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In this paper, we study a coupled system of Hilfer type sequential fractional differential equations supplemented with Rie-
mann-Stieltjes integral multistrip boundary conditions. The standard tools of the fixed point theory are employed to prove the
existence and uniqueness results for the considered problem. Examples are constructed for the illustration of the obtained results.

1. Introduction

Fractional calculus is a generalization of the classical calculus.
Fractional differential equations become another necessary
tool in solving real-life problems in different research areas
such as physics, biology, engineering, and mechanics, see for
example the monographs and papers [1-11].

Boundary value problems of fractional differential
equations represent an important and interesting branch of
applied analysis. Usually, the researchers have given attention
in studying fractional differential equations involving Caputo
or Riemann-Liouville fractional derivative. But, Caputo or
Riemann-Liouville derivative was not considered appropriate

in studying some new models in engineering for example. To
avoid the difficulties, some new type fractional order deriv-
ative operators were introduced in the literature such as
Hadamard, Erdeyl-Kober, and Katugampola. Hilfer in [12]
introduced a new derivative, which generalizes both Rie-
mann-Liouville and Caputo derivatives. For some applica-
tions involving Hilfer fractional derivative, the interested
reader is referred to [13-16] and references cited therein.

In [17], Nuchpong et al. investigated a new class of
boundary value problems for fractional differential equa-
tions for involving sequential Hilfer type fractional deriv-
ative and subject to Riemann-Stieltjes integral multistrip
boundary conditions of the form

("D* + k"D Yu(2) = f(zu(2)), z € [c.d],

d Hi
w© =0, ud=1[ u@dH©+ Y u [ usds
¢ M

(1)
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where " D*F denotes the Hilfer fractional derivative operator

of order o, 1 <a <2, and parameter 3, 0<f<1, f: [c,d] x
. . . d .

R — R is a continuous function; JC x(s)dH (s) is the

Riemann-Stieltjes integral with respect to the function
H: [¢,d] — R, c>0, kop eR, c<y;<é<d, i=

in which "D%# and " D%#: indicate the Hilfer fractional
derivatives of orders «; and a,, 1 < &y, &, < 2, and parameters
B>y 0B, B, <1, f,g: [6,d] xRxR — R are contin-
uous functions, ¢>0, 0;, ( eR, and I%, 1% are the Rie-
mann-Liouville fractional integrals of order ¢, >0, (;5] >0,
i=12,....m j=12,...,n

( (HDal’ﬁl +

1u(c)=0, u(d) =

v(c)=0, wv(d)=

in which "D*# and "D%#: are the Hilfer fractional de-
rivatives of orders 1<a,a,<2 and parameters f3,[,,
0<p,5,<1, f1, [y [, d] xRxR — R are continuous

functions, If ()dH, (s), If ()dH, (s) are the Riemann-
Stieltjes integrals with respect to the functions H;:
[,d] — R, i=1,2,¢20, u,v, €R, n;, &, (., 0, € (¢, d),
i=12,...,m,r=12,...,p, A, Ay, 0y, 0, € R.

The remaining of this article has been regulated as
follows: In section 2 some concepts, lemmas and theorems
are recalled which will be applied throughout this paper.
In Section 3, an auxiliary lemma has been proved which
concerns a linear variant of system (3) and it is used to
convert the coupled system (3) into a fixed point problem.
The classical fixed point theorems have been applied in
order to obtain the results regarding the existence/

A J u(s)dH, (s) +
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1,2,...,n. Existence and uniqueness results are established
by using basic tools from fixed point theory.

The study of system of Hilfer type was initiated by
Wongcharoen et al. [18], by presenting the following system
of fractional differential equations:

HDal’ﬁlu(z) - f(z,u(z),v(z)), z € [c,d],
HDO‘Z’ﬁZV(Z) - g(Z,M(Z),V(z))) zZ € [C, d])
Ju)=0 u(d) = iél“’fv(f @

i=1
v(c)=0 v(d):i Piu(z
j=1

Inspired by the forenamed studies, this article considers
the existence and uniqueness of solutions for the following
coupled system of Hilfer type fractional differential equa-
tions with Riemann-Stieltjes integral multistrip boundary
conditions of the form

o' D" u(2) = f1(zu2),v(2) z € [ed],
("D + 6D ) (2) = £, (z,u(2),v(2)) z € [ed),

Alj v(9)dH, (s)+Zy,J v(s)ds, (3)

p 0,
v, J u(s)ds,
1 (r

r=

uniqueness in Section 4. Thus, the classical Banach fixed
point theorem is applied to obtain uniqueness result,
while Leray-Schauder alternative and Krasnosel’skii’s
fixed point theorems are applied to present existence
results. Examples are also constructed to illustrate the
obtained results.

2. Preliminaries

Now, the following items are reminded which will be applied
to fulfil the main results in the next steps.

Throughout the paper, the Banach space of all contin-
uous mappings from [c,d] to R are denoted by
% =C([c,d], R) which is equipped with the norm
Iyl = sup{ly (2)I;z € [c,d]}. It is clear that the space
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YXY, equipped  with norm
(e, )1l = llx]l + llyll, is a Banach space.

