Integral Equations Approach in Complex-Valued Generalized b-Metric Spaces

Shahid Mehmood, ${ }^{1}$ Saif Ur Rehman (1), ${ }^{1}$ Ihsan Ullah, ${ }^{2}$ Rashad A. R. Bantan, ${ }^{3}$ and Mohammed Elgarhy (1) ${ }^{\text {1,4 }}$
${ }^{1}$ Institute of Numerical Sciences, Department of Mathematics, Gomal University, Dera Ismail Khan 29050, Pakistan
${ }^{2}$ School of International Studies, Collaborative Innovation Center for Security and Development of Western Frontier China, Sichuan University, Chengdu, Sichuan 610065, China
${ }^{3}$ Department of Marine Geology, King AbdulAziz University, Jeddah 21551, Saudi Arabia
${ }^{4}$ The Higher Institute of Commercial Sciences, Algarbia, Al Mahalla Al Kubra 31951, Egypt

Correspondence should be addressed to Mohammed Elgarhy; m_elgarhy85@sva.edu.eg
Received 15 November 2021; Revised 19 December 2021; Accepted 27 December 2021; Published 24 January 2022
Academic Editor: Sun Young Cho
Copyright © 2022 Shahid Mehmood et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we study a rational type common fixed-point theorem (CFP theorem) in complex-valued generalized b-metric spaces (G_{b}-metric spaces) by using three self-mappings under the generalized contraction conditions. We find CFP and prove its uniqueness. To justify our result, we provide an illustrative example. Furthermore, we present a supportive application of the three Urysohn type integral equations (UTIEs) for the validity of our result. The UTIEs are

$$
\begin{align*}
& \gamma_{1}(q)=\int_{k_{1}}^{k_{2}} Q_{1}\left(q, r, \gamma_{1}(r)\right) d r+\hbar_{1}(q) \\
& \gamma_{2}(q)=\int_{k_{1}}^{k_{2}} Q_{2}\left(q, r, \gamma_{2}(r)\right) d r+\hbar_{2}(q) \tag{1}\\
& \gamma_{3}(q)=\int_{k_{1}}^{k_{2}} Q_{3}\left(q, r, \gamma_{3}(r)\right) d r+\hbar_{3}(q)
\end{align*}
$$

where $q \in\left[k_{1}, k_{2}\right], \gamma_{1}, \gamma_{2}, \gamma_{3}, \hbar_{1}, \hbar_{2}, \hbar_{3} \in \Upsilon$, where $\Upsilon=C$ ($\left[k_{1}, k_{2}\right], \mathbb{R}^{n}$) is the set of all real-valued continuous functions defined on $\left[k_{1}, k_{2}\right]$ and $Q_{1}, Q_{2}, Q_{3}:\left[k_{1}, k_{2}\right] \times$ $\left[k_{1}, k_{2}\right] \times \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$.

1. Introduction

In 1922, Banach [1] proved a "Banach contraction principle" which is stated as "a single-valued contractive type mapping in a complete metric space has a unique FP." Later on, this principle generalized in many directions, and some
researchers contributed to the theory of FP. In [2], Nazam et al. presented the idea of weakly increasing F-contractions and established some results in ordered partial-metric space with an application. Hu and Gu [3] presented a new idea of Menger probabilistic S-metric space by using the concepts of probabilistic and S-metric spaces. They investigated its topological characteristics and established some FP theorems with illustrative examples.

Bakhtin [4] introduced the idea of b-metric space. After that, Czerwik [5] established some FP results by using b-metric spaces. In [6], Boriceanu et al. extended the concept of fractal operator theory by introducing it in b-metric spaces and presented some generalized CFP results. While, Akkouchi [7] used the concept of an implicit relation in the said spaces and established CFP results for contractive type maps. Došenović at el. [8] discussed, complemented, improved, generalized, and enriched some FP results of ($\beta-\psi_{1}-\psi_{2}$) contraction in ordered b-metric spaces. They made a different approach of taking Picard's sequence which
help shorten the proof comparing other previous studies in literature. They also complimented and enriched CFP results for $\beta_{q, \phi} s, \psi$ contraction maps.

Delfani et al. [9] contributed in ordered b-metric spaces by establishing FP theorems. In these results, they introduced the generalizations of $F-t s$ and ($\psi, \phi, F-t s$) contractions. They also provided a suitable example to verify their FP result. In [10], Karapinar et al. contributed in b metric spaces by generalizing it to prove FP results in view of (α, ψ)-Meir-Keeler type contractions. These results improved and unified some previous results. Abdeljawad et al. [11] extended the b-metric spaces to double controlled metric spaces by improving control functions $\alpha\left(\gamma_{1}, \gamma_{2}\right)$ and $\mu\left(\gamma_{1}, \gamma_{2}\right)$ on the right side of b-triangle, that is, $d\left(\gamma_{1}, \gamma_{2}\right) \leq \alpha\left(\gamma_{1}, \gamma_{3}\right) d\left(\gamma_{1}, \gamma_{3}\right)+\mu\left(\gamma_{3}, \gamma_{2}\right) d\left(\gamma_{3}, \gamma_{2}\right), \forall \gamma_{1}, \gamma_{2}$, $\gamma_{3} \in \Upsilon$. They also provided some examples in which two functions are not comparable.

Mustafa and Sims [12] introduced the generalized idea of metric space and established some FP theorems by using Dhage's theory. Later on, Mustafa et al. [13] proved some modified contractive-type FP results in this space. Abbas and Rhoades [14] started to investigate CFP results in the said spaces. In [15], Chugh et al. established the property P in G-metric space and proved some results. In this context, Mohanta et al. [16] contributed by establishing a CFP result which improved and supplemented some of the existing results. Mustafa introduced a mapping pair and obtained many CFP results for different contraction conditions. He supported these results through examples.

In 2014, Aghajani et al. [17] presented the idea of G_{b}-metric space and proved a weakly compatible CFP theorem. Aydi [18] improved, complemented, unified, and generalized some well-known existing results in said spaces and established some coupled and tripled coincidence point results. Gupta in [19] extended some existing results from literature and obtained various FP results in G_{b}-metric spaces. In [20], Makran et al. proved general CFP theorem by using multivalued maps and established its application. Mebawondu et al. [21] proved FP results for a different contraction type maps which involve C-class, α_{s}^{δ}-admissible, Suzuki-type maps in G_{b}-metric spaces.

Ege [22] gave the idea of complex-valued G_{b}-metric space and proved "Banach contraction principle and Kannan's contraction theorems for FP." Ege [23] used the idea of α-series to prove CFP results in said spaces. He also introduced $\alpha-\psi$ contraction maps to prove CFP results. Kumar and Vashistha [24] introduced the idea of coupled FP for mapping in the said space. They proved coupled FP results and supported it by providing an example satisfying their main result. Recently, Mehmood et al. [25] proved some CFP theorems by using compatible single-valued contractive type mappings on complex-valued b-metric spaces with an application.

This article presents a contraction theorem in complexvalued G_{b}-metric spaces by using three self-maps to establish a generalized CFP-theorem. This result improves, extends, and modifies some of the existing results (e.g, [22, 26]). We present an example to support our work. We also present an
application of the three UTIEs for the existence of a common solution to support our work. This study is organized as follows: Section 2 consists of preliminary concepts. In Section 3, we present a CFP theorem with an illustrative example. While in Section 4, we present an application to support our main work. Finally, in Section 5, we discuss the conclusion of our work.

2. Preliminaries

Let the complex numbers be denoted by \mathbb{C} and $z_{i}, z_{i i} \in \mathbb{C}$. Now, we define \leq as $z_{i} \leq z_{i i}$, iff $R_{e}\left(z_{i}\right) \leq R_{e}\left(z_{i i}\right)$ and $I_{m}\left(z_{i}\right) \leq I_{m}\left(z_{i i}\right)$, where the real and imaginary parts of the complex number are denoted by R_{e} and I_{m}, respectively. Accordingly, $z_{i} \leq z_{i i}$, if any one of the following conditions holds:
(1) $R_{e}\left(z_{i}\right)=R_{e}\left(z_{i i}\right)$ and $I_{m}\left(z_{i}\right)=I_{m}\left(z_{i i}\right)$,
(2) $R_{e}\left(z_{i}\right)<R_{e}\left(z_{i i}\right)$ and $I_{m}\left(z_{i}\right)=I_{m}\left(z_{i i}\right)$,
(3) $R_{e}\left(z_{i}\right)=R_{e}\left(z_{i i}\right)$ and $I_{m}\left(z_{i}\right)<I_{m}\left(z_{i i}\right)$,
(4) $R_{e}\left(z_{i}\right)<R_{e}\left(z_{i i}\right)$ and $I_{m}\left(z_{i}\right)<I_{m}\left(z_{i i}\right)$.

Particularly, we can write $z_{i} \leq z_{i i}$ if $z_{i} \neq z_{i i}$ and one of (2), (3), and (4) is satisfied.

Remark 1 (see [27]). The following given properties can be held and verified if
(1) $\beta_{1}, \beta_{2} \in \mathbb{R}$ and $\beta_{1} \leq \beta_{2} \Rightarrow \beta_{1} y \leq \beta_{2} y \forall y \in \mathbb{C}$,
(2) $0 \leq z_{i} \leq z_{i i} \Rightarrow\left|z_{i}\right|<\left|z_{i i}\right|$,
(3) $z_{i} \leq z_{i i}$ and $z_{i i}<z_{i i i} \Rightarrow z_{i}<z_{i i i}$.

Definition 1 (see [17]). Let $\Upsilon \neq \varnothing$ set and $b \geq 1$ be a given real number. A mapping G : $\Upsilon \times \Upsilon \times \Upsilon \longrightarrow \mathbb{R}^{+}$is called a G_{b}-metric if G holds the following axioms:
(1) $G\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=0$ if $\gamma_{1}=\gamma_{2}=\gamma_{3}$
(2) $0<G\left(\gamma_{1}, \gamma_{1}, \gamma_{2}\right)$ for all $\gamma_{1}, \gamma_{2} \in \Upsilon$ with $\gamma_{1} \neq \gamma_{2}$
(3) $G\left(\gamma_{1}, \gamma_{1}, \gamma_{2}\right) \leq G\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ for all $\gamma_{1}, \gamma_{2}, \gamma_{3} \in \Upsilon$ with $\gamma_{2} \neq \gamma_{3}$
(4) $G\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=G\left(p\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}\right\}\right)$, where p is a permutation of $\gamma_{1}, \gamma_{2}, \gamma_{3}$
(5) $G\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \leq b\left[G\left(\gamma_{1}, a, a\right)+G\left(a, \gamma_{2}, \gamma_{3}\right)\right]$ for all $\gamma_{1}, \gamma_{2}, \gamma_{3}, a \in \Upsilon$
Then, a pair (Υ, G) is called a G_{b}-metric space.
Note that each G-metric space is a G_{b}-metric space with $b=1$.

Definition 2 (see [22]). Let $\Upsilon \neq \varnothing$ set and $b \geq 1$ be a given real number. A mapping $G: \Upsilon \times \Upsilon \times \Upsilon \longrightarrow \mathbb{C}$ is called a com-plex-valued G_{b}-metric if G holds the following axioms:
(1) $G\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=0$ if $\gamma_{1}=\gamma_{2}=\gamma_{3}$
(2) $0<G\left(\gamma_{1}, \gamma_{1}, \gamma_{2}\right)$ for all $\gamma_{1}, \gamma_{2} \in \Upsilon$ with $\gamma_{1} \neq \gamma_{2}$
(3) $G\left(\gamma_{1}, \gamma_{1}, \gamma_{2}\right) \leq G\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ for all $\gamma_{1}, \gamma_{2}, \gamma_{3} \in \Upsilon$ with $\gamma_{2} \neq \gamma_{3}$
(4) $G\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=G\left(p\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}\right\}\right)$, where p is a permutation of $\gamma_{1}, \gamma_{2}, \gamma_{3}$
(5) $G\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \leq b\left[G\left(\gamma_{1}, a, a\right)+G\left(a, \gamma_{2}, \gamma_{3}\right)\right]$ for all $\gamma_{1}, \gamma_{2}, \gamma_{3}, a \in \Upsilon$
Then, a pair (Υ, G) is called a complex-valued G_{b}-metric space.

Example 1. Let $\Upsilon=0, \infty)$ and a mapping $G: \Upsilon \times \Upsilon \times \Upsilon \longrightarrow \mathbb{C}$ be defined as

$$
\begin{align*}
G\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)= & \left(\frac{3}{4}\left|\gamma_{1}-\gamma_{2}\right|+\frac{3}{4}\left|\gamma_{2}-\gamma_{3}\right|+\frac{3}{4}\left|\gamma_{3}-\gamma_{1}\right|\right)^{2} \\
& +i\left(\frac{3}{4}\left|\gamma_{1}-\gamma_{2}\right|+\frac{3}{4}\left|\gamma_{2}-\gamma_{3}\right|+\frac{3}{4}\left|\gamma_{3}-\gamma_{1}\right|\right)^{2} \tag{2}
\end{align*}
$$

for all $\gamma_{1}, \gamma_{2}, \gamma_{3} \in \Upsilon$. Then, G is a complex-valued G_{b}-metric with $b=2$, but it is not G-metric. To see this, let $\gamma_{1}=3, \gamma_{2}=5, \gamma_{3}=7, a=7 / 2$, and we get $G(3,5,7)=576 / 16$ $+576 / 16 i, \quad G(3,7 / 2,7 / 2)=9 / 16+9 / 16 i, \quad$ and $G(7 / 2,5,7)$ $=441 / 16+441 / 16 i ;$ thus, $G(3,5,7)=576 / 16+576 / 16 i$ $\not \leq 450 / 16+450 / 16 i=G(3,7 / 2,7 / 2)+G(7 / 2,5,7)$.

Clearly, property (5) of definition (2.3) is satisfied with $b=2$; hence,
$G\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=\left(3 / 4\left|\gamma_{1}-\gamma_{2}\right|+3 / 4\left|\gamma_{2}-\gamma_{3}\right| \quad+3 / 4 \mid \gamma_{3}\right.$
$\left.-\gamma_{1} \mid\right)^{2}+i\left(3 / 4\left|\gamma_{1}-\gamma_{2}\right|+3 / 4\left|\gamma_{2}-\gamma_{3}\right|+3 \quad / 4\left|\gamma_{3}-\gamma_{1}\right|\right)^{2}$ is G_{b}-metric.

