 ≤ αn/βn ≤ c2 <∞ for some constants c1
and c2; αn≪ βn if αn � o(βn). )e proof relies on the fol-
lowing result.

Proposition 1 (see [20]). Suppose that, for every n ∈ N and
kn⟶∞, the random variables Xn,1, . . . , Xn,kn

are a mar-
tingale difference sequence relative to an arbitrary filtration
Fn,1 ⊂ Fn,2 ⊂ · · ·Fn,kn

. If (I) 
kn

i�1 E(X2
n,i|Fn,i−1)⟶ 1 in

probability, (II) 
kn

i�1 E(X2
n,iI[|Xn,i|> ϵ]|Fn,i−1)⟶ 0 in

probability, for every ϵ> 0, then 
kn

i�1 Xn,i⟶ N(0, 1) in
distribution.

Now, we prove )eorem 1. Let M �
m

2  �

m(m − 1)/2, S � (ik, il)|1≤ k< l≤m , and

St � st|st is a subset consisting of t elements in S . (14)

Denote sc
t , the complement set of st in S. By Taylor

expansion, for generic constants ci, 1≤ i≤M − 1, it
follows

Nn − E Nn(  � 
1≤ i1 < i2< ...< im ≤ n


1≤ k< l≤m

Aikil
− 

1≤ k< l≤m

pWikil
⎛⎝ ⎞⎠

� 
1≤ i1< i2< ...< im ≤ n


1≤ k< l≤m

Aikil
− pWikil

  + 
M−1

t�1
Rt,

(15)

where

Rt � 
1≤ i1< i2< ...< im ≤ n


st∈St


(i,j)∈st

Aij − pWij  
(i,j)∈sc

t

pWij.

(16)

Next, we show the first term in (15) is the leading term.
Note that if ik, il ≠ jk, jl , by the independence of Aikil

and
Ajkjl

, it follows

E Aikil
− pWikil

  Ajkjl
− pWjkjl

   � 0. (17)

)en, it s easy to obtain

E 
1≤ i1< i2< ...< im ≤ n


1≤ k< l≤m

Aikil
− pWikil

 ⎡⎢⎢⎣ ⎤⎥⎥⎦

2

� 

1≤ i1< ...< im ≤ n

1≤ j1< ...< jm ≤ n

E 
1≤ k< l≤m

Aikil
− pWikil

  Ajkjl
− pWjkjl

 ⎡⎢⎣ ⎤⎥⎦

� 
1≤ i1 < i2< ...< im ≤ n


1≤ k< l≤m

E Aikil
− pWikil

 
2

� 
1≤ i1 < i2< ...< im ≤ n


1≤ k< l≤m

pWikil
1 − pWikil

 .

(18)

For convenience, let

σ2n � 
1≤ i1 < i2< ...< im ≤ n


1≤ k< l≤m

pWikil
1 − pWikil

 . (19)

Note that σ2n≍nm(1− ϵ)pM under the assumption of
)eorem 1. To get the order of R1, let s1 � (i1, i2)  and
s∗1 � (j1, j2) ; then,

E 
1≤ i1< i2< ...< im ≤ n

Ai1i2
− pWi1i2

  
(i,j) ∈ sc

1

pWij
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

2

� 

1≤ i1< ...< im ≤ n

1≤ j1< ...< jm ≤ n

E Ai1i2
− pWi1i2

  Aj1j2
− pWj1j2

  
(i,j)∈sc

1

pWij 
(i,j)∈s∗ c

1

pWij
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

� 

1≤ i1< ...< im ≤ n

i2 < j3< ...< jm ≤ n

E Ai1i2
− pWi1i2

 
2


(i,j)∈sc

1

pWij 
(i,j)∈s∗ c

1

pWij
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

� 

1≤ i1< ...< im ≤ n

i2 < j3< ...< jm ≤ n

pWi1i2
1 − pWi1i2

  
(i,j)∈sc

1

pWij 
(i,j)∈s∗ c

1

pWij

� OP n
2m− 2

p
2M− 1

 ,

(20)
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which implies R2
1 � OP(n2m− 2p2M− 1). For RM−1, let sM−1 �

(i1, i2), (i1, i3), . . . , (im−2, im−1)  and s∗M−1 � (j1, j2),

(j1, j3), . . . , (jm−2, jm−1)}. )en,

E 
1≤ i1 <i2 < ...<im≤ n

pWim−1im


(i,j) ∈ sM− 1

Aij − pWij ⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

2

� 

1≤ i1 < ...< im ≤ n

1≤ j1 < ...< jm ≤ n

E pWim−1im
pWjm−1jm


(i,j)∈sM−1

Aij − pWij  
(i,j)∈s∗

M−1

Aij − pWij ⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

� 
1≤ i1 < ...< im ≤ n

p
2
W

2
im−1im


(i,j)∈sM−1

E Aij − pWij 
2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

� 
1≤ i1 < ...< im ≤ n

p
2
W

2
im−1im


(i,j)∈sM−1

pWij 1 − pWij ⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

� OP n
m

p
M+1

 ,

(21)

from which it yields R2
M−1 � OP(nmpM+1). For t≥m, any st

involves all the vertices i1, i2, . . . , im. Hence, by a similar
proof of (20) and (21), it follows thatR2

t � OP(nmp2M− t). For
3≤ t≤m − 1, any st involves at least t distinct vertices; then,
R2

t � OP(n2m− tp2M− t). When t � 2, st contains at least 3
distinct vertices; then, R2

2 � OP(n2m− 3p2M− 2).
We claim the following hold:

n
2m−2

p
2M−1

n
m

p
M

� n
m−2

p
M−1⟶ 0, t � 1, (22)

n
2m−3

p
2M−2

n
m

p
M

� n
m−3

p
M−2⟶ 0, t � 2, (23)

n
m

p
2M− t

n
m

p
M

� p
M− t⟶ 0, m≤ t≤M − 1, (24)

n
2m− t

p
2M− t

n
m

p
M

� n
m− t

p
M− t⟶ 0, 3≤ t≤m − 1. (25)

Firstly, according to the first equation in (4), (22) and
(24) hold trivially. Let p � an/n; then, an≪ nM− m+1/M−1 by
(22). Equations (23) and (25) hold if

an≪ n
M− m+1/M−2

, an≪ n
M− m/M−t

, (3≤ t≤m − 1). (26)

Simple algebra yields

M − m + 1
M − 1

−
M − m

M − 3
� −

(m − 2)(m − 3)

2(M − 3)(M − 1)
≤ 0, (m≥ 3).

(27)

Hence, M − m +1/M −1≤M − m/M − t (3≤t≤m −1).
)en, the first equation in (4) implies (22)–(25).

As a result, by (15), one has

Nn − E Nn(  � 
1≤ i1 < i2 < ...< im ≤ n


1≤ k< l≤m

Aikil
− pWikil

  + oP

�����

n
m

p
M



 ,

(28)

and V(Nn) � σ2n + o(nmpM). )erefore, to prove)eorem 1,
it suffices to prove

Xn �
1≤i1 < i2 < ...< im ≤ n1≤k<l≤m Aikil

− pWikil
 

σn

⇒N(0, 1).

(29)

In the following, we use Proposition 1 to prove (29). To
this end, define Zt � Xt − Xt−1 for 4≤ t≤ n, where X3 � 0
and

Xt �
1≤i1 < i2 < ...< im ≤ t1≤k<l≤m Aikil

− pWikil
 

σn

. (30)

Let Ft � Aij|1≤ i< j≤ t  and Ct � (ik, im)|1≤ k≤

m − 1, im � t}. )en,

σnE Zt|Ft−1  � 
1≤ i1 < i2 < ...< im�t


(i,j)∈Cc

t

Aij − pWij  
(i,j)∈Ct

E Aij − pWij  � 0,
(31)

which implies Zt is a Martingale difference.
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Check condition (I) in Proposition 1. It suffices to show
the following:

E 
n

t�m

E Z
2
t |Ft−1 ⎡⎣ ⎤⎦⟶ 1,

E 
n

t�m

E Z
2
t |Ft− 1 ⎡⎣ ⎤⎦

2

⟶ 1.

(32)

For (30), direct computation yields

E 
n

t�m

E Z
2
t |Ft−1 ⎡⎣ ⎤⎦ � E 

n

t�m

E X
2
t − 2XtX

2
t−1 + X

2
t−1|Ft−1 ⎡⎣ ⎤⎦

� 

n

t�m

EX
2
t − EX

2
t−1  � EX

2
n � 1.