Also, AC" ([c, d], R) is the n-times absolutely continuous
functions defined as

AC"([e,d],R) ={f: [,d] — R; f" € AC([c,d], R)}.
(4)

For a real valued function g: (0,00) — R, the Rie-
mann- L10uv111e fractional integral of order # >0 is defined
by Ig(t) = j ((t—s)"'/T(1))g (s)ds, in which the right-
hand side is defined point-wise on (0, 00), see [2]. Besides,
for the function g, the Riemann-Liouville fractional de-
rivative of order §>0 is defined by {R}D°g(t) =

(1/T(n-90))(d/dt)" _[; (g(s)/(t—s)"™Nds, in  which
n = [6] + 1, where [8] denotes the integer part of a real
number J, see [2], while the Caputo fractional derivative is
defined by {€}D°g(t) = (1/T(n-9)) fg(l/ (t — )™
(d/ds)" g (s)ds, provided that the right-hand side exists.

Also, the Hilfer fractional derivative of order a and
parameter 8 of a function is defined by

Hpby(t) = P9 prpU-Po=ay, ), (5)

defined by

where n—-1<a<n, 0<B<1, t>a, D= (d/dt), see [12].
Note that if = 0 and 8 = 1, the Hilfer derivative is reduced
to the Riemann-Liouville and Caputo fractional derivatives,
respectively.

The following lemma will be applied to prove a lemma in
the next section which presents a pattern of existence of
solutions for system (1.3).

Lemma 1 (see [13]). Leth € L(c,d), ny —1<a<n;, ny €N,
0<B<1, IMm=@U-Ap e AC*[c,d]. Then, we have the fol-
lowing relation:
= -l _ k- (m-a)(1-p)
(I“HD“’ﬁh> (2)=h(z)- ) (z-c) — _
S T(k=(n —@)(1-P)+1)

- lim d—kk (1““”(”1‘&)}:) (2).

z—c* dZ

(6)

( “2ﬁ2+0- D"‘z 1ﬁ2)v(

( (HD“I’ﬁl + 0 HDal_l’ﬁl)u z) = h (2),

d
1 u(c) =0, u(d)—)tlj v(s)dH, (s)+ZM,I

Finally, we collect the fixed point theorems applied to
prove the main results in this paper.

Lemma 2 (Banach fixed point theorem, [19]). Let D be a
closed set in X and T: D — D satisfies

[Tu—Tv|<Mu -v|,
forsomel € (0,1), (7)

forallu, v € D.

Then T admits a unique fixed point in D.

Lemma 3 (Leray-Schauder alternative [20]). Let the set w be
closed bounded convex in X and O an open set contained in w
with 0 € O. Then, for the continuous and compact
T: U — w, either

(1) (a)T admits a fixed point in U, or

(2) (aa) there exists uweoU and pe (0,1) with
u = uT (u).

Lemma 4 (Krasnosel’skii fixed point theorem, [21]). Let N
indicate a closed, bounded, convex, and nonempty subset of a
Banach space Y and C,D be operators such that (i) Cx +
Dy € N where x, y € N, (ii) C is compact and continuous,
and (iii) D is a contraction mapping. Then, there exists z € N
such that z = Cz + Dz.

3. An Auxiliary Result
Lemma 5. Let ¢>0, 1<a, a,<2, 0<pB,B,<1
Y1 =0y + 2B — By, V2 =0 + 20, — ayp,

hy, hy € C([c,d],R) and © #0. Then, the solution of the
system

z € [¢,d],
z € [c, d],

&
v(s)ds, (8)

i=1 i

d p 0,
v(©) =0, v(d) = zJ u(s)dH, () + Y, L u(s)ds,
L 1

r= r
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is given by

u(z) = -0, Jz u(s)ds + I""hy (z)

_ A\ d s
+(z® rcil [G3( o, Cjcv(t)dthl(s)

n & s
A | I%hy (s)dH, (s) - . drd
A L 2 (s)dH, (s) - 0, ;#z Jm LV(l‘) tds
+ iyi r[ I"h, (s)ds> + 0, Jd u(s)ds — I"'hy (d)> 9)
i=1 Ni c

d s d
. GZ(—GIAZJ J u(8)dtdH, (s) + 1, J %, (s)dH, (3)

c

—alivr jjj u(t)dtds+z j ®h, (s)d5+02j v(s)ds
=1 .

—I"h, ()],

v(2) = o, J v(s)ds + Ih, (2)

(z - C)le d s
+ W Gl(—al/\z JC J‘ u(t)dth2 (S)

“, J %, (s)dH, (s) - alz J J (£)dtds

P
+Zvrj Ik, <s)ds>+a2j v(s)ds—I“%(d)) (10)

d d
+G4(—02)L1J J y(©)dtdH, (s) + ), J I*h, (s)dH, (s)

c

n & & d
-0, Z”i J.q J- v(t)dtds + Z/,t, L I"h, (s)ds> +0, J u(s)ds
i=1 i i ¢

i=1

~I"hy (d))],

where

(d-oh!
G =T =7 N
! r()’l)
d(z_c)}’z‘l n _ n_c)’z
G2=AILWdH1(z) Zl )y +(1) s
g B (11)
—C 2
Gy =5
’ F(Vz)
d(Z_C)YI_l p (er_c)h_((r_c)h
G, =1 ———dH X
v | Sy @ Y

