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With the advent of the era of big data, feature selection in high- or ultra-high-dimensional data is increasingly important in
statistics and machine learning fields. In this paper, we propose a marginal utility measure screening method MI-SIS based on
mutual information. +e proposed marginal utility measure has several appealing features compared with the existing inde-
pendence screening methods. Firstly, the proposed procedure is model-free without specifying any relationship between the
predictors and the response and is valid under a wide range of model settings including parametric and nonparametric models.
Secondly, it is suitable for various combinations of the continuous and categorical of predictors and response in our new method.
Finally, the new procedure has a good performance in discovering a weak signal in the finite sample and its computation is simple
and easy to implement. We establish the sure screening property for the proposed procedure with mild conditions. Simulation
experiments and real data applications are presented to illustrate the finite sample performance of the proposed procedures.

1. Introduction

With the development of the information and technology,
more and more data were collected in many scientific areas.
+e number of predictors p can be bigger than the number
of samples n. +eoretically, classical results allow that p may
diverge at exponential rate of the sample size. +e difficulty
in ultra-high-dimensional data analysis is obvious; the most
typical difficulty is a large amount of calculation. Fan and Lv
[1] proposed a relatively new approach to deal with this
problem; they proposed a sure independent screening (SIS,
hereafter) method based on the Pearson correlation. Since
the work of Fan and Lv [1] on sure independent screening,
there has been a lot of work on feature screening. Wang [2]
proposed Forward Regression for linear models; Fan et al.
[3] designed a screening method based on the marginal
likelihood estimators for generalized linear models and
robust regression. Fan and Song [4] established the sure
independence screening property under the background of
generalized linear models. Within the scope of the ultra-

high-dimensional nonparametric modeling, various feature
screening methods have also been proposed. +ose methods
include but are not limited to the following: nonparametric
independence screening (Fan et al. [5]), conditional corre-
lation sure independence screening (Liu et al. [6]), iterative
nonparametric independence screening (Fan et al. [7]), and
others. All these methods are based on specific model
assumption.

+e model-based screening methods have a good per-
formance when the underling model is correctly specified.
However, it is challenging to specify a correct model for
ultra-high-dimensional data analysis. Model-based screen-
ing methods may perform poorly in the case of model
misspecification. In order to overcome this problem, great
efforts have been made to relax the model assumption and
make the screening methods less model-dependent. +us,
new model-free screening methods have been proposed in
the latest literature. See the works of Zhu et al. [8], Li et al.
[9], He et al. [10], Mai and Zou [11], Shao and Zhang [12],
Cui et al. [13], and others. In particular, Zhu et al. [8]
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proposed a sure independent ranking and screening (SIRS)
method to screen predictors in multi-index models. +ey
further showed that SIRS enjoys the ranking consistency
property. Li et al. [9] developed a distance correlation based
screening methods (DC-SIS). DC-SIS does not require
model specification, and it can deal with grouped predictor
variables.+ey further demonstrated that DC-SIS procedure
possessed the sure screening property. Shao and Zhang [12]
proposed a martingale difference correlation based
screening method (MDC-SIS), which is also a model-free
screening method; MDC-based screening methods can ex-
tend to quantile regression, and the sure screening property
was also established.

In ultra-high-dimensional classification problem, Cui
et al. [13] proposed a screening method for classification
problem (MV-SIS); this method can be applied to the sit-
uation where one of the predictors and the response are
categorical. Huang et al. [14] proposed a screening method
based on Pearson Chi-square (PC-SIS); PC-SIS is applicable
in case the response and the predictors are categorical; by
categorizing the continuous variables, both MV-SIS and PC-
SIS have a wider applicability. We were inspired by the
simplicity of MV-SIS and PC-SIS; in this paper, we proposed
a new screening method based onmutual information. It has
advantages over PC-SIS and MV-SIS. It does not require
categorizing the continuous variables; categorizing the
continuous variables will lose some information especially in
small samples case and we do not know howmany categories
we should use to categorize the continuous variables in
advance. Cui et al. [13] thought that the number of categories
could be treated as tuning parameter, and they could be
determined by cross validation; obviously, the calculation
will increase especially in the higher-dimensional case.

Recently, the studies on the independent screening
methods are still booming. We just list a few relevant
researches; for example, Zhang et al. [15] proposed a Gini
correlation screening (GCS) method to select the important
variables in ultra-high-dimensional data. Zhou and Zhu
[16] proposed a modified martingale difference correlation
to improve some drawbacks of martingale difference
correlation. Dai et al. [17] proposed a feature selection
method based on kernel density estimation for interval-
valued data. An et al. [18] proposed a new model for su-
pervised multiclass feature selection which has the
l2,1− norm in both the fidelity loss and the regularization
terms with an additional l2,0− constraint. Cuong et al. [19]
established fundamental qualitative properties of the
minimum sum-of-squares clustering problem and proved
that the problem always has a global solution and the global
solution set is finite. For more details, we refer to the se-
lective survey by Kamolov [20, 21].