Proposition 1 (see [22]). Let ($\Upsilon, G)$ be a complex-valued G_{b}-metric space. Then, $\forall \gamma_{1}, \gamma_{2}, \gamma_{3} \in \Upsilon$.
(1) $G\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \leq b\left(G\left(\gamma_{1}, \gamma_{1}, \gamma_{2}\right)+G\left(\gamma_{1}, \gamma_{1}, \gamma_{3}\right)\right)$
(2) $G\left(\gamma_{1}, \gamma_{2}, \gamma_{2}\right) \leq 2 b G\left(\gamma_{1}, \gamma_{1}, \gamma_{2}\right)$

Definition 3 (see [22]). Let (Υ, G) be a complex-valued G_{b}-metric space and $\left\{\gamma_{j}\right\}$ be a sequence in Υ.
(1) $\left\{\gamma_{j}\right\}$ is complex-valued G_{b}-convergent to γ if for every $0<a \in \mathbb{C}, \quad \exists k \in \mathbb{N}$, such that $G\left(\gamma, \gamma_{j}, \gamma_{m}\right)<a, \forall j, m \geq k$.
(2) A sequence $\left\{\gamma_{j}\right\}$ is called complex-valued G_{b}-Cauchy if for every $0<a \in \mathbb{C}, \exists k \in \mathbb{N}$, such that $G\left(\gamma_{j}, \gamma_{m}, \gamma_{l}\right)<a, \forall j, m, l \geq k$.
(3) If every complex-valued G_{b}-Cauchy sequence is complex-valued G_{b}-convergent in (Υ, G), then a pair (Υ, G) is called complex-valued G_{b}-complete.

Proposition 2 (see [22]). Let ($\Upsilon, G)$ be a complex-valued G_{b}-metric space and $\left\{\gamma_{j}\right\}$ be a sequence in Υ. Then, $\left\{\gamma_{j}\right\}$ is complex-valued G_{b}-convergent to γ if and only if $\left|G\left(\gamma, \gamma_{j}, \gamma_{m}\right)\right| \longrightarrow 0$ as $n, m \longrightarrow \infty$.

Theorem 1 (see [22]). Let (Υ, G) be a complex-valued G_{b}-metric space; then, for a sequence $\left\{\gamma_{j}\right\}$ in Υ and a point $\gamma \in Y$, the following are equivalent:
(1) $\left\{\gamma_{j}\right\}$ is complex-valued G_{b}-convergent to γ
(2) $\left|G\left(\gamma_{j}, \gamma_{j}, \gamma\right)\right| \longrightarrow 0$ as $j \longrightarrow \infty$
(3) $\left|G\left(\gamma_{j}, \gamma, \gamma\right)\right| \longrightarrow 0$ as $j \longrightarrow \infty$
(4) $\left|G\left(\gamma_{m}, \gamma_{j}, \gamma\right)\right| \longrightarrow 0$ as $j \longrightarrow \infty$

Proposition 3 (see [22]). Let (Υ, G) be a complex-valued G_{b}-metric space and $\left\{\gamma_{j}\right\}$ be a sequence in γ. Then, $\left\{\gamma_{j}\right\}$ is a complex-valued G_{b}-convergent to γ if and only if $\left|G\left(\gamma, \gamma_{j}, \gamma_{m}\right)\right| \longrightarrow 0$ as $j, m \longrightarrow \infty$.Proof: Assume that $\left\{\gamma_{j}\right\}$ is complex-valued G_{b}-convergent to γ and let

$$
\begin{equation*}
a=\frac{\varepsilon}{\sqrt{2}}+i \frac{\varepsilon}{\sqrt{2}}, \forall \varepsilon>0 \tag{3}
\end{equation*}
$$

Then, we have $0<a \in \mathbb{C}$, and there is a natural number k, such that $G\left(\gamma, \gamma_{j}, \gamma_{m}\right)<a$ for all $n, m \geq k$. Thus, $\left|G\left(\gamma, \gamma_{j}, \gamma_{m}\right)\right|<|a|=\varepsilon$ for all $j, m \geq k$, and so, $\left|G\left(\gamma, \gamma_{j}, \gamma_{m}\right)\right| \longrightarrow 0$ as $j, m \longrightarrow \infty$.

Suppose that $\left|G\left(\gamma, \gamma_{j}, \gamma_{m}\right)\right| \longrightarrow 0$ as $j, m \longrightarrow \infty$. For a given $a \in \mathbb{C}$ with $0<a$, there exists a real number $\delta>0$, such that for $z \in \mathbb{C}$,

$$
\begin{equation*}
|z|<\delta \Rightarrow z<a \tag{4}
\end{equation*}
$$

Considering δ, we have a natural number k, such that $\left|G\left(\gamma, \gamma_{j}, \gamma_{m}\right)\right|<\delta$ for all $j, m \geq k$. This means that $G\left(\gamma, \gamma_{j}, \gamma_{m}\right)<a$ for all $j, m \geq k$, i.e., $\left\{\gamma_{j}\right\}$ is complex-valued G_{b}-convergent to γ.

3. Main Result

Theorem 2. Let (Υ, G) be a complete complex-valued G_{b}-metric space with coefficient $b \geq 1$ and $F_{1}, F_{2}, F_{3}: \Upsilon \longrightarrow \Upsilon$ be mappings satisfying

$$
\begin{equation*}
G\left(F_{1} \gamma_{1}, F_{2} \gamma_{2}, F_{3} \gamma_{3}\right) \leq \beta_{1} G\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)+\beta_{2} W\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right), \tag{5}
\end{equation*}
$$

where

$$
W\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=\max \left\{\begin{array}{c}
G\left(\gamma_{1}, \gamma_{2}, F_{2} \gamma_{2}\right), G\left(F_{1} \gamma_{1}, F_{1} \gamma_{1}, \gamma_{2}\right), G\left(F_{1} \gamma_{1}, \gamma_{2}, \gamma_{2}\right), \tag{6}\\
G\left(F_{2} \gamma_{2}, F_{2} \gamma_{2}, \gamma_{3}\right), G\left(F_{2} \gamma_{2}, \gamma_{3}, \gamma_{3}\right), \\
\frac{G\left(\gamma_{1}, F_{1} \gamma_{1}, F_{1} \gamma_{1}\right) \cdot G\left(\gamma_{2}, F_{2} \gamma_{2}, F_{2} \gamma_{2}\right)}{1+G\left(\gamma_{1}, \gamma_{2}, \gamma_{2}\right)}, \\
\frac{G\left(\gamma_{2}, F_{2} \gamma_{2}, F_{2} \gamma_{2}\right) \cdot G\left(\gamma_{3}, F_{3} \gamma_{3}, F_{3} \gamma_{3}\right)}{1+G\left(F_{1} \gamma_{1}, \gamma_{3}, \gamma_{3}\right)}, \\
\frac{G\left(\gamma_{3}, F_{3} \gamma_{3}, F_{3} \gamma_{3}\right) \cdot G\left(\gamma_{1}, F_{1} \gamma_{1}, F_{1} \gamma_{1}\right)}{1+G\left(F_{2} \gamma_{2}, F_{3} \gamma_{3}, F_{3} \gamma_{3}\right)}
\end{array}\right\}
$$

for all $\left.\gamma_{1}, \gamma_{2}, \gamma_{3} \in \Upsilon, \quad \beta_{1}, \beta_{2} \in 0,1 / 3\right)$, such that $\left(\beta_{1}+\beta_{2}\right)<1 / 3, \quad b \beta_{2}<1 / 3$, and $\left(\beta_{1}+2 b \beta_{2}\right)<2 / 3$. Then, F_{1}, F_{2}, and F_{3} have a unique CFP in Υ.

Proof. Fix $\gamma_{0} \in \Upsilon$, and $\left\{\gamma_{j}\right\}$ be a sequence in Υ, such that

$$
\begin{align*}
& \gamma_{3 n+1}=F_{1} \gamma_{3 j} \\
& \gamma_{3 j+2}=F_{2} \gamma_{3 j+1} \tag{7}\\
& \gamma_{3 j+3}=F_{3} \gamma_{3 j+2} \forall n \geq 0 \tag{9}
\end{align*}
$$

This implies that

$$
\begin{aligned}
\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+3}\right)\right| \leq & \beta_{1}\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right| \\
& +\beta_{2}\left|W\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right|
\end{aligned}
$$

where

Now, by using (5),

$$
W\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+2}\right)=\max \left\{\begin{array}{c}
G\left(\gamma_{3 j}, \gamma_{3 j+1}, F_{2} \gamma_{3 j+1}\right), G\left(F_{1} \gamma_{3 j}, F_{1} \gamma_{3 j}, \gamma_{3 j+1}\right), G\left(F_{1} \gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right), \tag{10}\\
G\left(F_{2} \gamma_{3 j+1}, F_{2} \gamma_{3 j+1}, \gamma_{3 j+2}\right), G\left(F_{2} \gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right), \\
\frac{G\left(\gamma_{3 j}, F_{1} \gamma_{3 j}, F_{1} \gamma_{3 j}\right) \cdot G\left(\gamma_{3 j+1}, F_{2} \gamma_{3 j+1}, F_{2} \gamma_{3 j+1}\right)}{1+G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)}, \\
\frac{G\left(\gamma_{3 j+1}, F_{2} \gamma_{3 j+1}, F_{2} \gamma_{3 j+1}\right) \cdot G\left(\gamma_{3 j+2}, F_{3} \gamma_{3 j+2}, F_{3} \gamma_{3 j+2}\right)}{1+G\left(F_{1} \gamma_{3 j}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)}, \\
=\max \left\{\begin{array}{c}
\frac{G\left(\gamma_{3 j+2}, F_{3} \gamma_{3 j+2}, F_{3} \gamma_{3 j+2}\right) \cdot G\left(\gamma_{3 j}, F_{1} \gamma_{3 j}, F_{1} \gamma_{3 j}\right)}{1+G\left(F_{2} \gamma_{3 j+1}, F_{3} \gamma_{3 j+2}, F_{3} \gamma_{3 j+2}\right)} \\
G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+2}\right), G\left(\gamma_{3 j+1}, \gamma_{3 j+1}, \gamma_{3 j+1}\right), G\left(\gamma_{3 j+1}, \gamma_{3 j+1}, \gamma_{3 j+1}\right), \\
G\left(\gamma_{3 j+2}, \gamma_{3 j+2}, \gamma_{3 j+2}\right), G\left(\gamma_{3 j+2}, \gamma_{3 j+2}, \gamma_{3 j+2}\right), \\
\frac{G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right) \cdot G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)}{1+G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)}, \\
\frac{G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right) \cdot G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right)}{1+G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)}, \\
\frac{G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right) \cdot G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)}{1+G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right)}
\end{array}\right.
\end{array}\right\}
$$

This implies that

$$
\begin{aligned}
& \left|W\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right| \\
& \leq\left\{\begin{array}{c}
\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right|,\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right|,\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right|, \\
\\
\leq G\left(\gamma_{3 j+2}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\left|,\left|G\left(\gamma_{3 j+2}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right|,\right. \\
\frac{\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right| \cdot\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right|}{\left|1+G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right|}, \\
\frac{\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right| \cdot\left|G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right)\right|}{\left|1+G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right|}, \\
\frac{\left|G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right)\right| \cdot\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right|}{\left|1+G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right)\right|}
\end{array}\right. \\
& \leq \max \left\{\begin{array}{l}
\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right|,\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right|, \\
\left|G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right)\right|,\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right|
\end{array}\right\} .
\end{aligned}
$$

By using Definition 2.3 (3) and after simplification, we get that

$$
\begin{equation*}
\left|W\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right| \leq \max \left\{\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+3}\right)\right|,\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right|\right\} . \tag{12}
\end{equation*}
$$

Now, there are two possibilities:
(i) If $\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+3}\right)\right|$ is a maximum term in $\left\{\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+3}\right)\right|,\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right|\right\}$, then
$\left|W\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right|=\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+3}\right)\right|$;
so, after simplification, (3.3) can be written as

$$
\begin{equation*}
\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+3}\right)\right| \leq a_{1}\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right|, \text { where } \quad a_{1}=\beta_{1} /\left(1-\beta_{2}\right) \tag{13}
\end{equation*}
$$

(ii) If $\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right|$ is a maximum term in $\left\{\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+3}\right)\right|,\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right|\right\}$, then
$\left|W\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right|=\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right|$; so, after simplification, (3.3) can be written as

$$
\begin{equation*}
\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+3}\right)\right| \leq a_{2}\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right|, \text { where } \quad a_{2}=\left(\beta_{1}+\beta_{2}\right) \tag{14}
\end{equation*}
$$

Let $a:=\max \left\{a_{1}, a_{2}\right\}<1 / 3$; then, from (13) and (14), for all $n \geq 0$, we have

$$
\begin{equation*}
\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+3}\right)\right| \leq a\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right| \tag{15}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right| \leq a\left|G\left(\gamma_{3 j-1}, \gamma_{3 j}, \gamma_{3 j+1}\right)\right| . \tag{16}
\end{equation*}
$$

Now, from (16) and (15) and by induction, we have that

$$
\begin{align*}
\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+3}\right)\right| & \leq a\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right| \\
& \leq a^{2} \mid G\left(\gamma_{3 j-1}, \gamma_{3 j}, \gamma_{3 j+1}\right) \tag{17}\\
& \leq \cdots \leq a^{3 j+1}\left|G\left(\gamma_{0}, \gamma_{1}, \gamma_{2}\right)\right|
\end{align*}
$$

$$
\begin{aligned}
\left|G\left(\gamma_{j}, \gamma_{m}, \gamma_{m}\right)\right| & \leq b\left|G\left(\gamma_{j}, \gamma_{n+1}, \gamma_{n+1}\right)\right|+b\left|G\left(\gamma_{n+1}, \gamma_{m}, \gamma_{m}\right)\right| \\
& \leq b\left|G\left(\gamma_{j}, \gamma_{n+1}, \gamma_{n+1}\right)\right|+b^{2}\left|G\left(\gamma_{n+1}, \gamma_{n+2}, \gamma_{n+2}\right)\right|+\cdots+b^{m-n}\left|G\left(\gamma_{m-1}, \gamma_{m}, \gamma_{m}\right)\right| \\
& \leq b a^{n}\left|G\left(\gamma_{0}, \gamma_{1}, \gamma_{1}\right)\right|+b^{2} a^{n+1}\left|G\left(\gamma_{0}, \gamma_{1}, \gamma_{1}\right)\right|+\cdots+b^{m-n} a^{m-1}\left|G\left(\gamma_{0}, \gamma_{1}, \gamma_{1}\right)\right| \\
& \leq\left[b a^{n}+b^{2} a^{n+1}+\cdots+b^{m-n} a^{m-1}\right]\left|G\left(\gamma_{0}, \gamma_{1}, \gamma_{1}\right)\right| \\
& =\left[b a^{n}+b^{2} a^{n+1}+\cdots+b^{m-n} a^{m-1}\right]\left|G\left(\gamma_{0}, \gamma_{1}, \gamma_{1}\right)\right| \\
& =b a^{n}\left[1+b a+b^{2} a^{2} \ldots+b^{m-(n+1)} a^{m-(n+1)}\right]\left|G\left(\gamma_{0}, \gamma_{1}, \gamma_{1}\right)\right| \\
& =b a^{n} \sum_{t=0}^{m-(n+1)} b^{t} a^{t}\left|G\left(\gamma_{0}, \gamma_{1}, \gamma_{1}\right)\right| \\
& \leq b a^{n} \sum_{t=0}^{\infty} b^{t} a^{t}\left|G\left(\gamma_{0}, \gamma_{1}, \gamma_{1}\right)\right| \\
& =\frac{b a^{n}}{1-b a}\left|G\left(\gamma_{0}, \gamma_{1}, \gamma_{1}\right)\right| \longrightarrow 0, a s n \longrightarrow \infty
\end{aligned}
$$