0 = G,G; - G,G,. (12)
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Proof. Let (u,v) be a solution of system (5). By Lemma 2, we
have

_ a2 _ -1 z

we) =k (FZ(VIC)— ke (zr(ycl)—) 0 J _u(s)ds + 1%, (2),
_ 32 _ -1 z

v(z) =d, (rz(ch)_ ) +d, (zr(ycz))) -0, L v(s)ds + I*h, (2),

(13)

where k,, k,, d,, d, are the arbitrary constants, since (1 —
B2 —-a)=y,and (1 -4,)(2-a,) =y,. Applying u(c) =
0 and v(c) = 0, we deduce that k; = d; = 0. Thus, the pre-
vious equations become

(d- C)Vrl d (z - )Yz
“ T ‘dzwc I

c

~_———dH, (z)+z‘ul(f

(z—o!

OO REL I u(s)ds+ 190, (2),  (14)

u(z) =

_ el z
v(z) = dz% -0, J v(s)ds + I"?h, (2). (15)
2 c

Now, applying  the boundary
u(d) =\, j v(s)dH, (s)+z,1y,j v(s)ds and v(d) =

A, JC u(s)dH, (s) + Zr:l j{r u(s)ds, we get

conditions

)(V _ﬂ)_ c)“]

d s d n & s
=—02AIJ J v (£)dtdH, (s)+/llj [“h, (s)dH, (s)—GZZyiJ j v (£)deds
c c i=1 niJc

§ d
[®h, (s)ds + o, J u(s)ds — I, (d),

i=1 i
1 1 (16)
_ A\~ d _ o\ P DAY EPAY4
PGl {AZJ G i, @)+ Y =)~ ) ]
T(y,) ¢ T(n) =l Ty, +1)
d s d p 0, s
=—01Azj J u(t)dthz(s)+Azj i, (s)de(s)-UIZv,L J u (£)deds
cJe c e L Je
P 6 d
+ Y, j [, (s)ds + o, j v(s)ds — 1%, (d).
r=1 ¢ ¢
Consequently, we have the system where
kG, - d,G, = Q,, d,Gs - kG, = O, (17)
d rs d n & s
0, :—O'Z)LIJ- J v (£)dtdH, (s)mlj I“h, (s)dH, (s)—UZZyiJ J v (£)deds
cJc c i=1 n Jc
n & d
+ J I“h, (s)ds + 0, J u(s)ds — Ih, (d),
i= 1; ¢
1 d rs 6. rs (18)
0, :—alazj J u(t)dth2(5)+Azj 1R, (s)dH, (s) — olz j J u(f)deds
cJc =1 ( Jec

r=1

P
+ Zvrj IR, (s)ds + azj v(s)ds — I“h,d.



By solving the above system, we have

0,G; + Q,G,

k2 = )
(19)

G,Q, +G,Q,

dy=—"7-"—

Substituting the values of k, and d, into (10) and (14),
respectively, we obtain the solutions (9) and (10). We can
obtain the converse by direct computation. The proof is
finished. O

@, (u,v)(2)

— J u(s)ds + 1% £, (z,u(2), v(2))

L (z- on!
®r(y)

c
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4. Existence and Uniqueness Result

Due to Lemma 5, we define an operator @: % x ¥ — % x
¥ by
Q(u,v)(2) = (@, (u,v) (), @, (u,v) (2)), (20)

where

d rs
[G3<—02A1 j J v (#)dtdH, (s)

&
n

d n s
+/11J 1% £, (s, u(s), v (s))dH, (s)—aZZyiJ J v (1)dtds
¢ i=1 idc

n

+Z#ir

i=1 n

i d
‘ I £, (s,u(s), v(s))ds + 0, J u(s)ds — I f1(d, u(d), v(d))

(21)

d s d
. GZ(—UI/\Z J Lu(t)dthz (s)+ A, J 1% £ (s, (s), v (s))dH, (s)

c

r=1 r r=1

0,
I f1 (s, u(s), v(s))ds

p 0, s p
—0, Y, L I u(t)deds + Y v, L

d
‘o, j v(s)ds — I £, (d, u(d), v (d)),

Q, (u,v)(2)

o, J v(s)ds + 1% £, (z,u(2), v(2))

(z - C)}’z—l d

NGl R J
®F(Y2) ! .

c

JS u (t)dtdH, (s)

d p 0, rs
+1, J I f1 (s, (u(s),v(s))dH, (s) — 0, Z v, J( J u (t)dtds
c - L Je

4 (22)

P 6
+ ; v, J(, I f1 (s, u(s), v(s))ds + 0, J v(s)ds — I f, (d,u(d),v(d))

c

c

d
c

d rs
+G4(—02A1J Lv(t)dthl (s)+)L1J 1% £, (s, 1(s), v (s))dH, (s)

L &
— 0, Z Hi L
i=1

i i=1

d
+0, J u(s)ds — I f, (d,u(d),v(d))