In this paper, we propose a new model-free screening
method which has a wider application, the mutual infor-
mation based screening method; we refer to our method as
MI-SIS. Table 1 shows the application scope and algorithm
complexity of different feature screening methods. We
systematically study the theoretical properties of MI-SIS and
establish the sure screening property for the proposed
procedure with mild conditions. +e new procedure has a

good performance in discovering a weak signal in the finite
sample. MI-SIS is comparable with MV-SIS and PC-SIS
corresponding to the application scope of these methods. In
the case that both the predictors and response are categorical
variables, the MI index is similar to the PC index proposed
by Huang et al. [14]; thus, the efficiency of MI-SIS will be the
same as that of PC-SIS in this situation. Moreover, to en-
hance the performance of the proposed method in finite
sample, we conduct three Monte Carlo simulations and
conduct a real data analysis. MI-SIS has a good performance
in all the simulations.

+e rest of this paper is organized as follows. In Section
2, we propose MI-SIS procedure and further study the
theoretical properties of the novel approach. In Section 3, we
conduct three Monte Carlo simulation studies to examine
the performance of MI-SIS in finite samples, especially in
very small sample case. We also analyze real data, and the
result is very impressive. All technical proofs are given in
Appendix A.

2. Independence Screening Using
Mutual Information

2.1. Mutual Information. +e mutual information between
two random variables X and Y is defined in terms of their
joint probability distribution p(X, Y) as

MI(X; Y) � 􏽚 p(x, y)log
p(x, y)

p(x)p(y)
dxdy. (1)

I(X; Y) is always nonnegative and I(X; Y) � 0 if and
only if X and Y are independent.

+e MI marginal measure can be estimated by letting
􏽢w � 􏽢MI(X, Y). +e estimator of the mutual information
based on a nonparametric density estimator is illustrated in
the following. Let (Xi, Yi): 1≤ i≤ n􏼈 􏼉 be a random sample of
size n from the population (X, Y). We assume that (X, Y)

has continuous joint pdf. Define
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,

(2)

where the function K(·) is kernel function, h and hi (i � 1, 2)

are bandwidth in nonparametric density estimate, and in
practice the kernel functions we often use are Gaussian
kernel function and Epanechnikov kernel function. MI
marginal measure under other circumstances is given in the
following. When X is continuous and Y is categorical,
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where 􏽢p(X � k1, Y � k2) � (1/n) 􏽐
n
i�1 I(Xi � k1)I(Yi � k2).

In this case, MI index is very similar to PC index [14]; when
X is categorical and Y is continuous,

􏽢w � 􏽢MI(X, Y) � 􏽘
K
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where 􏽢p(i, Yj) � 􏽢pi
􏽢p(Yj|X � i) and 􏽢pi � (􏽐

n
j�1 I(Xj � i))/n.

2.2. An Independence Ranking and Screening Procedure.
We now propose a new model-free sure independence
screening using MI(X, Y) for ultra-high-dimensional data
analysis. Let Y be the response with supportΨy and Y can be
either discrete random variable or continuous random
variable, andX � (X1, . . . , Xp) denotes the predictor vector,
where p≫ n and n is the sample size. Without specifying a
regression model, define the active predictors index subset
by

D � k: p(Y|X) functionally depends onXk for somey ∈ Ψy􏽮 􏽯,

(6)

and define the inactive predictors index subset by

I � k: p(Y|X) does not functionally depend onXk for any y ∈ Ψy􏽮 􏽯.

(7)

With the above notation, we can specify the active
predictors as XD � Xk: k ∈ D􏼈 􏼉 and the inactive predictors
as XI � Xk: k ∈ I􏼈 􏼉. Our main purpose is to accurately find
the active predictors index subset D.

We now set out to calculate MI of each predictor and the
response, wk � MI(Xk, Y), k � 1, . . . , p. Note that wk � 0
only if Xk ∈ XI; this also implies that the predictor Xk is
statistically independent of Y; thus we can use MI index as a
dependence measure to screen the predictors. +e MI-based
method is model-free because it involves only marginal
density and joint density of the random variables. +is index

can characterize both linear and nonlinear relationships
between the response and predictors.