(33)

For (32), let C∗t � (jk, jm)|1≤ k≤m − 1, jm � t . )en,

σ2nE Z
2
t |Ft−1  � 

1≤ i1 < ...< im�t

1≤ j1 < ...< jm�t


(i,j)∈Cc

t

Aij − pWij  
(i,j)∈C ∗ c

t

Aij − pWij 

× E 
(i,j)∈Ct

Aij − pWij  
(i,j)∈C∗t

Aij − pWij ⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

� 
1≤ i1 < ...< im�t


(i,j)∈Cc

t

Aij − pWij 
2


(i,j)∈Ct

E Aij − pWij 
2

 

� 
1≤ i1 < ...< im�t


(i,j)∈Cc

t

Aij − pWij 
2


(i,j)∈Ct

pWij 1 − pWij .

(34)

Let D � (ik, im)|1≤ k≤m − 1  and D∗ � (jk, jm)|1≤

k≤m − 1}. )en,

σ2n 

n

t�m

E Z
2
t |Ft−1  � 

n

t�m


1≤ i1 < ...< im�t


(i,j)∈Cc

t

Aij − pWij 
2


(i,j)∈Ct

pWij 1 − pWij 

� 
1≤ i1 < ...< im ≤ n


(i,j)∈Dc

Aij − pWij 
2


(i,j)∈D

pWij 1 − pWij .

(35)

Now, (32) follows from the following calculation:

σ4nE 
n

t�m

E Z
2
t |Ft− 1 ⎡⎣ ⎤⎦

2

� 
1≤ i1 < ...< im ≤ n1≤ j1 < ...< jn ≤ n

E 
(i,j)∈Dc

Aij − pWij 
2


(i,j)∈D

p⎡⎢⎢⎢⎣

× 
(i,j)∈D∗c

Aij − pWij 
2


(i,j)∈D∗

pWij 1 − pWij ⎤⎥⎥⎥⎦

� 
1≤ i1 < ...< im ≤ n

E 
(i,j)∈Dc

Aij − pWij 
2


(i,j)∈D

pWij 1 − pWij ⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

× 
1≤ j1 < ...< jn ≤ n

E 
(i,j)∈D∗c

Aij − pWij 
2


(i,j)∈D∗

pWij 1 − pWij ⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ + o σ4n  � σ4n + o σ4n .

(36)

Hence, 
n
t�m E(Z2

t |Ft−1)⟶ 1 in probability.
Check condition (II) in Proposition 1. By Cau-

chy–Schwarz inequality andMarkov inequality, for any ϵ> 0
and generic constant C> 0, it follows that
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E 
n

t�m

E Z
2
t I Zt


> ϵ |Ft−1 ⎡⎣ ⎤⎦

≤E 
n

t�m

�������������������������

E Z
4
t |Ft−1 E I Zt


> ϵ |Ft−1 


⎡⎣ ⎤⎦

≤
1
ϵ2

E 
n

t�m

���������

E Z
4
t |Ft−1 

 ���������

E Z
4
t |Ft−1 


⎡⎣ ⎤⎦

�
1
ϵ2σ4n



n

t�m

E Z
4
t 

�
1
ϵ2σ4n



n

t�m



1≤ i1 < ...< im�t1≤ j1 < ...< jm�t

1≤ k1 < ...< km�t1≤ l1 < ...< lm�t

E 
1≤ r< s≤m

Airis
− pWiris

  
1≤ r< s≤m

Ajrjs
− pWjrjs

 ⎡⎣

× 
1≤ r< s≤m

Akrks
− pWkrks

  
1≤ r< s≤m

Alrls
− pWlrls

 ⎤⎦

�
C

ϵ2σ4n


n

t�m



1≤ i1< ...< im�t

1≤ j1< ...<jm�t

E 
1≤ r< s≤m

Airis
− pWiris

 
2


1≤ r< s≤m

Ajrjs
− pWjrjs

 
2⎡⎣ ⎤⎦

+
C

ϵ2σ4n


n

t�m


1≤ i1 < ...< im�t

E 
1≤ r< s≤m

Airis
− pWiris

 
4⎡⎣ ⎤⎦

�
C

ϵ2σ4n


n

t�m

t
2m− 2

p
2M

+
C

ϵ2σ4n


n

t�m

t
m− 1

p
M

� O
n
2m− 1

p
2M

σ4n
+

n
m

p
M

σ4n
  � O

1
n

+
1

n
m

p
M

 ⟶ 0,

(37)

if nmpM⟶∞. Hence, n
t�m E(Z2

t I[|Zt|> ϵ]|Ft−1) � oP(1).
By Proposition 1, the proof is complete.[19, 21]
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