J v(ndds+ Y g, J

&
I f, (s,u(s), v(s))ds

)}
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For convenience, we set

@, - 1 (d on ! |3| 1

T+ 1) 100G, @ e v 1)

S ey oo

ﬁ Y0~ = - c)“l“]>,
6= 3|< g 2ellE=9"" ==

+r(oilJr 1)J (s = c)"dH, (S)> G| (ICZ@IFC();_) l"((x21+ 1) =
@, =|oi|(d-0) +|G3|% d-0o| +|Gz|% (d -0, Ji(s—c)de ©)

G ST ol Sl - - @, o)

@, = %IGSH%HMJ (s— O)dH, (s) + |®|r( )|G3|02|Z|y1 [ e~ (- )]
+|Gz|%(d—6)|azl,
%= e e o
+|Gy| (|ClG<)|FC(); 1(l |r((x1+1)J (s— )" AH ) Zm[ O (- )%H])’
ey <;g;;g;;) . (a; 5
D5 =|oy|(d - ) +|G1|(|c;|_r—c()yz_)1 (d - 0)|o,] +|G4I% (d -0yl jj(s_ OdH, (5)
(d-o .
ol Sy o Y [0 ==
=y el [ =oar 0+ G| S5 [0, - -]
+|G4|(|Lé)|_r76()y2_)l(d—d|al|.

(24)



Now, Banach’s fixed point theorem is applied to present
the following uniqueness result.

Theorem 1. Let ® #0 and f,, f,: [c,d] x R* — R be two
continuous functions such that for all z € [c,d] and
U, v, € R, i=1,2, we have
|f1(z0,%) = f1 (28, 7,)| Sel(lﬁl — | +[7, - Vz|)>
|f2(2.0,%) = f1(2.5,,7,)| 362(|ﬁ1 — |+, - Vz|)-
(25)
where €,,€, are positive constants and u;, v; € R, i =1,2.

Then, there exists a unique solution of system (3) on [c,d]
provided that

6 (C1+D)+6,(6,+D,)+C3+C,+ D3+ D, < 1.
(26)

Journal of Mathematics

Proof . It suffices to display that the operator Q has a unique
fixed point. For this aim, Banach’s theorem will be applied.
Put  sup,c.4lf1(2,0,0):==M<co and sup,c.qlf,
(2,0,0)| = N<co. Now, we locate B, ={(u,v)e ¥x
Y |(u, v)| <7}, in which

M(€,+2,)+N(%,+9D,)
1-[6,(€,+D))+6,(€,+D,)+C3+ G4+ D3+ D,
(27)

r=

First, we indicate that @ (B,)<B,. Assume that (u,v) € B,
and z € [c,d]. Due to (), we have

|f1(zu(2),v(2)|<|f) (z,u(2),v(2) = f,(2,0,0)| +| f1(2,0,0)| <€, (lu(2)| +|v(2)]) + M = €, + M. (28)
Similarly, we have Hence, we infer that
|f2 (z,u(z),v(z))|s€2r+N. (29)
|@1 (u,v)(z)|
d
gr[lal|(d—c) (le)lr()|G3|(|02||A|J' —OdH, ()
1 &
o, | Z || J (s—c)ds +|oy|(d - c)>
i=1 Ni
d— ! d p 6,
+|G2|ﬁ <|01|| Ll j (s — O)dH, (5) +]o] ; v, Lr (s - O)ds
(d— on! 1
+|(72l(d—6))] + (flr +M)[F(oc1 + 1) |®|r(yl | 3l F(OC + 1) (30)

Gl ()

1 .
Vot (Wi [ oo

6, 3
o+ 1) Z]v |J-(r (s=¢) ‘ds>]

on! o
+(€2r+N)|:|®|r( | 3|< (@, +1);|P‘iljm (s—c)™ds

M
+4
[(a, +1)

=(6r+ M)%,

d
J (s = ) dH, (s)> 46,

_ )Yl‘l 1 ]
[OIT(y;) T(ay+1)

+(br + N)G, +1 (€5 +6,).
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Consequently,
|@, )| < (7 + M)E, + (6, + N)G, + 1 (5 + C,).
(31)
In the same way, we have
||Q2 (u, v)“ <(r+M)D, +(r + N)D, + 1 (D3 + D).
(32)

Hence,

1@, (1)) (2) = @, (113, v,) (2)]

1

@, V)< (&7 + M)(E, +D,) +(&,r + N) (€, +D,)
+1(C3+C+ Dy +D;)<r,
(33)
which yields that @ (B,)<B,.
Now, it is proved @: ¥ X ¥ — Y X % is a contrac-

tion. Applying condition (25), for any (u,v,), (uy,v,)
€ Y x % and for each z € [c,d], we have

(d—C)

<0, ([Jluy - ] +]v, - Vz”){r(‘xl + 1)

o o
’ 1®IT (y,)

< F(oc11+ 1)

r(oc1+2) Zl” J (S_C)ald5>}

(d

el =l o - oy

<F((x2+2) Z|yl j . (s —c)™ds +

(d-ch ! 1
O[T (y;) T(ay+1)

+|G,|

(d- C)Yﬁl

+|63| er(y;)