By Proposition 2.5 (1), we have $\left|G\left(\gamma_{j}, \gamma_{m}, \gamma_{l}\right)\right| \leq b\left\{\left|G\left(\gamma_{j}, \gamma_{m}, \gamma_{m}\right)\right|+\left|G\left(\gamma_{l}, \gamma_{m}, \gamma_{m}\right)\right|\right\} \quad$ for $n, m, l \in \mathbb{N}$. If we take limit as $n, m, l \longrightarrow \infty$, we obtain $\left|G\left(\gamma_{j}, \gamma_{m}, \gamma_{l}\right)\right| \longrightarrow 0$. It implies $\left\{\gamma_{j}\right\}$ is a G_{b}-Cauchy sequence. Since, Υ is complete complex-valued G_{b}-metric space, $\exists \xi \in \Upsilon$, such that, $\gamma_{j} \longrightarrow \xi$, as $n \longrightarrow \infty$ or $\lim _{n \longrightarrow \infty} \gamma_{j}=\xi$. We have to show that $F_{1} \xi=\xi$; by contrary $\stackrel{n}{\text { case }}{ }^{\infty}$ let $F_{1} \xi \neq \xi$. Now by (5),

$$
\begin{equation*}
\left|G\left(F_{1} \xi, \gamma_{3 j+2}, \gamma_{3 j+3}\right)\right| \leq \beta_{1}\left|G\left(\xi, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right|+\beta_{2}\left|W\left(\xi, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right| \tag{20}
\end{equation*}
$$

where

$$
W\left(\xi, \gamma_{j j+1}, \gamma_{3 j+2}\right)=\max \left\{\begin{array}{c}
G\left(\xi, \gamma_{3 j+1}, F_{2} \gamma_{3 j+1}\right), G\left(F_{1} \xi, F_{1} \xi, \gamma_{3 j+1}\right), G\left(F_{1} \xi, \gamma_{3 j+1}, \gamma_{3 j+1}\right), \tag{21}\\
G\left(F_{2} \gamma_{3 j+1}, F_{2} \gamma_{3 j+1}, \gamma_{3 j+2}\right), G\left(F_{2} \gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right), \\
\frac{G\left(\xi, F_{1} \xi, F_{1} \xi\right) \cdot G\left(\gamma_{3 j+1}, F_{2} \gamma_{3 j+1}, F_{2} \gamma_{3 j+1}\right)}{1+G\left(\xi, \gamma_{3 j+1}, \gamma_{3 j+1}\right)}, \\
\frac{G\left(\gamma_{3 j+1}, F_{2} \gamma_{3 j+1}, F_{2} \gamma_{3 j+1}\right) \cdot G\left(\gamma_{3 j+2}, F_{3} \gamma_{3 j+2}, F_{3} \gamma_{3 j+2}\right)}{1+G\left(F_{1} \xi, \gamma_{3 j+2}, \gamma_{3 j+2}\right)}, \\
=\max \left\{\begin{array}{c}
\frac{G\left(\gamma_{3 j+2}, F_{3} \gamma_{3 j+2}, F_{3} \gamma_{3 j+2}\right) \cdot G\left(\xi, F_{1} \xi, F_{1} \xi\right)}{1+G\left(F_{2} \gamma_{3 j+1}, F_{3} \gamma_{3 j+2}, F_{3} \gamma_{3 j+2}\right)} \\
G\left(\xi, \gamma_{3 j+1}, \gamma_{3 j+2}\right), G\left(F_{1} \xi, F_{1} \xi, \gamma_{3 j+1}\right), G\left(F_{1} \xi, \gamma_{3 j+1}, \gamma_{3 j+1}\right), \\
G\left(\gamma_{3 j+2}, \gamma_{3 j+2}, \gamma_{3 j+2}\right), G\left(\gamma_{3 j+2}, \gamma_{3 j+2}, \gamma_{3 j+2}\right), \\
\frac{G\left(\xi, F_{1} \xi, F_{1} \xi\right) \cdot G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)}{1+G\left(\xi, \gamma_{3 j+1}, \gamma_{3 j+1}\right)}, \\
\frac{G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right) \cdot G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right),}{1+G\left(F_{1} \xi, \gamma_{3 j+2}, \gamma_{3 j+2}\right)} \\
\frac{G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right) \cdot G\left(\xi, F_{1} \xi, F_{1} \xi\right)}{1+G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right)}
\end{array}\right\}
\end{array}\right\}
$$

This implies that

$$
\left|W\left(\xi, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right| \leq \max \left\{\begin{array}{c}
\left|G\left(\xi, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right|,\left|G\left(F_{1} \xi, F_{1} \xi, \gamma_{3 j+1}\right)\right|,\left|G\left(F_{1} \xi, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right|, \tag{22}\\
\left|G\left(\gamma_{3 j+2}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right|,\left|G\left(\gamma_{3 j+2}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right|, \\
\frac{\left|G\left(\xi, F_{1} \xi, F_{1} \xi\right)\right| \cdot\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right|}{\left|1+G\left(\xi, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right|}, \\
\frac{\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right| \cdot\left|G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right)\right|}{\left|1+G\left(F_{1} \xi, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right|}, \\
\frac{\left|G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right)\right| \cdot\left|G \xi, F_{1} \xi, F_{1} \xi\right|}{\left|1+G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right)\right|}
\end{array}\right\} .
$$

After simplification, we get that

$$
\left|W\left(\xi, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right| \leq \max \left\{\begin{array}{c}
\left|G\left(\xi, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right|,\left|G\left(F_{1} \xi, F_{1} \xi, \gamma_{3 j+1}\right)\right|,\left|G\left(F_{1} \xi, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right|, \tag{23}\\
\frac{\left|G\left(\xi, F_{1} \xi, F_{1} \xi\right)\right| \cdot\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right|}{\left|1+G\left(\xi, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right|}, \\
\frac{\left|G\left(\gamma_{j j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right| \cdot\left|G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right)\right|}{\left|1+G\left(F_{1} \xi, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right|}, \\
\frac{\left|G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right)\right| \cdot\left|G\left(\xi, F_{1} \xi, F_{1} \xi\right)\right|}{\left|1+G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right)\right|}
\end{array}\right\} .
$$

Now, there are six possibilities:
(i) $\mathrm{f}\left|G\left(\xi, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right|$ is a maximum term in (23), then (21) can be written as

$$
\begin{equation*}
\left|G\left(F_{1} \xi, \gamma_{3 j+2}, \gamma_{3 j+3}\right)\right| \leq \beta_{1}\left|G\left(\xi, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right|+\beta_{2}\left|G\left(\xi, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right| . \tag{24}
\end{equation*}
$$

Applying $\lim _{n \rightarrow \infty}$ on both sides, we get

$$
\begin{equation*}
F_{1} \xi=\xi . \tag{26}
\end{equation*}
$$

$\left|G\left(F_{1} \xi, \xi, \xi\right)\right| \leq \beta_{1}|G(\xi, \xi, \xi)|+\beta_{2}|G(\xi, \xi, \xi)|$.
(ii) If $\left|G\left(F_{1} \xi, F_{1} \xi, \gamma_{3 j+1}\right)\right|$ is a maximum term in (23), then (21) can be written as
This implies that $\left|G\left(F_{1} \xi, \xi, \xi\right)\right|=0$; thus,

$$
\begin{equation*}
\left|G\left(F_{1} \xi, \gamma_{3 j+2}, \gamma_{3 j+3}\right)\right| \leq \beta_{1}\left|G\left(\xi, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right|+\beta_{2}\left|G\left(F_{1} \xi, F_{1} \xi, \gamma_{3 j+1}\right)\right| . \tag{27}
\end{equation*}
$$

Applying $\lim _{n \rightarrow \infty}$ on both sides, we get
$\left|G\left(F_{1} \xi, \xi, \xi\right)\right| \leq \beta_{1}|G(\xi, \xi, \xi)|+\beta_{2}\left|G\left(F_{1} \xi, F_{1} \xi, \xi\right)\right|$ $\leq 2 b \beta_{2}\left|G\left(F_{1} \xi, \xi, \xi\right)\right| \because($ Definition $2.5(2))$.

This implies that $\left(1-2 b \beta_{2}\right)\left|G\left(F_{1} \xi, \xi, \xi\right)\right| \leq 0$ is a contradiction, where $\left(1-2 b \beta_{2}\right) \neq 0 \Rightarrow\left|G\left(F_{1} \xi, \xi, \xi\right)\right|$ $=0$; thus,

$$
\begin{equation*}
F_{1} \xi=\xi . \tag{29}
\end{equation*}
$$

(iii) If $\left|G\left(F_{1} \xi, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right|$ is a maximum term in (23), then (21) can be written as

$$
\begin{equation*}
\left|G\left(F_{1} \xi, \gamma_{3 j+2}, \gamma_{3 j+3}\right)\right| \leq \beta_{1}\left|G\left(\xi, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right|+\beta_{2}\left|G\left(F_{1} \xi, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right| . \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
F_{1} \xi=\xi . \tag{32}
\end{equation*}
$$

Applying $\lim _{n \rightarrow \infty}$ on both sides, we get $\left|G\left(F_{1} \xi, \xi, \xi\right)\right| \leq \beta_{1}|G(\xi, \xi, \xi)|+\beta_{2}\left|G\left(F_{1} \xi, \xi, \xi\right)\right|$.

This implies that $\left(1-\beta_{2}\right)\left|G\left(F_{1} \xi, \xi, \xi\right)\right| \leq 0$ is a contradiction, where $\left(1-\beta_{2}\right) \neq 0 \Rightarrow\left|G \quad\left(F_{1} \xi, \xi, \xi\right)\right|$ $=0$; thus,

$$
\begin{equation*}
\left|G\left(F_{1} \xi, \gamma_{3 j+2}, \gamma_{3 j+3}\right)\right| \leq \beta_{1}\left|G\left(\xi, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right|+\beta_{2} \frac{\left|G\left(\xi, F_{1} \xi, F_{1} \xi\right)\right| \cdot\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right|}{\left|1+G\left(\xi, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right|} . \tag{33}
\end{equation*}
$$

Applying $\lim _{n} \rightarrow \infty$ on both sides, we get

$$
\begin{equation*}
\left|G\left(F_{1} \xi, \xi, \xi\right)\right| \leq \beta_{1}|G(\xi, \xi, \xi)|+\beta_{2} \frac{\left|G\left(\xi, F_{1} \xi, F_{1} \xi\right)\right| \cdot|G(\xi, \xi, \xi)|}{|1+G(\xi, \xi, \xi)|} \tag{34}
\end{equation*}
$$

$$
\begin{equation*}
F_{1} \xi=\xi . \tag{35}
\end{equation*}
$$

(v) If $\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right| \cdot\left|G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right)\right| / \mid 1+$ $G\left(F_{1} \xi, \gamma_{3 j+2}, \gamma_{3 j+2}\right) \mid$ is a maximum term in (23), then (21) can be written as

This implies that $\left|G\left(F_{1} \xi, \xi, \xi\right)\right|=0$; thus,

$$
\begin{equation*}
\left|G\left(F_{1} \xi, \gamma_{3 j+2}, \gamma_{3 j+3}\right)\right| \leq \beta_{1}\left|G\left(\xi, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right|+\beta_{2} \frac{\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right| \cdot\left|G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right)\right|}{\left|1+G\left(F_{1} \xi, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right|} \tag{36}
\end{equation*}
$$

Applying $\lim _{n} \rightarrow \infty$ on both sides, we get

$$
\begin{equation*}
F_{1} \xi=\xi . \tag{38}
\end{equation*}
$$

$\left|G\left(F_{1} \xi, \xi, \xi\right)\right| \leq \beta_{1}|G(\xi, \xi, \xi)|+\beta_{2} \frac{|G(\xi, \xi, \xi)| \cdot|G(\xi, \xi, \xi)|}{\left|1+G\left(F_{1} \xi, \xi, \xi\right)\right|}$.
(vi) If $\quad\left|G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right)\right| \cdot\left|G\left(\xi, F_{1} \xi, F_{1} \xi\right)\right| / \mid 1+$ $G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right)$ is a maximum term in (23), then (21) can be written as

This implies that $\left|G\left(F_{1} \xi, \xi, \xi\right)\right|=0$; thus,

$$
\begin{equation*}
\left|G\left(F_{1} \xi, \gamma_{3 j+2}, \gamma_{3 j+3}\right)\right| \leq \beta_{1}\left|G\left(\xi, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right|+\beta_{2} \frac{\left|G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right)\right| \cdot\left|G\left(\xi, F_{1} \xi, F_{1} \xi\right)\right|}{\left|1+G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right)\right|} \tag{39}
\end{equation*}
$$

Applying $\lim _{n} \rightarrow \infty$ on both sides, we get

$$
\begin{equation*}
\left|G\left(F_{1} \xi, \xi, \xi\right)\right| \leq \beta_{1}|G(\xi, \xi, \xi)|+\beta_{2} \frac{|G(\xi, \xi, \xi)| \cdot\left|G\left(\xi, F_{1} \xi, F_{1} \xi\right)\right|}{|1+G(\xi, \xi, \xi)|} \tag{40}
\end{equation*}
$$

This implies that $\left|G\left(F_{1} \xi, \xi, \xi\right)\right|=0$; thus,

$$
\begin{equation*}
F_{1} \xi=\xi \tag{41}
\end{equation*}
$$

From (26)-(41), we get that ξ is a FP of F_{1}, that is,

$$
\begin{equation*}
F_{1} \xi=\xi . \tag{42}
\end{equation*}
$$

where

$$
W\left(\gamma_{3 j}, \xi, \gamma_{3 j+2}\right)=\max \left\{\begin{array}{c}
G\left(\gamma_{3 j}, \xi, F_{2} \xi\right), G\left(F_{1} \gamma_{3 j}, F_{1} \gamma_{3 j}, \xi\right), G\left(F_{1} \gamma_{3 j}, \xi, \xi\right), \\
\\
G\left(F_{2} \xi, F_{2} \xi, \gamma_{3 j+2}\right), G\left(F_{2} \xi, \gamma_{3 j+2}, \gamma_{3 j+2}\right), \\
\frac{G\left(\gamma_{3 j}, F_{1} \gamma_{3 j}, F_{1} \gamma_{3 j}\right) \cdot G\left(\xi, F_{2} \xi, F_{2} \xi\right)}{1+G\left(\gamma_{3 j}, \xi, \xi\right)}, \\
\frac{G\left(\xi, F_{2} \xi, F_{2} \xi\right) \cdot G\left(\gamma_{3 j+2}, F_{3} \gamma_{3 j+2}, F_{3} \gamma_{3 j+2}\right)}{1+G\left(F_{1} \gamma_{3 j}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)}, \\
\frac{G\left(\gamma_{3 j+2}, F_{3} \gamma_{3 j+2}, F_{3} \gamma_{3 j+2}\right) \cdot G\left(\gamma_{3 j}, F_{1} \gamma_{3 j}, F_{1} \gamma_{3 j}\right)}{1+G\left(F_{2} \xi, F_{3} \gamma_{3 j+2}, F_{3} \gamma_{3 j+2}\right)}
\end{array}\right\}
$$

$$
=\max \left\{\begin{array}{c}
G\left(\gamma_{3 j}, \xi, F_{2} \xi\right), G\left(\gamma_{3 j+1}, \gamma_{3 j+1}, \xi\right), G\left(\gamma_{3 j+1}, \xi, \xi\right), \tag{45}\\
G\left(F_{2} \xi, F_{2} \xi, \gamma_{3 j+2}\right), G\left(F_{2} \xi, \gamma_{3 j+2}, \gamma_{3 j+2}\right), \\
\frac{G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right) \cdot G\left(\xi, F_{2} \xi, F_{2} \xi\right),}{1+G\left(\gamma_{3 j}, \xi, \xi\right)} \\
\frac{G\left(\xi, F_{2} \xi, F_{2} \xi\right) \cdot G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right)}{1+G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)}, \\
\frac{G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right) \cdot G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)}{1+G\left(F_{2} \xi, \gamma_{3 j+3}, \gamma_{3 j+3}\right)}
\end{array}\right\} .
$$