+e primary objective of feature screening in ultra-high-
dimensional data analysis is to find a reduced model with a
small scale which can contain the true model D with high
probability. In this paper, we propose using the index 􏽢wk to
select a moderate model

􏽢D � k: 􏽢wk ≥ cn
− τ

, for 1≤ k≤p􏼈 􏼉, (8)

where c and τ are predetermined positive values. In practice,
we often select the reduced model using another formula:

􏽢D
∗

� k: 􏽢wk is among the top d largest of all􏼈 􏼉. Obviously,
Xk: k ∈ 􏽢D

∗
􏽮 􏽯 are the most likely relevant predictors with the
response.+us, we can use the predictors in Xk: k ∈ 􏽢D

∗
􏽮 􏽯 to

estimate the true model. For ease of presentation, we call the
above procedure MI-SIS procedure for short.

In the following, we will establish the theoretical
properties of the proposed independence screening proce-
dure; Fan and Lv [1] and Ji and Jin [22] demonstrated that
the sure screening property guaranteed the effectiveness of
the class of independence screening procedure.+erefore, to
establish the sure screening property for MI-SIS is essential.
+e three following conditions are assumed to guarantee
that the MI-SIS procedure has sure screening property. +ey
are imposed mainly to facilitate the technical proofs, al-
though they may not be the weakest ones.

(C1) Suppose that X � (x1, . . . , xp), and xi come from
the distribution Fi which is unknown but has a Leb-
esgue pdf fi, i � 1, . . . , p, and some conditions present
in Lemma A.3 in the Appendix.
(C2) +ere exists a positive constant 0< κ< 2, such that

sup
1≤k≤p

􏽘

n

i�1
log

p Xik, Yi( 􏼁

p Xik( 􏼁p Yi( 􏼁
� O n

κ
( 􏼁, a.e. (9)

(C3) +ere exists a positive constant c> 0 and τ; the
minimum MI of the active predictors satisfies
min
k∈D

wk ≥ 2cn− τ .
(C4) Both X and Y satisfy the subexponential tail
probability uniformly in p. +at is, there exists a
positive constant μ0 such that, for all 0< μ≤ μ0,

suppmax1≤k≤pE exp μ Xk

����
����
2
1􏼒 􏼓􏼚 􏼛

<∞, andE exp μ‖Y‖
2
q􏼐 􏼑􏽮 􏽯<∞.

(10)

Theorem 1 (Sure Screening Property). Under conditions
(C1)-(C2), there exists the positive constant C1 such that

Table 1: Application scope and algorithm complexity of different feature screening methods.

Y continuous Y continuous Y categorical Y categorical ComplexityX continuous X categorical X continuous X categorical
MV-SIS ✓ ✓ O(Rn2p)

PC-SIS ✓ O(K2p)

MI-SIS ✓ ✓ ✓ ✓ O(n3p)
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P max
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Further, we have that

P D⊆ 􏽢D
∗

􏼐 􏼑≥ 1 − O sn exp − C1n
1− 2τ

􏼐 􏼑􏼐 􏼑. (12)

In the above equation, sn is the cardinality of D.
+eorem 1 indicates that we can deal with the ultra-high-

dimensional case with log(p) � O(n1− 2τ), τ > 0.

3. Numerical Studies

In this section, we first assess the finite sample performance
of the proposed MI-SIS by Monte Carlo simulation studies.
+en, we use real data to analyze the sure screening property
of our proposed method. All of our simulation studies were
performed in the R language.

Example 1 (X is continuous and Y is categorical). In this
example, we simulate a quadratic discriminant analysis
problem with ultra-high-dimensional predictors by fol-
lowing the similar idea in Cui et al. [13] or Pan et al. [23].
Our simulation example is slightly different from theirs; we
conduct a quadratic discriminant analysis in which the
categorical response Y comes from two distributions which
have very small difference. We generate Y from a discrete
uniform distribution with R categories, where
P(Yi � r) � 1/R, with r � 1, . . . , R; given Yi � r, the ith

predictor Xi is then generated by letting Xi � μr + εi + ηi,
where μr � (μr1, . . . , μrp) � E(Xi|Yi � r) is the mean of the
r categories, and its rth component μrr � μ, but its other
components are all zeros. μ is relatively a small number; in
this example, we conduct |μ|≤ 0.1, and εi � (εi1, . . . , εip) are
the p− dimensional error terms, and we assume that
εij ∼ N(0, 1), 1≤ j≤p, and ηi � (0, . . . , ηrr, . . . , 0), with
only the rth component ηrr ∼ N(0, 3); ηrr can take other
symmetric distributions, such as t-distributions; in this case,
we only illustrate the simulation result with ηrr ∼ N(0, 3).
+e shape of the conditional density given Y is shown in
Figure 1(a), and that of themarginal density ofXj, j � 1, 2, 3,
is shown in Figure 1(b).