EADN j s—OdH, () +]G,| 4

(d_C)Yl—l
+||v1 _VZH |®|r()/1)

(d -
|®|r( |c3 |az|z|yl j <s_c>ds+|G2|W

(d=¢)|ay +|62|W

d
Gyflos ! j (s

1®IT (y,) |3| (o +1)

j (s — )M dH, (s)

|G|

Al d a
T(a, +1) J (s=c) dHl(s))

} +||u1 - u2||{|01| (d-c¢)

(34)

o (d - c)x

R

—c¢)dH, (s)

)Yl
L c>|02|}

=(6,%, + fz%z)(”ul - u2|| +”v1 - v2||) + ‘[53“141 - u2|| + %4||v1 - v2||

<((6,6,+6,%,) +€; + %4)("141 - u2|| +||v1 - v2||),

and hence

||Q1 (u,vy) - @, (uz,vz)" < (6,6, +6,%,)+ 65+ 9?4)(Hu1 - u2|| +Hv1 - VZH). (35)
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Furthermore, we deduce that
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”@2 (ug, 1) = @, (1, Vz)“ < (6,9, +6,92,) + D5 + 94)("”1 - ”2” +||V1 - Vz")- (36)

Using (25) and (33), we concluded that

1@ (11, v) = @ (1 vy)|| < (6, (61 + D)) +6,(6y + D) + G5+ 6y + Dy + D) ><(||u1 — | +]|v, - v2||). (37)

As 0, (61+9D))+6,(6,+D,)+63+C,+D3+D,<]1,
so the operator @ is a contraction and by applying Lemma 2,
the operator @ has a unique solution which is the solution of
the problem (3). The proof is finished. O

5. Existence Results

Two existence results are proved in this section.

5.1. Existence Result via Leray-Schauder Alternative. The
Leray-Schauder alternative (Lemma 3) is used in the proof
of our first existence result.

Theorem 2. Let ®+0 and f,, f,: [c,d]xR* — R be
continuous functions. Assume that

[(H,)] There exist real constants u;, v; >0 fori = 1,2 and
Uy, vy > 0 such that for all u,v € R, we have

|@, (u,v) ()]

<loi] [ a(olds + 1| £, Gtz v ()

|f1 (z,u(z),v(z))|£u0+u1|u| + uy|vl, (38)

|f2(z,u(z),v(z))| <y + vy lul + v,

If (6,+9)u+ (6,+D)v+65+D5<1  and
(61 +D)Duy + (6, +D)v, + €4+ Dy <1, where G, D;
fori=1,2,3,4 are given by (23) and (24), respectively, then
system (1.3) admits at least one solution on [c,d].

Proof . The functions f,, f, are continuous on [c,d] x R?.
Thus, the operator @ is continuous. Now, we will show that
the operator Q: ¥ x Y — Y x ¥ is completely contin-
uous. Let B, C ¥ x% be a bounded set, where
B, ={(u,v) € ¥ x ¥: |(u,v)|| <r}. Then, for any (u,v) € B,,
there exist positive real numbers P, and P, such that
|f1(z,u(t),v(2)| <Py and | f,(z,u(2z),v(2))| <P,.
Thus, for each (u,v) € B,, we have

@-o! [|G3|<|Uz|| [ [ wonarart,

Tlelr(y,)

i

d n & s
+|A1|J |f1(z,u(2),v(2)|dH, (s)+|az|2|yi|L J v (£)|dtds
Cc i=1 a

n éi
+ Z |uai| J”. I f, (s, u(s), v(s))|ds

d
+|01| L [t (s)lds + I"“lf1 (d,u(d),v(d))|)

+|Gz|<|a1 I, jd[j (e |aF, (9 +i01|§1 | jj ([ o]

d d
+|)L2| L ™ |f1 (s,u(s),v(s))lde(s) +|02| JC [v(s)|ds + I‘lefz(d,u(d),v(d))|
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+Z J I £y (s, (9), V(S))|ds>}

(d
Sr[|01|(d—c)+WU|G3|(|02HA|J ~OdH, (9)

+|02| Zl: Iﬂil J”. (s—c)ds +|01|(d _ c)>

d—cm! d p 0,
+|G2|ﬁ <|01|| A L (s —c)dH, (s) +|oy| ; v, J(, (s—c)ds

1 (d— ot G |
F((x1+1) OIT(y,) "' (a, +1)

o)t d
NGl (A ! J(s—c)“lde(s)

+|o, | (d - c))] + Pl[

1OIT (y,) I ZIF("‘l +1)
—o)*d
F(oc +1) Z|V|J (s—¢) s>j|
(d—C) n r" «
—o)%d
1®IT (y | o F(a2+1) ZI“’ n Crond
A J a d—oh! 1
e (s —¢)?dH, (s)) +|G
T(a,+1) | 2| |®|F(y1) T(a,+1)
=P, €, +P,E,+r(€;+F,),
(39)
le(u,< (€, +2,)P, +(€, +2D,)P
which yields @ r20P+ (& 2)P )
+7(63+ G4+ Dy + Dy).
|@, (u,v)| <€\ P, + B, P, + 7 (65 +B,). (40)
Next, we are going to prove that the operator @ is
Similarly, we obtain that equicontinuous. Let 7,7, € [¢c,d] with 7, <7,. Then, we
|@ V)| <D, P, + D,P, +7(Dy +D,).  (a1)  Dave