This implies that

$$
\left|W\left(\gamma_{3 j}, \xi, \gamma_{3 j+2}\right)\right|=\max \left\{\begin{array}{c}
\left|G\left(\gamma_{3 j}, \xi, F_{2} \xi\right)\right|,\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+1}, \xi\right)\right|,\left|G\left(\gamma_{3 j+1}, \xi, \xi\right)\right|, \\
\quad\left|G\left(F_{2} \xi, F_{2} \xi, \gamma_{3 j+2}\right)\right|,\left|G\left(F_{2} \xi, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right|, \\
\frac{\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right| \cdot\left|G\left(\xi, F_{2} \xi, F_{2} \xi\right)\right|}{\left|1+G\left(\gamma_{3 j} ; \xi, \xi\right)\right|}, \\
\\
\frac{\left|G\left(\xi, F_{2} \xi, F_{2} \xi\right)\right| \cdot\left|G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right)\right|}{\left|1+G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right|}, \\
\frac{\left|G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right)\right| \cdot\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right|}{\left|1+G\left(F_{2} \xi, \gamma_{3 j+3}, \gamma_{3 j+3}\right)\right|} .
\end{array}\right\}
$$

Now, there are eight possibilities:
(i) If $\left|G\left(\gamma_{3 j}, \xi, F_{2} \xi\right)\right|$ is a maximum term in (46), then after simplification, (44) can be written as

$$
\begin{equation*}
\left|G\left(\gamma_{3 j+1}, F_{2} \xi, \gamma_{3 j+3}\right)\right| \leq \beta_{1}\left|G\left(\gamma_{3 j}, \xi, \gamma_{3 j+2}\right)\right|+\beta_{2}\left|G\left(\gamma_{3 j}, \xi, F_{2} \xi\right)\right| . \tag{47}
\end{equation*}
$$

Applying $\lim _{n \rightarrow \infty}$ on both sides, we get
$\left|G\left(\xi, F_{2} \xi, \xi\right)\right| \leq \beta_{1}|G(\xi, \xi, \xi)|+\beta_{2}\left|G\left(\xi, \xi, F_{2} \xi\right)\right|$.
This implies that $\left(1-\beta_{2}\right)\left|\left(G \xi, F_{2} \xi, \xi\right)\right| \leq 0$ is a contradiction, where $\left(1-\beta_{2}\right) \neq 0 \Rightarrow\left|G\left(\xi, F_{2} \xi, \xi\right)\right|=0$; thus,

$$
\begin{equation*}
F_{2} \xi=\xi . \tag{49}
\end{equation*}
$$

(ii) If $\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+1}, \xi\right)\right|$ is a maximum term in (46), then (44) can be written as

$$
\begin{equation*}
\left|G\left(\gamma_{3 j+1}, F_{2} \xi, \gamma_{3 j+3}\right)\right| \leq \beta_{1}\left|G\left(\gamma_{j j}, \xi, \gamma_{3 j+2}\right)\right|+\beta_{2}\left|G\left(\gamma_{j j+1}, \gamma_{3 j+1}, \xi\right)\right| . \tag{50}
\end{equation*}
$$

Applying $\lim _{n \rightarrow \infty}$ on both sides, we get

$$
\left|G\left(\xi, F_{2} \xi, \xi\right)\right| \leq \beta_{1}|G(\xi, \xi, \xi)|+\beta_{2}|G(\xi, \xi, \xi)| .
$$

This implies that $\left|G\left(\xi, F_{2} \xi, \xi\right)\right|=0$; thus,

$$
\begin{equation*}
F_{2} \xi=\xi . \tag{48}
\end{equation*}
$$

(iii) If $\left|G\left(\gamma_{3 j+1}, \xi, \xi\right)\right|$ is a maximum term in (46), then (44) can be written as

$$
\begin{equation*}
\left|G\left(\gamma_{3 j+1}, F_{2} \xi, \gamma_{3 j+3}\right)\right| \leq \beta_{1}\left|G\left(\gamma_{3 j}, \xi, \gamma_{3 j+2}\right)\right|+\beta_{2}\left|G\left(\gamma_{j j+1}, \xi, \xi\right)\right| . \tag{53}
\end{equation*}
$$

Applying $\lim _{n \rightarrow \infty}$ on both sides, we get

$$
\begin{equation*}
\left|G\left(\xi, F_{2} \xi, \xi\right)\right| \leq \beta_{1}|G(\xi, \xi, \xi)|+\beta_{2}|G(\xi, \xi, \xi)| . \tag{54}
\end{equation*}
$$

This implies that $\left|G\left(\xi, F_{2} \xi, \xi\right)\right|=0$; thus,

$$
\begin{equation*}
F_{2} \xi=\xi \tag{55}
\end{equation*}
$$

(iv) If $\left|G\left(F_{2} \xi, F_{2} \xi, \gamma_{3 j+2}\right)\right|$ is a maximum term in (46), then (44) can be written as

$$
\begin{align*}
\left|G\left(\gamma_{3 j+1}, F_{2} \xi, \gamma_{3 j+3}\right)\right| \leq & \beta_{1}\left|G\left(\gamma_{3 j}, \xi, \gamma_{3 j+2}\right)\right| \tag{56}\\
& +\beta_{2}\left|G\left(F_{2} \xi, F_{2} \xi, \gamma_{3 j+2}\right)\right|
\end{align*}
$$

Applying $\lim _{n}$ on both sides, we get

$$
\begin{align*}
& \left|G\left(\xi, F_{2} \xi, \xi\right)\right| \leq \beta_{1}|G(\xi, \xi, \xi)|+\beta_{2}\left|G\left(F_{2} \xi, F_{2} \xi, \xi\right)\right| \tag{57}\\
& \quad \leq 2 b \beta_{2}\left|G\left(\xi, F_{2} \xi, \xi\right)\right| \because(\text { Proposition } 2.5(2)) .
\end{align*}
$$

This implies that $\left(1-2 b \beta_{2}\right)\left|G\left(\xi, F_{2} \xi, \xi\right)\right| \leq 0$ is a contradiction, where $\left(1-2 b \beta_{2}\right) \neq 0 \Rightarrow \mid G(\xi$, $\left.F_{2} \xi, \xi\right) \mid=0$; thus,

$$
\begin{equation*}
F_{2} \xi=\xi \tag{58}
\end{equation*}
$$

(v) If $\left|G\left(F_{2} \xi, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right|$ is a maximum term in (46), then (44) can be written as

$$
\begin{align*}
\left|G\left(\gamma_{3 j+1}, F_{2} \xi, \gamma_{3 j+3}\right)\right| \leq & \beta_{1}\left|G\left(\gamma_{3 j}, \xi, \gamma_{3 j+2}\right)\right| \tag{59}\\
& +\beta_{2}\left|G\left(F_{2} \xi, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right| .
\end{align*}
$$

Applying $\lim _{n \rightarrow \infty}$ on both sides, we get

$$
\begin{equation*}
\left|G\left(\xi, F_{2} \xi, \xi\right)\right| \leq \beta_{1}|G(\xi, \xi, \xi)|+\beta_{2}\left|G\left(F_{2} \xi, \xi, \xi\right)\right| \tag{60}
\end{equation*}
$$

This implies that $\left(1-\beta_{2}\right)\left|G\left(\xi, F_{2} \xi, \xi\right)\right| \leq 0$ is a contradiction, where $\left(1-\beta_{2}\right) \neq 0 \Rightarrow\left|G\left(\xi, F_{2} \xi, \xi\right)\right|$ $=0$; thus,

$$
\begin{equation*}
F_{2} \xi=\xi . \tag{61}
\end{equation*}
$$

(vi) If $\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right| \cdot\left|G\left(\xi, F_{2} \xi, F_{2} \xi\right)\right| / \mid 1+$ $G\left(\gamma_{3 j}, \xi, \xi\right) \mid$ is a maximum term in (46), then (44) can be written as

$$
\begin{align*}
\left|G\left(\gamma_{3 j+1}, F_{2} \xi, \gamma_{3 j+3}\right)\right| \leq & \beta_{1}\left|G\left(\gamma_{3 j}, \xi, \gamma_{3 j+2}\right)\right| \\
& +\beta_{2} \frac{\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right| \cdot\left|G\left(\xi, F_{2} \xi, F_{2} \xi\right)\right|}{\left|1+G\left(\gamma_{3 j}, \xi, \xi\right)\right|} . \tag{62}
\end{align*}
$$

Applying $\lim _{n \rightarrow \infty}$ on both sides, we get

$$
\left|G\left(\xi, F_{2} \xi, \xi\right)\right| \leq \beta_{1}|G(\xi, \xi, \xi)|
$$

$$
\begin{equation*}
+\beta_{2} \frac{|G(\xi, \xi, \xi)| \cdot\left|G\left(\xi, F_{2} \xi, F_{2} \xi\right)\right|}{|1+G(\xi, \xi, \xi)|} \tag{63}
\end{equation*}
$$

This implies that $\left|G\left(\xi, F_{2} \xi, \xi\right)\right|=0$; thus,

$$
\begin{equation*}
F_{2} \xi=\xi . \tag{64}
\end{equation*}
$$

(vii) If $\left|G\left(\xi, F_{2} \xi, F_{2} \xi\right)\right| \cdot\left|G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right)\right| / \mid 1+$ $G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right) \mid$ is a maximum term in (46), then (44) can be written as

$$
\begin{align*}
\left|G\left(\gamma_{3 j+1}, F_{2} \xi, \gamma_{3 j+3}\right)\right| \leq & \beta_{1}\left|G\left(\gamma_{3 j}, \xi, \gamma_{3 j+2}\right)\right| \\
& +\beta_{2} \frac{\left|G\left(\xi, F_{2} \xi, F_{2} \xi\right)\right| \cdot\left|G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right)\right|}{\left|1+G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right|} \tag{65}
\end{align*}
$$

Applying $\lim _{n \longrightarrow \infty}$ on both sides, we get $\left|G\left(\xi, F_{2} \xi, \xi\right)\right| \leq \beta_{1}|G(\xi, \xi, \xi)|+\beta_{2} \frac{\left|G\left(\xi, F_{2} \xi, F_{2} \xi\right)\right| \cdot|G(\xi, \xi, \xi)|}{|1+G(\xi, \xi, \xi)|}$.

$$
\begin{equation*}
F_{2} \xi=\xi . \tag{67}
\end{equation*}
$$

(viii) If $\left|G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right)\right| \cdot\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right| / \mid 1+$ $G\left(F_{2} \xi, \gamma_{3 j+3}, \gamma_{3 j+3}\right) \mid$ is a maximum term in (46), then (44) can be written as

This implies that $\left|G\left(\xi, F_{2} \xi, \xi\right)\right|=0$; thus,

$$
\begin{align*}
\left|G\left(\gamma_{3 j+1}, F_{2} \xi, \gamma_{3 j+3}\right)\right| \leq & \beta_{1}\left|G\left(\gamma_{3 j}, \xi, \gamma_{3 j+2}\right)\right| \\
& +\beta_{2} \frac{\left|G\left(\gamma_{3 j+2}, \gamma_{3 j+3}, \gamma_{3 j+3}\right)\right| \cdot\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right|}{\left|1+G\left(F_{2} \xi_{3 j+3}, \gamma_{3 j+3}\right)\right|} \tag{68}
\end{align*}
$$

Applying $\lim _{n \rightarrow \infty}$ on both sides, we get
$\left|G\left(\xi, F_{2} \xi, \xi\right)\right| \leq \beta_{1}|G(\xi, \xi, \xi)|+\beta_{2} \frac{|G(\xi, \xi, \xi)| \cdot|G(\xi, \xi, \xi)|}{\left|1+G\left(F_{2} \xi, \xi, \xi\right)\right|}$.