In order to illustrate the performance of the novel ap-
proach, we compare our result with the existing methods
PC-SIS [14] and MV-SIS [13]. +e MV-SIS method can be
directly applied in this situation. But the PC-SIS method
only applies to the situation that both the response and the
predictors are categorical variables; in this case, we need to
categorize the predictors. Cui et al. [13] proposed a specific
procedure to categorize continuous variables.+e procedure
can be described as follows: assuming thatXj is a continuous
variable, we define a new vector X∗j using the percentiles
τ1, . . . , τkn

􏽮 􏽯 of Xj; let X∗j � kI(τk ≤Xij ≤ τk+1),

i � 1, . . . , n, k � 1, . . . , kn, where I(·) denotes an indicator
function. +en we immediately face a problem of how many
categories we should use in categorizing Xj. In their paper,
they suggest kn � O(n1/5). In this simulation, we take R �

2, n � 50, p � 500 and R � 2, n � 100, p � 1000 separately,

and, in each case, we let μ � 0.05 and kn � c[n1/5], c � 1, 2, 3.
We repeat each experiment 100 times and define some
evaluation index to illustrate their performance. MMMS is
short for the median of the minimum model size to include
all the active predictors; we also report the robust estimate of
its standard deviation RSD (�IQR/1.34, IQR stands for
interquartile range) in the parentheses. Pj denotes that an
individual active predictor is selected for a given model size
d � [n/log(n)] in the 100 simulations, where [x] denotes the
integer part of x. Pa denotes that all active predictors are
selected for a given model size d in the 100 simulations. +e
MMMS is an index to assess the model complexity of an
underling procedure. +e closer to the true model size it is,
the better the screening procedure is. +e sure screening
property ensures that Pj and Pa are asymptotic to 1 when the
estimated model size d is sufficiently large. We report the
detailed result in Table 2.

Table 2 implies that the procedure MI-SIS performs
reasonably well when the sample size is relatively small;
thus, we can conclude that MI-SIS can capture more subtle
signals in this situation. Table 2 also shows that the PC-SIS
andMV-SIS have a poor performance in this situation, and
the results are basically unchanged, despite the fact that we
select three kn values for PC-SIS. With the sample size
becoming large, we can find that all the three procedures
have a good performance. But the result of PC-SIS is
related with the selected kn; note that kn cannot be too
small.

Example 2 (both X and Y are continuous). +is example is
designed to compare the performance of MI-SIS with those
of PC-SIS andMV-SIS in the case that both the response and
the predictors are continuous variables. We consider the two
following models:

(2.a) Y � 5X1 + 4X2 + 3X3 + ε
(2.b) Y � 5X1X2 + 3I(X2 < 0) + 4 sin(X3) + ε

where (2.a) is a linear regression; the relationship between
Xi, i � 1, 2, 3, and Y is also linear, while in model (2.b) the
relationship between Xi, i � 1, 2, 3, and Y is nonlinear, and
I(X2 < 0) is an indicator function. In addition, model (2.b)
contains a sine function of X3 and an interaction term X1X2.
All of the three methods are model-free; thus they can be
directly applied in these two models. But we need to cate-
gorize the continuous response for MV-SIS and categorize
both the continuous response and the predictors for PC-SIS.
In this example, we set kn � 4 when we categorize the
continuous variables. Let (n, p) � (100, 500) and
εi ∼ N(0, 1), and, for each model, we consider two scenarios
to assess the performances of the three methods: cov(X) � I

and cov(X) � 􏽐, where 􏽐 � (0.5|i− j|). Moreover, in order to
show defects of categorizing, we use formula (3) to calculate
MI; we also need to categorize the continuous response in
this case, and we name this method MI-SIS2 in Table 3.
Table 3 presents the simulation result for Pj, j � 1, 2, 3, and
Pa. +e performances of the MV-SIS, PC-SIS, MI-SIS, and
MI-SIS2 are very similar in model (2.a). But MI-SIS out-
performs the other procedures in model (2.b). We can
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Figure 1: (a)+e conditional density ofX1,P(X1|Y � 1), and the conditional density of X2, P(X2|Y � 2); note that P(X1|Y � 1) is identical
toP(X2|Y � 2), so we only draw a line. (b)+emarginal density of all the predictors. Under our assumption, the marginal densities ofXj are
nearly all the same except a small mean difference.

Table 2: Simulation result for Example 1.