Hence, from the above inequalities, we get that the
operator @ is uniformly bounded, since

@, (,v) (7;) = @, (u,v) (1)
7 _ a—1 _ AR T, w1
S|01|r(12 -1)+P, J [(T2 ) (r2 =) ]ds+P1 J %ds

[(e) n o ()
[(72 O G C)ylfl] d
' [®IT (y,) [r(|G3||02||,\1| L (s —c)dH, (s)

n Ei
+|o, | Zl | J'ﬂ' (s —c)ds +|oy|(d - c)>

+|G2r|<|01||A2|J (s— C)de(S)+|01|Z L (s—c)ds
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1
+|02|(d—c))+P1[|G3|r(al

r(ocl +1) £ Z i |J S_C)alds>]

&
2| 1Gs <F(oc r1) 2 Z|Hz Jm (s—c)™ds

[l

A A

Journal of Mathematics

j (s — o)™ dH, (s)

oc+1)

d
+m J-C (S—C) del(S )+|G2|+1)]]

Therefore, we obtain

|G, () (1,) - @, (w,v) ()| — 0, asT; — 1,0 (44)

Analogously, we can get the following inequality:

|G, (u,v) (1,) = @y (u,v) (1,)] — 0, asT) — 1,0 (45)
Hence, the set @9, is equicontinuous. Accordingly,
Arzeld-Ascoli theorem implies that the operator @ is

completely continuous.

(43)

Finally, we shall show the boundedness of the set
={u,v) e ¥ xY: (u,v) = u@(u,v), 0<u<1}. Let any
(u,v) € Z, then (u,v) = u@(u,v). We have, forall z € [c,d],

u(z) = p@, (u,v)(z),

lull < (o + wyllull + IV E, + (vo + villull + v,V E, +ul €5 +IVIE,,

IVl < (g + uylull + u, VD, + (v + villull + v,lIvI) D, +1ul D5 + 11D,

which imply that

lull +lIvll < (€ + D) )uy + (€, + Dy)v, +

(46)
v(z) = @, (u,v) (2).
Then, we get
(47)
(€, +D))uy + (€, +D,)v, +E5 + Ds]lull (48)

+[(€1 + Dy)u, +(€, + D,))v, + G4 + Dy ]IV

Thus, we obtain

(6, + 91)“0 +(6, + D,)v,

. (49)
M

G, V) <

where M* = min{l — (€, + D))u; — (€,+ D,)v, — (E5+
D3),1 = (€, +D)Duy— (€, +D,)v, — (6, +D,)}, which
shows that the set Z is bounded. Therefore, by Ler-
ay-Schauder alternative (Lemma 3), the operator @ has at
least one fixed point. Hence, we deduce that problem (3)
admits a solution on [c, d], which completes the proof. [

5.2. Existence Result via Krasnosel’skii’s Fixed-Point Theorem.
Now, Krasnosel’skii’s fixed-point theorem (Lemma 4) is
applied to prove our second existence result.

Theorem 3. Assume that ®#0 and f,, f,: [c,d] x R?
— R are continuous functions satisfying condition (4.8) in
Theorem 4.1. Furthermore, suppose that there exist positive
constants R, and R, such that for all z € [c,d] and u,v € R,
we have

|f1 (z,u,v)|sR1, (50)
|f2 (z,u, v)| <R,.

IfE,+6,<1, D3+ D, <1and ((d-c)"/T(a; + 1))
+((d-¢)2/(d - ¢)™)¢, <1, then problem (1.3) admits a
solution on [c, d].

Proof . First, we decompose the operator @ defined by (1)
into four operators as



Journal of Mathematics 13

z _ Al d s
S, (u,v)(z):—olj u(s)ds+(z®r8}) G3<—02A1J J. v(t)dtdH, (s)
c 1 cJc
§
1

d n s
+)L1J 1% £, (s, 1(s), v (s))dH, (s)—crzz#ij J v (£)deds
¢ i=1 i

n

& d
+ZyiJ I fz(s,u(s),v(s))ds+alj w(s)ds — I f, (d,u(d),v(d)))
i=1 i ¢

d s d
+G2(—01)L2J J u(t)dthz(s)+)LzJ 19 £, (s, 14(s), v (s))dH, (s)