This implies that $\left|G\left(\xi, F_{2} \xi, \xi\right)\right|=0$; thus,

$$
\begin{equation*}
F_{2} \xi=\xi . \tag{70}
\end{equation*}
$$

From (49) to (70), we find that ξ is a FP of F_{2}, that is,

$$
\begin{equation*}
F_{2} \xi=\xi . \tag{71}
\end{equation*}
$$

Now, we have to show that $F_{3} \xi=\xi$; by contrary case, let $F_{3} \xi \neq \xi$. Now, by (5),

$$
\begin{align*}
& G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, F_{3} \xi\right)=G\left(F_{1} \gamma_{3 j}, F_{2} \gamma_{3 j+1}, F_{3} \xi\right) \\
& \quad \leq \beta_{1} G\left(\gamma_{3 j}, \gamma_{3 j+1}, \xi\right)+\beta_{2} W\left(\gamma_{3 j}, \gamma_{3 j+1}, \xi\right) . \tag{72}
\end{align*}
$$

This implies that

$$
\begin{align*}
\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, F_{3} \xi\right)\right| \leq & \beta_{1}\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \xi\right)\right| \\
& +\beta_{2}\left|W\left(\gamma_{3 j}, \gamma_{3 j+1}, \xi\right)\right| \tag{73}
\end{align*}
$$

where

$$
W\left(\gamma_{3 j}, \gamma_{3 j+1}, \xi\right)
$$

$$
=\max \left\{\begin{array}{c}
G\left(\gamma_{3 j}, \gamma_{3 j+1}, F_{2} \gamma_{3 j+1}\right), G\left(F_{1} \gamma_{3 j}, F_{1} \gamma_{3 j}, \gamma_{3 j+1}\right), G\left(F_{1} \gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right), \tag{74}\\
G\left(F_{2} \gamma_{3 j+1}, F_{2} \gamma_{3 j+1}, \xi\right), G\left(F_{2} \gamma_{3 j+1}, \xi, \xi\right), \\
\frac{G\left(\gamma_{3 j}, F_{1} \gamma_{3 j}, F_{1} \gamma_{3 j}\right) \cdot G\left(\gamma_{3 j+1}, F_{2} \gamma_{3 j+1}, F_{2} \gamma_{3 j+1}\right)}{1+G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)}, \\
\frac{G\left(\gamma_{3 j+1}, F_{2} \gamma_{3 j+1}, F_{2} \gamma_{3 j+1}\right) \cdot G\left(\xi, F_{3} \xi, F_{3} \xi\right)}{1+G\left(F_{1} \gamma_{3 j}, \xi, \xi\right)}, \\
\frac{G\left(\xi, F_{3} \xi, F_{3} \xi\right) \cdot G\left(\gamma_{3 j}, F_{1} \gamma_{3 j}, F_{1} \gamma_{3 j}\right)}{1+G\left(F_{2} \gamma_{3 j+1}, F_{3} \xi, F_{3} \xi\right)}
\end{array}\right\}
$$

$$
=\max \left\{\begin{array}{c}
G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+2}\right), G\left(\gamma_{3 j+1}, \gamma_{3 j+1}, \gamma_{3 j+1}\right), G\left(\gamma_{3 j+1}, \gamma_{3 j+1}, \gamma_{3 j+1}\right), \\
G\left(\gamma_{3 j+2}, \gamma_{3 j+2}, \xi\right), G\left(\gamma_{3 j+2}, \xi, \xi\right), \\
\frac{G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right) \cdot G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)}{1+G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)}, \\
\frac{G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right) \cdot G\left(\xi, F_{3} \xi, F_{3} \xi\right)}{1+G\left(\gamma_{3 j+1}, \xi, \xi\right)}, \\
\frac{G\left(\xi, F_{3} \xi, F_{3} \xi\right) \cdot G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)}{1+G\left(\gamma_{3 j+2}, F_{3} \xi, F_{3} \xi\right)}
\end{array}\right\}
$$

This implies that

$$
\begin{align*}
& \left|W\left(\gamma_{3 j}, \gamma_{3 j+1}, \xi\right)\right| \\
& =\max \left\{\begin{array}{c}
\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right|,\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right|,\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right|, \\
\left|G\left(\gamma_{3 j+2}, \gamma_{3 j+2}, \xi\right)\right|,\left|G\left(\gamma_{3 j+2}, \xi, \xi\right)\right|, \\
\frac{\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right| \cdot\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right|}{\left|1+G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right|}, \\
\frac{\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right| \cdot\left|G\left(\xi, F_{3} \xi, F_{3} \xi\right)\right|}{\left|1+G\left(\gamma_{3 j+1}, \xi, \xi\right)\right|}, \\
\frac{\left|G\left(\xi, F_{3} \xi, F_{3} \xi\right)\right| \cdot\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right|}{\left|1+G\left(\gamma_{3 j+2}, F_{3} \xi, F_{3} \xi\right)\right|}
\end{array}\right)
\end{align*}
$$

After simplification, we get that

$$
\begin{align*}
& \left|W\left(\gamma_{3 j}, \gamma_{3 j+1}, \xi\right)\right| \\
& =\max \left\{\begin{array}{c}
\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right|,\left|G\left(\gamma_{3 j+2}, \gamma_{3 j+2}, \xi\right)\right|,\left|G\left(\gamma_{3 j+2}, \xi, \xi\right)\right|, \\
\frac{\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right| \cdot\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right|}{\left|1+G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right|}, \\
\frac{\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right| \cdot\left|G\left(\xi, F_{3} \xi, F_{3} \xi\right)\right|}{\left|1+G\left(\gamma_{3 j+1}, \xi, \xi\right)\right|}, \\
\frac{\left|G\left(\xi, F_{3} \xi, F_{3} \xi\right)\right| \cdot\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right|}{\left|1+G\left(\gamma_{3 j+2}, F_{3} \xi, F_{3} \xi\right)\right|}
\end{array}\right\} . \tag{76}
\end{align*}
$$

Now, there are six possibilities:
(i) If $\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right|$ is a maximum term in (76), then (73) can be written as

$$
\begin{align*}
\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, F_{3} \xi\right)\right| \leq & \beta_{1}\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \xi\right)\right| \tag{77}\\
& +\beta_{2}\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+2}\right)\right|
\end{align*}
$$

Applying $\lim _{n}$ on both sides, we get
$\left|G\left(\xi, \xi, F_{3} \xi\right)\right| \leq \beta_{1}|G(\xi, \xi, \xi)|+\beta_{2}|G(\xi, \xi, \xi)|$.
This implies that $\left|G\left(\xi, \xi, F_{3} \xi\right)\right|=0$; thus,

$$
\begin{equation*}
F_{3} \xi=\xi \tag{79}
\end{equation*}
$$

(ii) If $\left|G\left(\gamma_{3 j+2}, \gamma_{3 j+2}, \xi\right)\right|$ is a maximum term in (76), then (73) can be written as

$$
\begin{align*}
\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, F_{3} \xi\right)\right| \leq & \beta_{1}\left|G\left(\gamma_{3 j}, \gamma_{3 j+1} \xi\right)\right| \\
& +\beta_{2}\left|G\left(\gamma_{3 j+2}, \gamma_{3 j+2}, \xi\right)\right| \tag{80}
\end{align*}
$$

Applying $\lim _{n \rightarrow \infty}$ on both sides, we get

$$
\begin{equation*}
\left|G\left(\xi, \xi, F_{3} \xi\right)\right| \leq \beta_{1}|G(\xi, \xi, \xi)|+\beta_{2}|G(\xi, \xi, \xi)| . \tag{81}
\end{equation*}
$$ This implies that $\left|G\left(\xi, \xi, F_{3} \xi\right)\right|=0$; thus,

$$
\begin{equation*}
F_{3} \xi=\xi \tag{82}
\end{equation*}
$$

(iii) If $\left|G\left(\gamma_{3 j+2}, \xi, \xi\right)\right|$ is a maximum term in (76), then (73) can be written as

$$
\begin{align*}
\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, F_{3} \xi\right)\right| \leq & \beta_{1}\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \xi\right)\right| \tag{83}\\
& +\beta_{2}\left|G\left(\gamma_{3 j+2}, \xi, \xi\right)\right|
\end{align*}
$$

Applying $\lim _{n \longrightarrow \infty}$ on both sides, we get

$$
\begin{equation*}
\left|G\left(\xi, \xi, F_{3} \xi\right)\right| \leq \beta_{1}|G(\xi, \xi, \xi)|+\beta_{2}|G(\xi, \xi, \xi)| . \tag{84}
\end{equation*}
$$

This implies that $\left|G\left(\xi, \xi, F_{3} \xi\right)\right|=0$; thus,

$$
\begin{equation*}
F_{3} \xi=\xi \tag{85}
\end{equation*}
$$

(iv) If $\quad\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right| \cdot \quad\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right|$ $/\left|1+G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right|$ is a maximum term in (76), then (73) can be written as

$$
\begin{equation*}
\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, F_{3} \xi\right)\right| \leq \beta_{1}\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \xi\right)\right|+\beta_{2} \frac{\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right| \cdot\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right|}{\left|1+G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right|} \tag{86}
\end{equation*}
$$

Applying $\lim _{n \longrightarrow \infty}$ on both sides, we get $\left|G\left(\xi, \xi, F_{3} \xi\right)\right| \leq \beta_{1}|G(\xi, \xi, \xi)|+\beta_{2} \frac{|G(\xi, \xi, \xi)| \cdot|G(\xi, \xi, \xi)|}{|1+G(\xi, \xi, \xi)|}$.
(v) If $\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right| /\left|1+G\left(\gamma_{3 j+1}, \xi, \xi\right)\right|$ is a maximum term in (76), then (73) can be written as

This implies that $\left|G\left(\xi, \xi, F_{3} \xi\right)\right|=0$; thus,

$$
\begin{equation*}
\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, F_{3} \xi\right)\right| \leq \beta_{1}\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \xi\right)\right|+\beta_{2} \frac{\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, \gamma_{3 j+2}\right)\right| \cdot\left|G\left(\xi, F_{3} \xi, F_{3} \xi\right)\right|}{\left|1+G\left(\gamma_{3 j+1}, \xi, \xi\right)\right|} \tag{89}
\end{equation*}
$$

Applying $\lim _{n \longrightarrow \infty}$ on both sides, we get

$$
\begin{equation*}
\left|G\left(\xi, \xi, F_{3} \xi\right)\right| \leq \beta_{1}|G(\xi, \xi, \xi)|+\beta_{2} \frac{|G(\xi, \xi, \xi)| \cdot\left|G\left(\xi, F_{3} \xi, F_{3} \xi\right)\right|}{|1+G(\xi, \xi, \xi)|} \tag{90}
\end{equation*}
$$

This implies that $\left|G\left(\xi, \xi, F_{3} \xi\right)\right|=0$; thus,

$$
\begin{equation*}
\left|G\left(\gamma_{3 j+1}, \gamma_{3 j+2}, F_{3} \xi\right)\right| \leq \beta_{1}\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \xi\right)\right|+\beta_{2} \frac{\left|G\left(\xi, F_{3} \xi, F_{3} \xi\right)\right| \cdot\left|G\left(\gamma_{3 j}, \gamma_{3 j+1}, \gamma_{3 j+1}\right)\right|}{\left|1+G\left(\gamma_{3 j+2}, F_{3} \xi, F_{3} \xi\right)\right|} \tag{92}
\end{equation*}
$$

Applying $\lim _{n \longrightarrow \infty}$ on both sides, we get
$\left|G\left(\xi, \xi, F_{3} \xi\right)\right| \leq \beta_{1}|G(\xi, \xi, \xi)|$

$$
\begin{equation*}
+\beta_{2} \frac{\left|G\left(\xi, F_{3} \xi, F_{3} \xi\right)\right| \cdot|G(\xi, \xi, \xi)|}{\left|1+G\left(\xi, F_{3} \xi, F_{3} \xi\right)\right|} \tag{93}
\end{equation*}
$$

This implies that $\left|G\left(\xi, \xi, F_{3} \xi\right)\right|=0$; thus,

$$
\begin{equation*}
F_{3} \xi=\xi . \tag{94}
\end{equation*}
$$

From (79)-(94), we find that ξ is a FP of F_{3}, that is,

$$
\begin{equation*}
F_{3} \xi=\xi \tag{95}
\end{equation*}
$$

Hence proved that ξ is a CFP of F_{1}, F_{2} and F_{3}, that is,

$$
\begin{equation*}
F_{1} \xi=F_{2} \xi=F_{3} \xi=\xi \tag{96}
\end{equation*}
$$

Uniqueness: assume that $\xi^{*} \in \Upsilon$ is another CFP of the mappings F_{1}, F_{2}, and F_{3}, such that

$$
\begin{align*}
F_{1} \xi & =F_{2} \xi=F_{3} \xi=\xi \\
F_{1} \xi^{*}=F_{2} \xi^{*} & =F_{3} \xi^{*}=\xi^{*} \tag{97}
\end{align*}
$$

Then, from (5), we have that

$$
\begin{align*}
G\left(\xi, \xi^{*}, \xi^{*}\right) & =G\left(F_{1} \xi, F_{2} \xi^{*}, F_{3} \xi^{*}\right) \\
& \leq \beta_{1} G\left(\xi, \xi^{*}, \xi^{*}\right)+\beta_{2} W\left(\xi, \xi^{*}, \xi^{*}\right) \tag{98}
\end{align*}
$$

This implies that

$$
\begin{equation*}
\left|G\left(\xi, \xi^{*}, \xi^{*}\right)\right| \leq \beta_{1}\left|G\left(\xi, \xi^{*}, \xi^{*}\right)\right|+\beta_{2}\left|W\left(\xi, \xi^{*}, \xi^{*}\right)\right|, \tag{99}
\end{equation*}
$$

$W\left(\xi, \xi^{*}, \xi^{*}\right)=\max \left\{\begin{array}{c}G\left(\xi, \xi^{*}, F_{2} \xi^{*}\right), G\left(F_{1} \xi, F_{1} \xi, \xi^{*}\right), G\left(F_{1} \xi, \xi^{*}, \xi^{*}\right), \\ G\left(F_{2} \xi^{*}, F_{2} \xi^{*}, \xi^{*}\right), G\left(F_{2} \xi^{*}, \xi^{*}, \xi^{*}\right), \\ \frac{G\left(\xi, F_{1} \xi, F_{1} \xi\right) \cdot G\left(\xi^{*}, F_{2} \xi^{*}, F_{2} \xi^{*}\right)}{\left(1+G\left(\xi, \xi^{*}, \xi^{*}\right)\right)}, \\ \frac{G\left(\xi^{*}, F_{2} \xi^{*}, F_{2} \xi^{*}\right) \cdot G\left(\xi^{*}, F_{3} \xi^{*}, F_{3} \xi^{*}\right)}{\left(1+G\left(F_{1} \xi, \xi^{*}, \xi^{*}\right)\right)}, \\ \frac{G\left(\xi^{*}, F_{3} \xi^{*}, F_{3} \xi^{*}\right) \cdot G\left(\xi, F_{1} \xi, F_{1} \xi\right)}{\left(1+G\left(F_{2} \xi^{*}, F_{3} \xi^{*}, F_{3} \xi^{*}\right)\right)}\end{array}\right\}$

$$
=\max \left\{\begin{array}{c}
G\left(\xi, \xi^{*}, \xi^{*}\right), G\left(\xi, \xi, \xi^{*}\right), G\left(\xi, \xi^{*}, \xi^{*}\right), \tag{100}\\
G\left(\xi^{*}, \xi^{*}, \xi^{*}\right), G\left(\xi^{*}, \xi^{*}, \xi^{*}\right), \\
\frac{G(\xi, \xi, \xi) \cdot G\left(\xi^{*}, \xi^{*}, \xi^{*}\right)}{\left(1+G\left(\xi, \xi^{*}, \xi^{*}\right)\right)}, \\
\frac{G\left(\xi^{*}, \xi^{*}, \xi^{*}\right) \cdot G\left(\xi^{*}, \xi^{*}, \xi^{*}\right)}{\left(1+G\left(\xi, \xi^{*}, \xi^{*}\right)\right)}, \\
\frac{G\left(\xi^{*}, \xi^{*}, \xi^{*}\right) \cdot G(\xi, \xi, \xi)}{\left(1+G\left(\xi^{*}, \xi^{*}, \xi^{*}\right)\right)}
\end{array}\right\} .
$$

This implies that

$$
\left|W\left(\xi, \xi^{*}, \xi^{*}\right)\right|=\max \left\{\begin{array}{c}
\left|G\left(\xi, \xi^{*}, \xi^{*}\right)\right|,\left|G\left(\xi, \xi, \xi^{*}\right)\right|,\left|G\left(\xi, \xi^{*}, \xi^{*}\right)\right|, \\
\left|G\left(\xi^{*}, \xi^{*}, \xi^{*}\right)\right|,\left|G\left(\xi^{*}, \xi^{*}, \xi^{*}\right)\right|, \\
\frac{|G(\xi, \xi, \xi)| \cdot\left|G\left(\xi^{*}, \xi^{*}, \xi^{*}\right)\right|}{\left|1+G\left(\xi, \xi^{*}, \xi^{*}\right)\right|}, \\
\frac{\left|G\left(\xi^{*}, \xi^{*}, \xi^{*}\right)\right| \cdot\left|G\left(\xi^{*}, \xi^{*}, \xi^{*}\right)\right|}{\left|1+G\left(\xi, \xi^{*}, \xi^{*}\right)\right|}, \\
\frac{\left|\left(\xi^{*}, \xi^{*}, \xi^{*}\right)\right| \cdot|G(\xi, \xi, \xi)|}{\left|1+G\left(\xi^{*}, \xi^{*}, \xi^{*}\right)\right|}
\end{array}\right\} .
$$

Now, by using Proposition 2.5 (2) and after simplifying, we get that

$$
\begin{equation*}
\left|W\left(\xi, \xi^{*}, \xi^{*}\right)\right| \leq \max \left|G\left(\xi, \xi^{*}, \xi^{*}\right)\right|, 2 b\left|G\left(\xi, \xi^{*}, \xi^{*}\right)\right| . \tag{102}
\end{equation*}
$$

Clearly, $2 b\left|G\left(\xi, \xi^{*}, \xi^{*}\right)\right|$ is a maximum term in (102), so (99) can be written as

$$
\begin{equation*}
\left|G\left(\xi, \xi^{*}, \xi^{*}\right)\right| \leq \beta_{1}\left|G\left(\xi, \xi^{*}, \xi^{*}\right)\right|+2 b \beta_{2}\left|G\left(\xi, \xi^{*}, \xi^{*}\right)\right| . \tag{103}
\end{equation*}
$$

This implies that $\left(1-\beta_{1}-2 b \beta_{2}\right)\left|G\left(\xi, \xi^{*}, \xi^{*}\right)\right| \leq 0$ is a contradiction, where
$\left(1-\beta_{1}-2 b \beta_{2}\right) \neq 0 \Rightarrow\left|G\left(\xi, \xi^{*}, \xi^{*}\right)\right|=0 \Rightarrow \xi=\xi^{*}$. Hence proved that F_{1}, F_{2}, and F_{3} have a unique CFP in Υ.