Method Categories P1 P2 Pa MMMS

P � 500

n � 50
d � 12

PC-SIS
c � 1 0.10 0.07 0.01 265.0 (137.3)
c � 2 0.64 0.69 0.45 45.5 (17.9)
c � 3 0.75 0.79 0.59 14.0 (8.2)

MV-SIS — 0.35 0.39 0.18 73.0 (85.8)
MI-SIS — 0.98 0.95 0.94 2.0 (0.7)

n � 100
d � 21

PC-SIS
c � 1 0.10 0.06 0.01 304.5 (126.3)
c � 2 0.97 0.96 0.93 2.0 (0.7)
c � 3 1.00 1.00 1.00 2.0 (0.0)

MV-SIS — 0.90 0.92 0.83 4.0 (1.5)
MI-SIS — 1.00 1.00 1.00 2.0 (0.0)

P � 1000

n � 50
d � 12

PC-SIS
c � 1 0.06 0.05 0.01 393.0 (194.0)
c � 2 0.55 0.59 0.30 127.0 (126.9)
c � 3 0.64 0.64 0.40 99.0 (22.4)

MV-SIS — 0.16 0.15 0.02 285.5 (96.3)
MI-SIS — 0.92 0.91 0.84 7.0 (4.4)

n � 100
d � 21

PC-SIS
c � 1 0.06 0.08 0.00 453.0 (97.0)
c � 2 0.96 0.95 0.92 2.0 (0.7)
c � 3 1.00 0.98 0.98 2.0 (0.0)

MV-SIS — 0.84 0.82 0.72 9.5 (4.5)
MI-SIS — 1.00 1.00 1.00 2.0 (0.0)

+e user-specified number kn � c[n1/5].

Table 3: +e proportions of Pj and Pa in Example 2.

Model Parameter cov (X) Method P1 P2 P3 Pa

(a)

p � 500
n � 100
d � 21
k � 4

􏽐 � I

PC-SIS 1.00 0.96 0.69 0.65
MV-SIS 1.00 1.00 0.87 0.87
MI-SIS2 1.00 0.88 0.73 0.55
MI-SIS 1.00 0.98 0.58 0.57

􏽐 � 0.5|i− j|

PC-SIS 1.00 1.00 0.98 0.98
MV-SIS 1.00 1.00 1.00 1.00
MI-SIS2 1.00 1.00 0.96 0.96
MI-SIS 1.00 1.00 1.00 1.00

Journal of Mathematics 5



conclude that MI-SIS has a better performance than other
procedures in the case where both the response and the
predictors are continuous variables.

Example 3 (both X and Y are categorical). In this case, our
proposed index reduces to the form in (4); in order to assess
the effect of our index with PC-SIS, we borrow an example
from Huang et al. [14]; in their paper, the following example
was used to assess the effect of PC-SIS in the case of the
predictors without interaction. +e category response
Yi ∈ 1, 2, 3, 4{ }, and P(Yi � k) � 1/4, for every 1≤ k≤ 4.
Define the true model as ST � 1, 2, . . . , 10{ } with |ST| � 10.
Next, conditional on Yi, we generate the predictor as
P(Xij � 1|Yi � k) � θkj for every 1≤ k≤ 4 and j ∈ ST. +e
specific values of θkj are shown in Table 4. For j ∉ ST, let
θkj � 0.5, for every 1≤ k≤ 4.

Under this mechanism, we infer that the predictors
Xj, j> 10, are independent of the response, because
P(Xij � 1|Yi � k, k ∉ ST) � θkj � 0.5, and P(Yi � k) � 1/4;
we can calculate
P(Xij � 1) � 􏽐 P(Xij � 1|Yi � k)P(Yi � k) � 0.5; the con-
ditional mass functions are identical to the unconditional
mass functions, so Xj, j> 10, and Y are independent. In this
example, in order to systematically study the gradual
equivalence about MI-SIS and PC-SIS proposed by Huang
et al. (2014), we designed four cases and performed simu-
lation 100 times for each case. +e gradual equivalence is a
very strong property which needs us to subsequently define
several evaluation indexes to assess. Pa − MI denotes the
proportion that all active predictors are included in 􏽢D

∗
MI for a

given model size d � [n/log(n)], while Pa − PC denotes the
proportion that all active predictors are included in 􏽢D

∗
PC at

the same model size. More specifically, we let
PCS � 􏽐 I( 􏽢D

∗
MI ∩D � 􏽢D

∗
PC ∩D)/n denote the proportion of

the identical correct predictors selected by the methods of
PC-SIS and MI-SIS, while we let
PFS � 􏽐 I( 􏽢D

∗
MI ∩Dc � 􏽢D

∗
PC ∩Dc)/n denote the proportion

of the identical false selected predictors.
+e detailed results are shown in Table 5; the four

simulation results are very similar; this result is not out of
our expectation. Both the MI-SIS and the PC-SIS methods
are relatively very efficient in selecting the active predictors;
the values of MMMS (RSD) and Pa − MI and Pa − PC are
very close to 1. +e value of PCS is approximately equal to 1
as n goes to infinity; this result demonstrates that MI-SIS and
the PC-SIS have gradual equivalence. Both can almost surely
select the active predictors, even if they do not select all the

true predictors. However, PFS has a relatively poor per-
formance; the reasonmay be that when n goes to infinity, the
cardinality of 􏽢D

∗ will also be very large; due to the ran-
domness, the probability of the false selected predictors will
vary a lot.