c

P 0, s P 6,
— 01 Zi”r L JC u(t)dtds + Z; v, L I £, (s, u(s), v(s))ds

d
+0, J v(s)ds— I f, (d,u(d),v(d)))],

Sy (,v)(2) =1 f, (z,u(2),v(2)) I" fLu,v(2),

51
3 () (2) = - r()d+(z_76)yz_lc —/\rr (t)dtdH, (5) o
3(11)(2) = 0, | v(s)ds or(y) ok | | u ,(s
d p 0, rs
+A, J I £, (s,u(s), v(s))dH, (s) — o, Z v, J( J u (t)dtds
c o L Je
Pl d
sy, L £, (s,u(s),v(s))ds+azj v(s)ds — I £, (d, u (), v (d))
r=1 r c
d s d
+G4<—02)L1J J v (t)dtdH, (s)+AIJ 1 £, (s, u(s), v(s))dH, (5)
1 & s L &
-0, Zyi J J v(t)dtds + Zyi J I £, (s, u(s), v(s))ds
i=1 i ¢ i=1 Hi
d
+01J- u(S)ds—I“‘fl(d,u(d),V(d)))],
Sy () (2) =1 £, (z,u(z), v(2) I™ fLu, v(2).
Accordingly, @, (1,)(2) = &, (1,1) (2) + 8, (1,) () S @A 5D (53)
ccordingly, u, ) (2) = 8 () (2) + S, (u,v) (2 o
and Q@) = &) (@) + Sy 1) (@), Let Sa (V) (DI f2(2u(2),v(2)).
B, ={(u,v) € ¥ x ¥; I, v)l| < e} with Consequently, @, (x, y) + @, (u,v) € B, and we conclude
N @R, +G,R, DR, +D,R, (52) the condition (i) of Lemma 4. Now, it is indicateq that the
€2max 1_(%3+%4),1_(@3+94) . operator (&,,&8,) is a contraction mapping. For

(x1, ¥1)> (x5, ¥,) € B, we infer that
First, it is showed that @, (x, y) + @, (u,v) € B, for all (x,
y), (u,v) € B,. According to the proof of Theorem 1, we get

|<“5)2 (xp)/l)(z) - &, (xz’)’z)(z)l Slallfﬂpyl - f1xz)}’2| (2)

“ (d-c)™ (54)
<t =l =) @ <tz (b =]+ - 22]),
|094 (xp)’l)(z) -3, (x2>)/2) (z)| | SI%|f2xl’)’1 - fzxz))’zi(z) sz(nxl —x2|| +”)’1 - )’2“)10‘2 (1) (d)
(d-o)* (55)

< zm(”xl = x5 +[|y1 - yzll)-
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As  ((d=o)"/T(a; + 1)), + (d—c) /T (o, + 1)6, < 1,
the operator (&,, §,) is a contraction and the condition (iif)
of Lemma 4 is concluded. In the final step, the condition (i7)
of Lemma 4 is verified for the operator (§,,S5). As the

S, (u,v)(z)|§(‘_€1 -

[(a +1)

Journal of Mathematics

functions f,, f, are continuous, one can see that the op-
erator (&;,8;) is continuous. Furthermore, for (u,v) € B,,
as in the proof of Theorem 1, we have

)R1 +@,R, + (€5 +6,)e=P",

(56)

1 *
|§3 (u, V) (Z)| S@lRl +<@2 —IW>R2 + (93 + 94)8 = Q .

Hence, |($;,8,) (u,v)[|<P* + Q*, which implies that
(8, 8'5)B, is uniformly bounded. Now, we claim that the set
(&8, 85)B, is equicontinuous. For this aim, let 7,, 7, € [c,d]
with 7, <7,. For any (u,v) € B,, similar to the proofs of
equicontinuous for the operators @, and @, in 2, we can
show that |&, (u,v)(1,) =& (w,v)(t)], 185w, v)(1y)—
85 (u,v) (1)) — 0 as 7, — 1,. Consequently, the set
(&8, 83)B, is equicontinuous and by applying Arzela-Ascoli
theorem, the operator (&,,8;) will be compact on B,.
Therefore, by applying Lemma 4, problem (3) has at least one
solution on [c, d]. This completes the proof. O

Remark 1. In Theorem 2, the functions f, f, are bounded
by linear planes in three-dimension space. While, in

1
HD(5/4)(2/3) + %HD(IM)(Z/S))L{(Z) — fl (z,u(z),v(2)),
1
I_HD(3/4)(1/3)>V(Z) = f,(zu(2),v(2)),

(HD(7/4)(1/3) + -

Here, ) =5/4, a, =7/4, B, =2/3, B, =1/3, c=1/8,
d=13/8, A, =1/4, A, =1/5, H,(t)=e %, H,(t)=¢*,
n=2, u =2/7, u,=3/11, n, =1/2, n,=9/8, & =5/8,
& =5/4, p=3, v, = 4/13, v, = 5/17, v, = 6/19, {, = 1/4,
{, =3/4, {;=11/8, 6, = 3/8, 6, =7/8, and 6, = 3/2. Then,
we can compute that y, = 7/4, y, = 11/6, G, = 1.474766913,
G, = —0.03380798224, G; = 1.490431261, G, = 0.03704
876432, © = 2.199291254, €, = 1.765659740, €, = 0.00612
8241272, 5 = 0.1499796921, €, = 0.000526941741, D, =
1.242948896, 9, = 0.06369559511, 95 = 0.1998340850,
and 9, = 0.003945721441.

Theorem 3, f,, f, are bounded by fixed constants and also
satisfied Lipschitz condition in (25).

6. Examples

Now, we present some examples to show the benefits of our
results.