Corollary 1. Let ($(, G)$ be a complete complex-valued G_{b}-metric space with coefficient $b \geq 1$ and $F_{1}, F_{2}, F_{3}: \Upsilon \longrightarrow \Upsilon$ be mappings satisfying
$G\left(F_{1} \gamma_{1}, F_{2} \gamma_{2}, F_{3} \gamma_{3}\right) \leq \beta_{1} G\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)+\beta_{2} W\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$,
where

$$
W\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=\max \left\{\begin{array}{c}
G\left(\gamma_{1}, \gamma_{2}, F_{2} \gamma_{2}\right), G\left(F_{1} \gamma_{1}, F_{1} \gamma_{1}, \gamma_{2}\right), G\left(F_{1} \gamma_{1}, \gamma_{2}, \gamma_{2}\right) \tag{105}\\
G\left(F_{2} \gamma_{2}, F_{2} \gamma_{2}, \gamma_{3}\right), G\left(F_{2} \gamma_{2}, \gamma_{3}, \gamma_{3}\right), \\
\frac{G\left(\gamma_{1}, F_{1} \gamma_{1}, F_{1} \gamma_{1}\right) \cdot G\left(\gamma_{2}, F_{2} \gamma_{2}, F_{2} \gamma_{2}\right)}{1+G\left(\gamma_{1}, \gamma_{2}, \gamma_{2}\right)},
\end{array}\right\}
$$

for all $\left.\gamma_{1}, \gamma_{2}, \gamma_{3} \in \Upsilon, \quad \beta_{1}, \beta_{2} \in 0,1 / 3\right)$, such that $\left(\beta_{1}+\beta_{2}\right)<1 / 3, \quad b \beta_{2}<1 / 3$, and $\left(\beta_{1}+2 b \beta_{2}\right)<2 / 3$; then, F_{1}, F_{2}, and F_{3} have a unique CFP in Υ.
$G\left(F_{1} \gamma_{1}, F_{2} \gamma_{2}, F_{3} \gamma_{3}\right) \leq \beta_{1} G\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)+\beta_{2} W\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$,
where
Corollary 2. Let (Υ, G) be a complete complex-valued G_{b}-metric space with coefficient $b \geq 1$ and $F_{1}, F_{2}, F_{3}: \Upsilon \longrightarrow \Upsilon$ be mappings satisfying

$$
W\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=\max \left\{\begin{array}{c}
G\left(\gamma_{1}, \gamma_{2}, F_{2} \gamma_{2}\right), G\left(F_{1} \gamma_{1}, F_{1} \gamma_{1}, \gamma_{2}\right), G\left(F_{1} \gamma_{1}, \gamma_{2}, \gamma_{2}\right), \tag{108}\\
G\left(F_{2} \gamma_{2}, F_{2} \gamma_{2}, \gamma_{3}\right), G\left(F_{2} \gamma_{2}, \gamma_{3}, \gamma_{3}\right), \\
\frac{G\left(\gamma_{2}, F_{2} \gamma_{2}, F_{2} \gamma_{2}\right) \cdot G\left(\gamma_{3}, F_{3} \gamma_{3}, F_{3} \gamma_{3}\right)}{1+G\left(F_{1} \gamma_{1}, \gamma_{3}, \gamma_{3}\right)}, \quad G\left(F_{1} \gamma_{1}, F_{2} \gamma_{2}, F_{3} \gamma_{3}\right) \leq \beta_{1} G\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)+\beta_{2} W\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right),
\end{array}\right.
$$

for all $\left.\gamma_{1}, \gamma_{2}, \gamma_{3} \in \Upsilon, \quad \beta_{1}, \beta_{2} \in 0,1 / 3\right)$, such that $\left(\beta_{1}+\beta_{2}\right)<1 / 3, \quad b \beta_{2}<1 / 3$, and $\left(\beta_{1}+2 b \beta_{2}\right)<2 / 3$; then, F_{1}, F_{2}, and F_{3} have a unique CFP in Υ.
where
Corollary 3. Let (Υ, G) be a complete complex-valued G_{b}-metric space with coefficient $b \geq 1$ and $F_{1}, F_{2}, F_{3}: \Upsilon \longrightarrow \Upsilon$ be mappings satisfying

$$
W\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=\max \left\{\begin{array}{c}
G\left(\gamma_{1}, \gamma_{2}, F_{2} \gamma_{2}\right), G\left(F_{1} \gamma_{1}, F_{1} \gamma_{1}, \gamma_{2}\right), G\left(F_{1} \gamma_{1}, \gamma_{2}, \gamma_{2}\right) \tag{109}\\
G\left(F_{2} \gamma_{2}, F_{2} \gamma_{2}, \gamma_{3}\right), G\left(F_{2} \gamma_{2}, \gamma_{3}, \gamma_{3}\right), \\
\frac{G\left(\gamma_{3}, F_{3} \gamma_{3}, F_{3} \gamma_{3}\right) \cdot G\left(\gamma_{1}, F_{1} \gamma_{1}, F_{1} \gamma_{1}\right)}{1+G\left(F_{2} \gamma_{2}, F_{3} \gamma_{3}, F_{3} \gamma_{3}\right)}
\end{array}\right\}
$$

for all $\left.\gamma_{1}, \gamma_{2}, \gamma_{3} \in \Upsilon, \quad \beta_{1}, \beta_{2} \in 0,1 / 3\right)$, such that $\left(\beta_{1}+\beta_{2}\right)<1 / 3, \quad b \beta_{2}<1 / 3, \quad$ and $\quad\left(\beta_{1}+2 b \beta_{2}\right)<2 / 3$; then, F_{1}, F_{2}, and F_{3} have a unique CFP in Υ.

Remark 2. If we put $\beta_{2}=0$ and $F_{1}=F_{2}=F_{3}$ in Theorem 2, we get (Theorem 3.7 [22]).

Example 2. Let (Υ, G) be a complex-valued G_{b}-metric space, where $\Upsilon=[0,1]$ and $G: \Upsilon \times \Upsilon \times \Upsilon \longrightarrow \mathbb{C}$, with $G\left(\gamma_{1}\right.$, $\left.\gamma_{2}, \gamma_{3}\right)=\left(3 / 4\left|\gamma_{1}-\gamma_{2}\right|+3 / 4\left|\gamma_{2}-\gamma_{3}\right|+3 / 4\left|\gamma_{3}-\gamma_{1}\right|\right)^{2}+i \quad(3$ $\left.|4| \gamma_{1}-\gamma_{2}|+3 / 4| \gamma_{2}-\gamma_{3}|+3 / 4| \gamma_{3}-\gamma_{1} \mid\right)^{2}$, for all $\gamma_{1}, \gamma_{2}, \gamma_{3}$ $\in \Upsilon$. Now, we define $F_{1}, F_{2}, F_{3}: \Upsilon \longrightarrow \Upsilon$ as

$$
\begin{equation*}
F_{1} \gamma=F_{2} \gamma=F_{3} \gamma=\ln \left(1+\frac{\gamma}{5+\gamma}\right) \tag{110}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
\left|G\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)\right|,\left|W\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)\right| \geq 0 \tag{111}
\end{equation*}
$$

In all regards, it is enough to show that $G\left(F_{1} \gamma_{1}, F_{2} \gamma_{2}, F_{3} \gamma_{3}\right) \leq \beta_{1} G\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$, for all $\gamma_{1}, \gamma_{2}, \gamma_{3} \in[0,1]$ and $\left.\beta_{1}, \beta_{2} \in 0,1 / 3\right)$, with $\beta_{1}+\beta_{2}<1 / 3$, $b \beta_{2}<1 / 3$, and $\beta_{1}+2 b \beta_{2}<2 / 3$.

$$
\begin{align*}
& G\left(F_{1} \gamma_{1}, F_{2} \gamma_{2}, F_{3} \gamma_{3}\right)=\left(\frac{3}{4}\left|F_{1} \gamma_{1}-F_{2} \gamma_{2}\right|+\frac{3}{4}\left|F_{2} \gamma_{2}-F_{3} \gamma_{3}\right|+\frac{3}{4}\left|F_{3} \gamma_{3}-F_{1} \gamma_{1}\right|\right)^{2} \\
& +i\left(\frac{3}{4}\left|F_{1} \gamma_{1}-F_{2} \gamma_{2}\right|+\frac{3}{4}\left|F_{2} \gamma_{2}-F_{3} \gamma_{3}\right|+\frac{3}{4}\left|F_{3} \gamma_{3}-F_{1} \gamma_{1}\right|\right)^{2} \\
& =\binom{\frac{3}{4}\left|\ln \left(1+\frac{\gamma_{1}}{5+\gamma_{1}}\right)-\ln \left(1+\frac{\gamma_{2}}{5+\gamma_{2}}\right)\right|+\frac{3}{4}\left|\ln \left(1+\frac{\gamma_{2}}{5+\gamma_{2}}\right)-\ln \left(1+\frac{\gamma_{3}}{5+\gamma_{3}}\right)\right|}{+\frac{3}{4}\left|\ln \left(1+\frac{\gamma_{3}}{5+\gamma_{3}}\right)-\ln \left(1+\frac{\gamma_{1}}{5+\gamma_{1}}\right)\right|}^{2} \\
& +i\binom{\frac{3}{4}\left|\ln \left(1+\frac{\gamma_{1}}{5+\gamma_{1}}\right)-\ln \left(1+\frac{\gamma_{2}}{5+\gamma_{2}}\right)\right|+\frac{3}{4}\left|\ln \left(1+\frac{\gamma_{2}}{5+\gamma_{2}}\right)-\ln \left(1+\frac{\gamma_{3}}{5+\gamma_{3}}\right)\right|}{+\frac{3}{4}\left|\ln \left(1+\frac{\gamma_{3}}{5+\gamma_{3}}\right)-\ln \left(1+\frac{\gamma_{1}}{5+\gamma_{1}}\right)\right|}^{2} \tag{112}\\
& \leq\left(\frac{3}{4}\left|\frac{\gamma_{1}}{5+\gamma_{1}}-\frac{\gamma_{2}}{5+\gamma_{2}}\right|+\frac{3}{4}\left|\frac{\gamma_{2}}{5+\gamma_{2}}-\frac{\gamma_{3}}{5+\gamma_{3}}\right|+\frac{3}{4}\left|\frac{\gamma_{3}}{5+\gamma_{3}}-\frac{\gamma_{1}}{5+\gamma_{1}}\right|\right)^{2} \\
& +i\left(\frac{3}{4}\left|\frac{\gamma_{1}}{5+\gamma_{1}}-\frac{\gamma_{2}}{5+\gamma_{2}}\right|+\frac{3}{4}\left|\frac{\gamma_{2}}{5+\gamma_{2}}-\frac{\gamma_{3}}{5+\gamma_{3}}\right|+\frac{3}{4}\left|\frac{\gamma_{3}}{5+\gamma_{3}}-\frac{\gamma_{1}}{5+\gamma_{1}}\right|\right)^{2} \\
& \leq\left(\frac{3}{4}\left|\frac{5 \gamma_{1}-5 \gamma_{2}}{25}\right|+\frac{3}{4}\left|\frac{5 \gamma_{2}-5 \gamma_{3}}{25}\right|+\frac{3}{4}\left|\frac{5 \gamma_{3}-5 \gamma_{1}}{25}\right|\right)^{2} \\
& +i\left(\frac{3}{4}\left|\frac{5 \gamma_{1}-5 \gamma_{2}}{25}\right|+\frac{3}{4}\left|\frac{5 \gamma_{2}-5 \gamma_{3}}{25}\right|+\frac{3}{4}\left|\frac{5 \gamma_{3}-5 \gamma_{1}}{25}\right|\right)^{2} \\
& =\frac{1}{25}\left[\begin{array}{c}
\left(\frac{3}{4}\left|\gamma_{1}-\gamma_{2}\right|+\frac{3}{4}\left|\gamma_{2}-\gamma_{3}\right|+\frac{3}{4}\left|\gamma_{3}-\gamma_{1}\right|\right)^{2} \\
+i\left(\frac{3}{4}\left|\gamma_{1}-\gamma_{2}\right|+\frac{3}{4}\left|\gamma_{2}-\gamma_{3}\right|+\frac{3}{4}\left|\gamma_{3}-\gamma_{1}\right|\right)^{2}
\end{array}\right] . \\
& G\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=\left[\begin{array}{c}
\left(\frac{3}{4}\left|\gamma_{1}-\gamma_{2}\right|+\frac{3}{4}\left|\gamma_{2}-\gamma_{3}\right|+\frac{3}{4}\left|\gamma_{3}-\gamma_{1}\right|\right)^{2} \\
+i\left(\frac{3}{4}\left|\gamma_{1}-\gamma_{2}\right|+\frac{3}{4}\left|\gamma_{2}-\gamma_{3}\right|+\frac{3}{4}\left|\gamma_{3}-\gamma_{1}\right|\right)^{2}
\end{array}\right] . \tag{113}
\end{align*}
$$