Example 4 (X is categorical and Y is continuous). In this
example, we use the same setting as Example 2 but add some
new categorical variables. +e models we considered are as
follows:

(2.a) Y � 5X1 + 4X2 + 3X3 + 2D1 + 3D2 + ε
(2.b)
Y � 5X1X2 + 3I(X2 < 0) + 4 sin(X3) + 2D1 + 3D2 + ε

where Xj, j � 1, 2, 3, are continuous variables and
Dj, j � 1, 2, are categorical variables. We consider the fol-
lowing scenarios with n � 100, p � 500. Firstly, we generate
p1 continuous variable with cov(X) � Ip1

and
cov(X) � Σp1×p1

, where Σp1×p1
� (0.5|i− j|)p1×p1

. +en, we
generate p2 categorical variables with P(Dij � 1) � θj and θj

follows the uniform distribution on 0 and 1. Note that p1 +

p2 � p and p1/p2 � 2/3, 1, 0, 0. +e simulation result is
presented in Table 6 which shows that the MI-SIS method
also outperforms its competitors when X is categorical and Y
is continuous.

4. Real Data Analysis

In this section, we illustrate the proposed MI-SIS procedure
with an application to detect the important features about
the voice of Parkinson’s patients using LSVT dataset. +e
dataset is available at http://archive.ics.uci.edu/ml/datasets/
LSVT+Voice+Rehabilitation. +e LSVT (Lee Silverman
voice treatment) Voice Rehabilitation Dataset comes from
UCI website; this dataset was created by Tsanas et al., and it
was first analyzed by [24].+e goal of the study is to improve
the effectiveness of rehabilitative speech treatment by ap-
propriate statistical algorithms for LSVT Companion

Table 3: Continued.

Model Parameter cov (X) Method P1 P2 P3 Pa

(b)

p � 500
n � 100
d � 21
k � 4

􏽐 � I

PC-SIS 0.35 0.59 0.99 0.20
MV-SIS 0.39 0.56 1.00 0.28
MI-SIS2 0.46 0.64 0.99 0.29
MI-SIS 0.99 1.00 0.94 0.93

􏽐 � 0.5|i− j|

PC-SIS 0.83 0.80 0.91 0.57
MV-SIS 0.42 0.48 0.98 0.25
MI-SIS2 0.80 0.82 0.92 0.58
MI-SIS 1.00 1.00 0.91 0.91

Table 4: Probability specification for Example 3.

θkj

j
1 2 3 4 5 6 7 8 9 10

k � 1 0.2 0.8 0.7 0.2 0.2 0.9 0.1 0.1 0.7 0.7
k � 2 0.9 0.3 0.3 0.7 0.8 0.4 0.7 0.6 0.4 0.1
k � 3 0.7 0.2 0.1 0.6 0.7 0.6 0.8 0.9 0.1 0.8
k � 4 0.1 0.9 0.6 0.1 0.3 0.1 0.4 0.3 0.6 0.4
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system. +ese algorithms can automatically be used for
detecting whether the characteristics of the voice are ac-
ceptable or not. An efficient algorithm can automatically
assess the effectiveness of the LSVT Companion system
during use of software away from expert clinical guidance.

+is dataset contains 126 samples from 14 participants,
309 predictors, and one response. +e predictors are the
features of the voice. +e response is a binary variable; one
means “unacceptable” and zero means “acceptable.” “Un-
acceptable” means that a clinician thought the voice was not
persisting during in-person rehabilitation treatment. More
details about the predictors can be found in [24]. +erein,
the authors demonstrated that the algorithm they proposed
could correctly replicate the experts’ binary assessment with
approximately 90% accuracy.

Here, we use two penalized regression models to analyze
this dataset. We first established a penalized logistic model
using all the predictors by minimizing the penalized likelihood

β � argmin
β

l(β) � − L(β) + λ􏽘

p

j�1
βj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

L(β) � 􏽘
n

i�1
yilog pi( 􏼁 + 1 − yi( 􏼁log 1 − pi( 􏼁,

pi �
e
β0+xT

i
β

1 + e
β0+xT

i
β
.

(13)

For the second model, we propose first applying MI-SIS
to screening d � 2[n/log(n)] � 30 predictors; thereafter, we
extend the predictor variable space by adding the interaction

terms of the screened predictors. +en we apply the pe-
nalized logistic model to the new feature space, and in this
way, we can explore the nonlinear relationship of the
screened predictors. In the paper, these two models will be
referred to as penalized-logistic model and MI-SIS-penal-
ized-logistic model, respectively, for simplicity.