Example 1. Consider the following coupled system of Hilfer
type sequential fractional differential equations involving
Riemann-Stieltjes integral multistrip boundary conditions
of the form

z € [(1/8), (13/8)],

z € [(1/8), (13/8)],

(57)

13/8 5/8 3 (54
J v(s)d(e_ 25) 4= J v(s)ds + — J v (s)ds,
1/2 11 Joss

Jl3lsu(s)d(e_3s)+%J

3/8 7/8 3/2

u(s)ds.

11/8

5 6
u(s)ds+l—7 J u(s)ds+E J

1/4 3/4

(i) The Lipschitzian functions f, f,: [(1/8), (13/8)] x
R*> — R are given by

1 u2+2|u| sinlv] 1
tu,v) = Zcos2t, (58
frltwy) 8t+4(2(1+|u|)>+8t+5+2cos i, (58)
Falty ) = ——tan”"ul
JU, V) = an |u
2 8t +3
(59)

178 442 4 5|v| 1
+—— | ——— | +-log, t.
8t+7\5(1+|v|) 4
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From direct computation to (59)-(60), we get
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1 1
|f1 (t>”1)V1) -fi (t> “2)V2)| Sgl% - ”2' +6|V1 - V2|’

1 1
|f2 (t>u1a"1) - (t>u2>V2)| Szllh —uzl +§|V1 -V

for u,,u,, vy, v, € R. Setting ¢, = 1/5 and ¢, = 1/4,
we obtain £, (6, +9D))+¢, (6,+D,)+GE5+
@, + Dy + D, ~0.9734641265 < 1. By application
of our Theorem 1, the problem of Hilfer type se-
quential fractional differential system involving
Riemann-Stieltjes integral multistrip boundary

1 1 _
fitu,v) = Ecos2 it +—ue

1
fo(tu,v) = —sin® 7t +

3

We remark that |f,(t,u,v)|< (1/2)+ (1/5)|ul+
(1/3)|v] and | (tu,v)| < (1/3) + (1/4)|ul+
(1/2)|v|. Now, we choose the constants as in The-
orem 2 by u, =1/2, u; =1/5, u, = 1/3, v, = 1/3,
v, = 1/4, and v, = 1/2. Then, we can find that (&, +
Duy + (G, +Dy)v, + 65+

D, = 0.9748101164 < 1 and (6, +9D))u,+
(G, + D), + G, + D, ~0.7915367403 < 1. The

(60)

>

conditions (58) with (59)-(60) has a unique solution
on [(1/8), (13/8)].

(ii) Let the nonlinear functions f, f,: [(1/8), (13/8)] x
R? — R be defined by

15, 4
" [v| 7sin” u (61)
Y T3y

18 12
u cos v
—tan " u.

v
41+ T Y

benefit of Theorem 2 can be used to conclude that
the coupled system of Hilfer type sequential frac-
tional differential equations subject to boundary
conditions (58) with (62)-(63) has at least one so-
lution on [(1/8), (13/8)].

(iii) Suppose  that two  Lipschitzian functions
f1> f2: [(1/8), (13/8)] x R* — R are stated by

1 1 ] 1 1
Lu,v) = + + tan " |v|, 63
S ) 8t +1 8t+2(1+|u|) 8t +3 v (63)
1 Log . 1—(1—8t)2 vl
t,u,v) = —+—e sin|u| + —e — ). 64
fa ) 8t+4 3 ul 5 1+]v| (64)

Actually, we can compute the bounds of the above two
functions by |f, (t,u,v)| < (5/6) + (7/8), |f,(t,u,v)|<
(47/60), for all u,v € R. In addition, we can find that
[f1 G uy,vy) = fr(Euy, vy)l < (1/3)|uy —uy| + (1/4)|v, — v,
and | fo (tuy,vy) = fro (8 1y, vy)| < (1/3) [t; —u, |+
(1/5)|v; = v,|, and thus we can set ¢, =1/3 and ¢, =1/3
satisfying condition (4.8) in Theorem 1. Then, we obtain
€5+ €, = 0.1505066338 <1, I, + D, = 0.2037798064 < 1,
and  ((d-0)"/T(ay+ 1))+ ((d=0)"/ T, +1))e,
~ 0.9097463067 < 1 that all conditions in Theorem 3 are
tulfilled. In this step, we conclude that the problem (58) with
(64) has at least one solution on [(1/8), (13/8)]. Finally, we
observe that the uniqueness result cannot be obtained be-
cause (6, +D,)+¢, (6, +9D,)+65+C,+ D5+
2, = 1.380430597 > 1.

7. Conclusions

In the present research, we studied a coupled system of
Hilfer type sequential fractional differential equations sup-
plemented with Riemann-Stieltjes integral multistrip
boundary conditions. First, an auxiliary lemma, concerning
a linear variant of the considered problem, has been proved
which is pivotal to converting the coupled system into a fixed
point problem. Then, existence and uniqueness results are
established via standard fixed point theorems. Thus, the
classical Banach fixed point theorem is applied to obtain a
uniqueness result, while Leray-Schauder alternative and
Krasnosel’skii’s fixed point theorem are applied to present
the existence results. Numerical examples are also con-
structed to illustrate the obtained results. The obtained
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results are new and enrich the existing literature on coupled
systems of Hilfer type sequential fractional differential
equations.
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