For $\gamma_{1}, \gamma_{2}, \gamma_{3} \in[0,1]$, we discuss different cases with $\beta_{1}=1 / 10, \beta_{2}=1 / 20$, and $b=2$. Hence,

$$
\begin{array}{r}
\beta_{1}+\beta_{2}=\frac{1}{10}+\frac{1}{20}<\frac{1}{3}, b \beta_{2}=2\left(\frac{1}{20}\right)<\frac{1}{3} \\
\beta_{1}+2 b \beta_{2}=\frac{1}{10}+2(2) \frac{1}{20}<\frac{2}{3} \tag{115}
\end{array}
$$

Case 1: let $\gamma_{1}=0, \gamma_{2}=0, \gamma_{3}=0$; then from (112) and (113), directly we get that $G\left(F_{1} \gamma_{1}, F_{2} \gamma_{2}, F_{3} \gamma_{3}\right)$ $\leq \beta_{1} G\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$. Hence, (3.1) is satisfied with $\beta_{1}=1 / 10, \beta_{2}=1 / 20$, and $b=2$.
Case 2: let $\gamma_{1}=0, \gamma_{2}=0, \gamma_{3}=1 / 2$; then from (112) and (113), we find $G\left(F_{1} \gamma_{1}, F_{2} \gamma_{2}, F_{3} \gamma_{3}\right) \leq \beta_{1} G\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ is satisfy with $\beta_{1}=1 / 10$, i.e.,

$$
\begin{align*}
\frac{1}{25}\left[\begin{array}{c}
\left(\frac{3}{4}|0-0|+\frac{3}{4}\left|0-\frac{1}{2}\right|+\frac{3}{4}\left|\frac{1}{2}-0\right|\right)^{2} \\
+i\left(\frac{3}{4}|0-0|+\frac{3}{4}\left|0-\frac{1}{2}\right|+\frac{3}{4}\left|\frac{1}{2}-0\right|\right)^{2}
\end{array}\right] \leq \beta_{1}\left[\begin{array}{l}
\left.\left(\frac{3}{4}|0-0|+\frac{3}{4}\left|0-\frac{1}{2}\right|+\frac{3}{4}\left|\frac{1}{2}-0\right|\right)^{2}\right] \\
\left.+i\left(\frac{3}{4}|0-0|+\frac{3}{4}\left|0-\frac{1}{2}\right|+\frac{3}{4}\left|\frac{1}{2}-0\right|\right)^{2}\right] \\
\end{array} \frac{9 \frac{9}{400}+i \frac{9}{400} \leq \frac{9}{160}+i \frac{9}{160}}{} .\right. \tag{116}
\end{align*}
$$

Hence, (3.1) is satisfied with $\beta_{1}=1 / 10, \beta_{2}=1 / 20$, and $b=2$.

Case 3: let $\gamma_{1}=1 / 2, \gamma_{2}=1 / 3, \gamma_{3}=1 / 4$; then from (112) and (113), we find $G\left(F_{1} \gamma_{1}, F_{2} \gamma_{2}, F_{3} \gamma_{3}\right) \leq \beta_{1} G\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ is satisfy with $\beta_{1}=1 / 10$, i.e.,

$$
\begin{align*}
\frac{1}{25}\left[\begin{array}{r}
\left(\frac{3}{4}\left|\frac{1}{2}-\frac{1}{3}\right|+\frac{3}{4}\left|\frac{1}{3}-\frac{1}{4}\right|+\frac{3}{4}\left|\frac{1}{4}-\frac{1}{2}\right|\right)^{2} \\
+i\left(\left.\frac{3}{4}\left|\frac{1}{2}-\frac{1}{3}\right|\left|+\frac{3}{4}\right| \frac{1}{3}-\frac{1}{4}\left|+\frac{3}{4}\right| \frac{1}{4}-\frac{1}{2} \right\rvert\,\right)^{2}
\end{array}\right] \leq \beta_{1}\left[\begin{array}{l}
\left(\frac{3}{4}\left|\frac{1}{2}-\frac{1}{3}\right|+\frac{3}{4}\left|\frac{1}{3}-\frac{1}{4}\right|+\frac{3}{4}\left|\frac{1}{4}-\frac{1}{2}\right|\right)^{2} \\
\left.+i\left(\frac{3}{4}\left|\frac{1}{2}-\frac{1}{3}\right|+\frac{3}{4}\left|\frac{1}{3}-\frac{1}{4}\right|+\frac{3}{4}\left|\frac{1}{4}-\frac{1}{2}\right|\right)^{2}\right] \\
\end{array} \frac{\frac{9}{1600}+i \frac{9}{1600} \leq \frac{9}{640}+i \frac{9}{640}}{} .\right. \tag{117}
\end{align*}
$$

Hence, (3.1) is satisfied with $\beta_{1}=1 / 10, \beta_{2}=1 / 20$, and $b=2$.

Case 4: let $\gamma_{1}=1 / 2, \gamma_{2}=1 / 2, \gamma_{3}=1$; then from (112) and (113), we find $G\left(F_{1} \gamma_{1}, F_{2} \gamma_{2}, F_{3} \gamma_{3}\right) \leq \beta_{1} G\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ is satisfy with $\beta_{1}=1 / 10$, i.e.,

$$
\begin{align*}
\frac{1}{25}\left[\begin{array}{c}
\left(\frac{3}{4}\left|\frac{1}{2}-\frac{1}{2}\right|+\frac{3}{4}\left|\frac{1}{2}-1\right|+\frac{3}{4}\left|1-\frac{1}{2}\right|\right)^{2} \\
+i\left(\frac{3}{4}\left|\frac{1}{2}-\frac{1}{2}\right|+\frac{3}{4}\left|\frac{1}{2}-1\right|+\frac{3}{4}\left|1-\frac{1}{2}\right|\right)^{2}
\end{array}\right] \leq \beta_{1}\left[\begin{array}{l}
\left(\frac{3}{4}\left|\frac{1}{2}-\frac{1}{2}\right|+\frac{3}{4}\left|\frac{1}{2}-1\right|+\frac{3}{4}\left|1-\frac{1}{2}\right|\right)^{2} \\
\left.+i\left(\frac{3}{4}\left|\frac{1}{2}-\frac{1}{2}\right|+\frac{3}{4}\left|\frac{1}{2}-1\right|+\frac{3}{4}\left|1-\frac{1}{2}\right|\right)^{2}\right] \\
\end{array} \frac{\frac{9}{400}+i \frac{9}{400} \leq \frac{9}{160}+i \frac{9}{160}}{} .\right. \tag{118}
\end{align*}
$$

Hence, (3.1) is satisfied with $\beta_{1}=1 / 10, \beta_{2}=1 / 20$, and $b=2$. Thus, all the conditions of Theorem 2 are satisfied with
noticing that the point $0 \in \Upsilon$, which remains fixed under mappings F_{1}, F_{2}, and F_{3}, is indeed unique.

4. Applications

In this section, we present an application of the three UTIEs to support our main work. Let $\Upsilon=C\left(\left[k_{1}, k_{2}\right], \mathbb{R}^{n}\right)$ be the set of all real-valued continuous functions defined on $\left[k_{1}, k_{2}\right]$. Now, we state and prove a result based on the three UTIEs to uplift our work.

Theorem 3. Let $\Upsilon=C\left(\left[k_{1}, k_{2}\right], \mathbb{R}^{n}\right)$, where $\left[k_{1}, k_{2}\right] \subseteq \mathbb{R}$ and $G: \Upsilon \times \Upsilon \times \Upsilon \longrightarrow \mathbb{C}$ are defined as

$$
G\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=\left(\begin{array}{l}
\left\|\gamma_{1}(q)-\gamma_{2}(q)\right\| \tag{119}\\
+\gamma_{2}(q)-\gamma_{3}(q) \| \\
+\gamma_{3}(q)-\gamma_{1}(q) \|
\end{array}\right)^{2} \sqrt{1+k_{1}^{2}} e^{i \cot k_{1}},
$$

for all $\gamma_{1}, \gamma_{2}, \gamma_{3} \in \Upsilon$ and $q \in\left[k_{1}, k_{2}\right]$. Consider the UTIEs are

$$
\begin{align*}
& \gamma_{1}(q)=\int_{k_{1}}^{k_{2}} Q_{1}\left(q, r, \gamma_{1}(r)\right) d r+\hbar_{1}(q), \\
& \gamma_{2}(q)=\int_{k_{1}}^{k_{2}} Q_{2}\left(q, r, \gamma_{2}(r)\right) d r+\hbar_{2}(q), \tag{120}\\
& \gamma_{3}(q)=\int_{k_{1}}^{k_{2}} Q_{3}\left(q, r, \gamma_{3}(r)\right) d r+\hbar_{3}(q),
\end{align*}
$$

$$
\left(\begin{array}{l}
\left\|D_{\gamma_{1}}(q)-E_{\gamma_{2}}(q)+\hbar_{1}(q)-\hbar_{2}(q)\right\| \tag{122}\\
+E_{\gamma_{2}}(q)-F_{\gamma_{3}}(q)+\hbar_{2}(q)-\hbar_{3}(q) \| \\
+F_{\gamma_{3}}(q)-D_{\gamma_{1}}(q)+\hbar_{3}(q)-\hbar_{1}(q) \|
\end{array}\right)^{2} \sqrt{1+k_{1}^{2} e^{i \cot k_{1}} \leq \mu M\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right), ~ . ~}
$$

where
with
$M\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=\max \left\{A_{1}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q), A_{2}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)\right\}$,

$$
\begin{align*}
& A_{1}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)=\left(\begin{array}{l}
\left\|\gamma_{1}(q)-\gamma_{2}(q)\right\| \\
+\gamma_{2}(q)-\gamma_{3}(q) \| \\
+\gamma_{3}(q)-\gamma_{1}(q) \|
\end{array}\right)^{2} \sqrt{1+k_{1}^{2} e^{i \cot k_{1}},} \tag{124}\\
& A_{2}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)=\max \left\{\begin{array}{l}
a_{1}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q), a_{2}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q), \\
a_{3}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q), a_{4}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q), \\
a_{5}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q), a_{6}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q), \\
a_{7}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q), a_{8}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)
\end{array}\right\}, \tag{125}
\end{align*}
$$

where

$$
\begin{align*}
& a_{1}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)=\left(\begin{array}{c}
\gamma_{1}(q)-\gamma_{2}(q) \\
+E_{\gamma_{2}}(q)+\hbar_{2}(q)-\gamma_{2}(q) \\
+E_{\gamma_{2}}(q)+\hbar_{2}(q)-\gamma_{1}(q)
\end{array}\right)^{2} \sqrt{1+k_{1}^{2} e^{i \cot k_{1}},} \\
& a_{2}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)=\left(2 D_{\gamma_{1}}(q)+\hbar_{1}(q)-\gamma_{2}(q)\right)^{2} \sqrt{1+k_{1}^{2}} e^{i \cot k_{1}}, \\
& a_{3}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)=\left(2 D_{\gamma_{1}}(q)+\hbar_{1}(q)-\gamma_{2}(q)\right)^{2} \sqrt{1+k_{1}^{2}} e^{i \cot k_{1}}, \\
& a_{4}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)=\left(2 E_{\gamma_{2}}(q)+\hbar_{2}(q)-\gamma_{3}(q)\right)^{2} \sqrt{1+k_{1}^{2}} e^{i \cot k_{1}}, \\
& a_{5}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)=\left(2 E_{\gamma_{2}}(q)+\hbar_{2}(q)-\gamma_{3}(q)\right)^{2} \sqrt{1+k_{1}^{2} e^{i \cot k_{1}},}, \\
& a_{6}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)=\frac{\binom{4 D_{\gamma_{1}}(q)+\hbar_{1}(q)-\gamma_{1}(q)}{\cdot E_{\gamma_{2}}(q)+\hbar_{2}(q)-\gamma_{2}(q)}^{2}\left(\sqrt{1+k_{1}^{2}} e^{i \cot k_{1}}\right)^{2}}{1+\left(2 \gamma_{1}(q)-\gamma_{2}(q)\right)^{2} \sqrt{1+k_{1}^{2}} e^{i \cot k_{1}}}, \tag{126}\\
& \left.a_{7}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)=\frac{\binom{4 E_{\gamma_{2}}(q)+\hbar_{2}(q)-\gamma_{2}(q)}{\cdot F_{\gamma_{3}}(q)+\hbar_{3}(q)-\gamma_{3}(q)}^{2}\left(\sqrt{1+k_{1}^{2}} e^{i \cot k_{1}}\right)^{2}}{1+\left(2 D_{\gamma_{1}}(q)+\hbar_{1}(q)-\gamma_{3}(q)\right)^{2} \sqrt{1+k_{1}^{2} e^{i \cot k_{1}}}} \begin{array}{l}
\left.4 F_{\gamma_{3}}(q)+\hbar_{3}(q)-\gamma_{3}(q)\right)^{2}\left(\sqrt{1+k_{1}^{2}} e^{i \cot k_{1}}\right)^{2} \\
\cdot D_{\gamma_{1}}(q)+\hbar_{1}(q)-\gamma_{1}(q)
\end{array}\right) \\
& a_{8}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)=\frac{1+\left(2 E_{\gamma_{2}}(q)+\hbar_{2}(q)-F_{\gamma_{3}}(q)-\hbar_{3}(q)\right)^{2} \sqrt{1+k_{1}^{2}} e^{i \cot k_{1}}}{}
\end{align*}
$$

Then, the three UTIEs, i.e., (120) have a unique common solution.

Proof 1. Define $F_{1}, F_{2}, F_{3}: \Upsilon \longrightarrow \Upsilon$ as
$F_{1} \gamma_{1}=F_{1} \gamma_{1}(q)=D_{\gamma_{1}}(q)+\hbar_{1}(q)=D_{\gamma_{1}}+\hbar_{1}, \gamma_{1}(q)=\gamma_{1}$,
$F_{2} \gamma_{2}=F_{2} \gamma_{2}(q)=E_{\gamma_{2}}(q)+\hbar_{2}(q)=E_{\gamma_{2}}+\hbar_{2}, \gamma_{2}(q)=\gamma_{2}$,
$F_{3} \gamma_{3}=F_{3} \gamma_{3}(q)=F_{\gamma_{3}}(q)+\hbar_{3}(q)=F_{\gamma_{3}}+\hbar_{3}, \gamma_{3}(q)=\gamma_{3}$.