+e top-right and bottom-right figures in Figure 2 show
the penalized-logistic coefficient paths about the twomodels.
+e top-left and bottom-left figures are the CV error for each
λ; the hyperparameter λ is selected by 5-fold cross validation,
and the best λ will be obtained at the minimum of the CV
error curve. We summarize the classification result in Ta-
ble 7. From the confusion matrix, we conclude that both the
penalized-logistic model and MI-SIS-penalized-logistic
model have a better performance. For penalized-logistic
model, it finally selects only 13 predictors, with the best
λ � e− 3.4, and its classification rate is 91.27%; for MI-SIS-
penalized-logistic model, it finally selects 25 predictors on
the new feature space, with the best λ � e− 4.4, and its clas-
sification rate is 96.83%. +is example further demonstrates
that the MI-SIS with a penalized-logistic model is more
enjoyable in real data analysis.

5. Discussion

In this paper, we proposed a new independent feature
screening method based on the mutual information, that is,
MI-SIS. +e proposed procedure is model-free, and the sure
screening property was established when the number of the
predictors diverges with an exponential rate of the samples.
+e new procedure has a good performance in discovering a

Table 5: Detailed simulation results for Example 3.

p n MMMS (RSD) Pa − MI Pa − PC PCS PFS

1000 100 10.0 (0.0) 0.96 0.96 1.00 0.62
200 10.0 (0.0) 1.00 1.00 1.00 0.67

5000 100 10.0 (0.74) 0.86 0.86 0.96 0.31
200 10.0 (0.0) 1.00 1.00 1.00 0.43

Table 6: +e proportions of Pj and Pa in Example 4.

Model Parameter cov (X) Method P1 P2 P3 Pa

(a)

p � 500
n � 100
d � 21
k � 4

􏽐 � I

PC-SIS 1.00 0.95 0.68 0.64
MV-SIS 1.00 0.99 0.86 0.86
MI-SIS2 1.00 0.89 0.74 0.56
MI-SIS 1.00 0.97 0.59 0.58

􏽐 � 0.5|i− j|

PC-SIS 1.00 1.00 0.98 0.98
MV-SIS 1.00 1.00 1.00 1.00
MI-SIS2 1.00 1.00 0.96 0.96
MI-SIS 1.00 1.00 1.00 1.00

(b)

p � 500
n � 100
d � 21
k � 4

􏽐 � I

PC-SIS 0.34 0.57 0.97 0.20
MV-SIS 0.38 0.54 1.00 0.26
MI-SIS2 0.46 0.65 0.98 0.28
MI-SIS 0.98 1.00 0.95 0.92

􏽐 � 0.5|i− j|

PC-SIS 0.84 0.81 0.90 0.56
MV-SIS 0.41 0.46 0.97 0.24
MI-SIS2 0.81 0.83 0.91 0.57
MI-SIS 1.00 1.00 0.90 0.90
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weak signal in the finite sample. Similar to Fan and Lv [1], we
select a cutoff d for MI-SIS. How to choose d is a very
important and tough problem. How to choose d for MI-SIS
more reasonably is a good topic desiring more discussion
and reasonable d plays an important role in feature screening
methods.

+eoretically, we ignore the marginal dependence be-
tween the predictors; marginal dependent problem may be a
trouble during the feature screening procedure. How to deal
with the marginal dependence between the predictors re-
mains a question. Similar to the ISIS, we adopt the idea to
MI-SIS and develop an iterative procedure about MI-SIS.
Due to the defect of nonparametric estimation in small
sample, the iterative MI-SIS performs poorly, so we do not
post the result in this paper. To overcome the marginal
dependence problem, more novel research needs to be
developed.

Appendix

A. Proof of Theoretical Result

In order to prove +eorem 1, we need the three following
lemmas. +e first two lemmas provide us two exponential
inequalities, and their proofs can be found in [25].

Lemma A.1. Let μ � E(Y). If P(a≤Y≤ b) � 1, then

E[exp s(Y − μ)􏼈 􏼉]≤ exp
s
2
(b − a)

2

8
􏼨 􏼩. (A.1)

Lemma A.2. Let h(Y1, . . . , Ym) be a kernel of the U statistics
Un, and θ � E h(Y1, . . . , Ym)􏼈 􏼉. If a≤ h(Y1, . . . , Ym)≤ b,
then, for any t> 0 and n≥m,

P Un − θ≥ t( 􏼁≤ exp
− 2[n/m]t

2

(b − a)
2􏼠 􏼡, (A.2)

where [n/m] denotes the integer part of n/m.

Lemma A.2 is the unilateral tail inequality of Un; we can
easily get the bilateral tail inequality of Un due to its symmetry.