Then, we have the following main two cases:
(1) If $A_{1}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)$ is the maximum term in $\left\{A_{1}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q), A_{2}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)\right\}$, then from (122), (123), and (127), we have that

$$
G\left(F_{1} \gamma_{1}, F_{2} \gamma_{2}, F_{3} \gamma_{3}\right) \leq \mu\left(\begin{array}{c}
\left\|\gamma_{1}-\gamma_{2}\right\| \tag{128}\\
+\gamma_{2}-\gamma_{3} \| \\
+\gamma_{3}-\gamma_{1} \|
\end{array}\right)^{2} \sqrt{1+k_{1}^{2}} e^{i \cot k_{1}}
$$

For all $\gamma_{1}, \gamma_{2}, \gamma_{3} \in \Upsilon$. Thus, the maps F_{1}, F_{2}, and F_{3} satisfy the hypothesis of Theorem 2 with $\mu=\beta_{1}$ and $\beta_{2}=0$ in (31). Then, the given three UTIEs i.e., (4.1) have a unique common solution in Υ.
(2) If $A_{2}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)$ is the maximum term in $\left\{A_{1}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q), A_{2}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)\right\}$, then from (123), we have that

$$
\begin{equation*}
M\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=A_{2}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q) \tag{129}
\end{equation*}
$$

Then, there are furthermore eight subcases arising:
(i) If $a_{1}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)$ is the maximum term in (125), then $A_{2}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)=a_{1}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)$; now, from (122), (127), and (129), we have that
$G\left(F_{1} \gamma_{1}, F_{2} \gamma_{2}, F_{3} \gamma_{3}\right) \leq \mu\left(\begin{array}{c}\left\|\gamma_{1}-\gamma_{2}\right\| \\ +E_{\gamma_{2}}+\hbar_{2}-\gamma_{2} \| \\ +E_{\gamma_{2}}+\hbar_{2}-\gamma_{1} \|\end{array}\right)^{2} \sqrt{1+k_{1}^{2}} e^{i \cot k_{1}}$,

For all $\gamma_{1}, \gamma_{2}, \gamma_{3} \in \Upsilon$. Thus, the maps F_{1}, F_{2}, and F_{3} satisfy the hypothesis of Theorem 2 with $\mu=\beta_{2}$ and $\beta_{1}=0$ in (31). Then, the given three UTIEs, i.e., (4.1) have a unique common solution in Υ.
(ii) If $a_{2}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)$ is the maximum term in (125), then $A_{2}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)=a_{2}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)$; now, from (122), (127), and (129), we have that

$$
\begin{equation*}
G\left(F_{1} \gamma_{1}, F_{2} \gamma_{2}, F_{3} \gamma_{3}\right) \leq \mu\left(2 D_{\gamma_{1}}+\hbar_{1}-\gamma_{2} \|\right)^{2} \sqrt{1+k_{1}^{2}} e^{i \cot k_{1}} \tag{131}
\end{equation*}
$$

For all $\gamma_{1}, \gamma_{2}, \gamma_{3} \in \Upsilon$. Thus, the maps F_{1}, F_{2}, and F_{3} satisfy the hypothesis of Theorem 2 with $\mu=\beta_{2}$ and $\beta_{1}=0$ in (5). Then, the given three UTIEs, i.e., (120) have a unique common solution in Υ.
(iii) If $a_{3}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)$ is the maximum term in (125), then $A_{2}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)=a_{3}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)$; now, from (122), (127), and (129), we have that

$$
\begin{equation*}
G\left(F_{1} \gamma_{1}, F_{2} \gamma_{2}, F_{3} \gamma_{3}\right) \leq \mu\left(2 D_{\gamma_{1}}+\hbar_{1}-\gamma_{2} \|\right)^{2} \sqrt{1+k_{1}^{2} e^{i \cot k_{1}}, .} \tag{132}
\end{equation*}
$$

For all $\gamma_{1}, \gamma_{2}, \gamma_{3} \in \Upsilon$. Thus, the maps F_{1}, F_{2}, and F_{3} satisfy the hypothesis of Theorem 2 with $\mu=\beta_{2}$ and $\beta_{1}=0$ in (5). Then, the given three UTIEs, i.e., (120) have a unique common solution in Υ.
(iv) If $a_{4}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)$ is the maximum term in (125), then $A_{2}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)=a_{4}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)$; now, from (122), (127), and (129), we have that

$$
\begin{equation*}
G\left(F_{1} \gamma_{1}, F_{2} \gamma_{2}, F_{3} \gamma_{3}\right) \leq \mu\left(2 E_{\gamma_{2}}+\hbar_{2}-\gamma_{3} \|\right)^{2} \sqrt{1+k_{1}^{2}} e^{i \cot k_{1}} \tag{133}
\end{equation*}
$$

For all $\gamma_{1}, \gamma_{2}, \gamma_{3} \in \Upsilon$. Thus, the maps F_{1}, F_{2}, and F_{3} satisfy the hypothesis of Theorem 2 with $\mu=\beta_{2}$ and $\beta_{1}=0$ in (5). Then, the given three UTIEs, i.e., (120) have a unique common solution in Υ.
(v) If $a_{5}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)$ is the maximum term in (125), then $A_{2}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)=a_{5}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)$; now, from (122), (127), and (129), we have that

$$
\begin{equation*}
G\left(F_{1} \gamma_{1}, F_{2} \gamma_{2}, F_{3} \gamma_{3}\right) \leq \mu\left(2 E_{\gamma_{2}}+\hbar_{2}-\gamma_{3} \|\right)^{2} \sqrt{1+k_{1}^{2}} e^{i \cot k_{1}} \tag{134}
\end{equation*}
$$

For all $\gamma_{1}, \gamma_{2}, \gamma_{3} \in \Upsilon$. Thus, the maps F_{1}, F_{2}, and F_{3} satisfy all the conditions of Theorem 2 with $\mu=\beta_{2}$ and $\beta_{1}=0$ in (5). Then, the given three UTIEs, i.e., (120) have a unique common solution in Υ.
(vi) If $a_{6}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)$ is the maximum term in (125), then $A_{2}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)=a_{6}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)$; now, from (122), (127), and (129), we have that

$$
\begin{equation*}
G\left(F_{1} \gamma_{1}, F_{2} \gamma_{2}, F_{3} \gamma_{3}\right) \leq \mu \frac{\binom{4 D_{\gamma_{1}}+\hbar_{1}-\gamma_{1} \|}{\cdot E_{\gamma_{2}}+\hbar_{2}-\gamma_{2} \|}^{2}\left(\sqrt{1+k_{1}^{2}} e^{i \cot k_{1}}\right)^{2}}{1+\left(2 \gamma_{1}-\gamma_{2} \|\right)^{2} \sqrt{1+k_{1}^{2}} e^{i \cot k_{1}}} \tag{135}
\end{equation*}
$$

For all $\gamma_{1}, \gamma_{2}, \gamma_{3} \in \Upsilon$. Thus, the maps F_{1}, F_{2}, and F_{3} satisfy all the conditions of Theorem 2 with $\mu=\beta_{2}$ and $\beta_{1}=0$ in (5). Then, the given three UTIEs, i.e., (120) have a unique common solution in Υ.
rey
(vii) If $a_{7}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)$ is the maximum term in (125), then $A_{2}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)=a_{7}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)$; now, from (122), (127), and (129), we have that

$$
\begin{equation*}
G\left(F_{1} \gamma_{1}, F_{2} \gamma_{2}, F_{3} \gamma_{3}\right) \leq \mu \frac{\binom{4 E_{\gamma_{2}}+\hbar_{2}-\gamma_{2} \|}{\cdot F_{\gamma_{3}}+\hbar_{3}-\gamma_{3} \|}^{2}\left(\sqrt{1+k_{1}^{2}} e^{i \cot k_{1}}\right)^{2}}{1+\left(2 D_{\gamma_{1}}+\hbar_{1}-\gamma_{3} \|\right)^{2} \sqrt{1+k_{1}^{2}} e^{i \cot k_{1}}} \tag{136}
\end{equation*}
$$

For all $\gamma_{1}, \gamma_{2}, \gamma_{3} \in \Upsilon$. Thus, the maps F_{1}, F_{2}, and F_{3} satisfy all the conditions of Theorem 2 with $\mu=\beta_{2}$
and $\beta_{1}=0$ in (5). Then, the given three UTIEs, i.e., (120) have a unique common solution in Υ.
(viii) If $a_{8}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)$ is the maximum term in (125), then $A_{2}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)=a_{8}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)(q)$; now, from (122), (127), and (129), we have that

$$
\begin{equation*}
G\left(F_{1} \gamma_{1}, F_{2} \gamma_{2}, F_{3} \gamma_{3}\right) \leq \mu \frac{\binom{4 F_{\gamma_{3}}+\hbar_{3}-\gamma_{3} \|}{\cdot D_{\gamma_{1}}+\hbar_{1}-\gamma_{1} \|}^{2}\left(\sqrt{1+k_{1}^{2}} e^{i \cot k_{1}}\right)^{2}}{1+\left(2 E_{\gamma_{2}}+\hbar_{2}-F_{\gamma_{3}}-\hbar_{3} \|\right)^{2} \sqrt{1+k_{1}^{2}} e^{i \cot k_{1}}} \tag{137}
\end{equation*}
$$

for all $\gamma_{1}, \gamma_{2}, \gamma_{3} \in \Upsilon$. Thus, the maps F_{1}, F_{2}, and F_{3} satisfy all the conditions of Theorem 2 with $\mu=\beta_{2}$ and $\beta_{1}=0$ in (5). Then, the given three UTIEs, i.e., (120) have a unique common solution in Υ.

5. Conclusions

We have established a generalized CFP-theorem in complexvalued G_{b}-metric spaces for three self-mappings. In this result, we have used a generalized rational contraction condition and proved a unique CFP-theorem. To justify our result, we presented an illustrative example in the said space by using three self-maps. Also, we present an application of integral equations to get the existing result for a common solution to support our work. By using this concept, one can prove different contractive-type FP and CFP results for many self-mappings in complex-valued G_{b}-metric spaces with different types of integral operators.

Data Availability

No datasets were generated or analyzed to support the findings of this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah (D-715-1501441).

References

[1] S. Banach, "Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales," Fundamenta Mathematicae, vol. 3, pp. 133-181, 1922.
[2] M. Nazam, I. Beg, and M. Arshad, "Common fixed points of weakly increasing F-contractions on ordered partial metric spaces," Communications in Optimization Theory, 2019.
[3] P. Hu and F. Gu, "Some fixed point theorems of λ-contractive mappings in Menger PSM-spaces," Journal of Nonlinear Functional Analysis, vol. 2021, Article ID 8447435, 8 pages, 2021.
[4] I. A. Bakhtin, "The contraction mapping principle in almost metric spaces," Journal of Functional Analysis, vol. 30, pp. 26-37, 1989.
[5] S. Czerwik, "Nonlinear set-valued contraction mapping in b-metric spaces," Atti del Seminario Matematico e Fisico dell'Universita di Modena, vol. 46, pp. 263-276, 1998.
[6] M. Boriceanu, M. Bota, and A. Petruşel, "Multivalued fractals in b-metric spaces," Central European Journal of Mathematics, vol. 8, no. 2, pp. 367-377, 2010.
[7] M. Akkouchi, "Common fixed point theorems for two self mappings of a b-metric space under an implicit relation," Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 6, pp. 805-810, 2011.
[8] T. Došenović, M. De La Sen, L. Paunović, D. Rakić, and S. Radenović, "Some new observations on generalized contractive mappings and related results in b-metric-like spaces," Journal of Mathematics, vol. 2021, Article ID 6634822, 9 pages, 2021.
[9] M. Delfani, A. Farajzadeh, and C. F. Wen, "Some fixed point theorems of generalized F_{t}-contraction mappings in b-metric spaces," Journal of Nonlinear and Variational Analysis, vol. 5, no. 2021, pp. 615-625.
[10] E. Karapinar, S. Czerwik, and H. Aydi, " (α, ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces," Journal of Function spaces, vol. 2018, Article ID 3264620, 4 pages, 2018.
[11] T. Abdeljawad, N. Mlaiki, H. Aydi, and N. Souayah, "Double controlled metric type spaces and some fixed point results," Mathematics, vol. 6, no. 12, p. 320, 2018.
[12] Z. Mustafa and B. Sims, "A new approach to generalized metric spaces," Journal of Nonlinear and Convex Analysis, vol. 7, pp. 289-297, 2006.
[13] Z. Mustafa, H. Obiedat, and F. Awawdeh, "Some common fixed point theorems for mapping on complete G-metric spaces," Fixed Point Theory and Applications, vol. 2008, Article ID 189870, 12 pages, 2008.
[14] M. Abbas and B. E. Rhoades, "Common fixed point results for noncommuting mappings without continuity in generalized metric spaces," Applied Mathematics and Computation, vol. 215, no. 1, pp. 262-269, 2009.
[15] R. Chugh, T. Kadian, A. Rani, and B. E. Rhoades, "Property P in G-metric spaces," Fixed Point Theory and Applications, vol. 2010, Article ID 401684, 12 pages.
[16] S. K. Mohanta and S. Mohanta, "A common fixed point theorem in g-metric spaces," Cubo (Temuco), vol. 14, no. 3, pp. 85-101, 2012.
[17] A. Aghajani, M. Abbas, and J. Roshan, "Common fixed point of generalized weak contractive mappings in partially ordered

Gb-metric spaces G_{b}-metric spaces," Filomat, vol. 28, no. 6, pp. 1087-1101, 2014.
[18] H. Aydi, D. Rakić, A. Aghajani, T. Došenović, M. S. M. Noorani, and H. Qawaqneh, "On fixed point results in gb-metric spaces G_{b}-metric spaces," Mathematics, vol. 7, no. 7, p. 617, 2019.
[19] V. Gupta, O. Ege, R. Saini, and M. De La Sen, "Various fixed point results in complete G_{b}-metric spaces," Dynamic Systems and Applications, vol. 30, no. 2, pp. 277-293, 2021.
[20] N. Makran, A. el Haddouchi, and B. Marzouki, "A generalized common fixed points for multivalued mappings in G_{b}-metric spaces with an application," University Politehnica of Bucharest Scientific Bulletin-Series A-Applied Mathematics and Physics, vol. 83, no. 1, pp. 157-168, 2021.
[21] A. A. Mebawondu and O. T. Mewomo, "Suzuki-type fixed point results in Gb-metric spaces G_{b}-metric spaces," AsianEuropean Journal of Mathematics, vol. 14, no. 05, p. 2150070, 2021.
[22] O. Ege, "Complex valued G_{b}-metric spaces," Journal of Computational Analysis and Applications, vol. 21, no. 2, pp. 363-368, 2016.
[23] O. Ege, "Some fixed point theorems in complex valued G_{b}-metric spaces," Journal of Nonlinear and Convex Analysis, vol. 18, no. 11, pp. 1997-2005, 2017.
[24] J. Kumar and S. Vashistha, "Coupled fixed point theorems in complex valued G_{b}-metric spaces," Advances in Fixed Point Theory, vol. 6, no. 4, pp. 341-351, 2016.
[25] S. Mehmood, S. U. Rehman, N. Jan, M. Al-Rakhami, and A. Gumaei, "Rational type compatible single-valued mappings via unique common fixed point findings in complexvalued b-metric spaces with an application," Journal of Function Spaces, vol. 2021, Article ID 9938959, 14 pages, 2021.
[26] W. Sintunavarat and P. Kumam, "Generalized common fixed point theorems in complex valued metric spaces and applications," Journal of Inequalities and Applications, 2012.
[27] A. A. Mukheimer, "Some common fixed point theorems in complex valued -Metric Spaces," The Scientific World Journal, vol. 2014, Article ID 587825, 6 pages, 2014.