P Un − θ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ t􏼐 􏼑≤ 2 exp
− 2[n/m]t

2

(b − a)
2􏼠 􏼡. (A.3)

Lemma A.3. (the asymptotic property of nonparametric
density estimators). Suppose that f′′(x) exists and
h � cn− (1/5); then

n
2/5 􏽢p(x) − p(x)􏼈 􏼉⟶

L
N

c
2

2
f′′(x)μ2(K),

1
c

f(x)‖K‖
2
2􏼠 􏼡.

(A.4)

From the above equation, μ2(K) � 􏽒 s2K(s)ds and
‖K‖22 � 􏽒 K2(s)ds.

Lemma A.3 directly implies that 􏽢p(x)⟶
p

p(x). Under
some more strict conditions, we have the strong uniform
convergence of 􏽢p(x).

lim
n⟶∞

sup
x

|􏽢p(x) − p(x)| � 0, a.e. (A.5)

Table 7: +e confusion matrix for classification problem in Example 4.

MI-SIS-penalized-logistic model Penalized-logistic model
Y 0 1 0 1
0 39 1 35 4
1 3 83 7 80
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Figure 2: +e top-right and bottom-right figures are estimated coefficient in penalized-logistic models. +e top-left and bottom-left figures
are the CV error during the selection procedure of hyperparameter λ.
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More details about the strong uniform convergence can
be found, for example, in [26] or [27].

Proof of @eorem 1. First, we show for each k that the
following inequality holds:

P 􏽢wk − wk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ cn

− τ
􏽮 􏽯≤O exp − C1n

1− 2τ
􏼐 􏼑􏼐 􏼑. (A.6)

+is is because

􏽢wk − wk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 􏽘

n

i�1
􏽘

n

j�1
􏽢p Xik, Yj􏼐 􏼑log

􏽢p Xik, Yj􏼐 􏼑

􏽢p Xik( 􏼁􏽢p Yj􏼐 􏼑
− 􏽚 p xk, y( 􏼁log

p xk, y( 􏼁

p xk( 􏼁p(y)
dxkdy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� | 􏽘
n

i�1
􏽘

n

j�1

􏽢p Xik, Yj􏼐 􏼑log
􏽢p Xik, Yj􏼐 􏼑

􏽢p Xik( 􏼁􏽢p Yj􏼐 􏼑
−

1
n
2 􏽘

n

i�1
􏽘

n

j�1
log

􏽢p Xik, Yj􏼐 􏼑

􏽢p Xik( 􏼁􏽢p Yj􏼐 􏼑

+
1
n
2 􏽘

n

i�1
􏽘

n

j�1
log

􏽢p Xik, Yj􏼐 􏼑

􏽢p Xik( 􏼁􏽢p Yj􏼐 􏼑
− 􏽚 p xk, y( 􏼁log

p xk, y( 􏼁

p xk( 􏼁p(y)
dxkdy|

� Mk,1 + Mk,2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.

(A.7)

By Lemma A.3 and strong law of large numbers, it shows
the convergence of

Mk,1 � 􏽘
n

i�1
􏽘

n

j�1

􏽢p Xik, Yj􏼐 􏼑log
􏽢p Xik, Yj􏼐 􏼑

􏽢p Xik( 􏼁􏽢p Yj􏼐 􏼑

−
1
n
2 􏽘

n

i�1
􏽘

n

j�1
log

􏽢p Xik, Yj􏼐 􏼑

􏽢p Xik( 􏼁􏽢p Yj􏼐 􏼑
⟶ 0, a.e.

(A.8)

Next, we will establish the bound of the second term.
Define h(Xik, Yj; Xk, Y) � log((􏽢p(Xik, Yj))/(􏽢p(Xik)􏽢p

(Yj))) as the kernel of the U statistics of I∗k,2, where we define
Mk,2 � Ik,2 − wk, and I∗k,2 � Ik,2 − (1/n2)􏽐i�jlog((􏽢p

(Xik, Yi))/(􏽢p(Xik)􏽢p(Yi))). With Markov’s inequality, we
can ensure that

P I
∗
k,2 − Eh> ε􏼐 􏼑≤ exp(− tε)exp

(− tEh)E exp tI
∗
k,2􏼐 􏼑􏽮 􏽯, for any t> 0,

(A.9)

where Eh � 􏽒 log((􏽢p(Xik, Yj))/(􏽢p(Xik)􏽢p(Yj)))p(x, y)

dxdy. As Li et al. (2012) used the technique to deal with the
U statistics in their paper, together with condition (C2), it is
entailed immediately that

P I
∗
k,2 − Eh> ε􏼐 􏼑≤ exp

− tε + t
2

8n
􏼠 􏼡. (A.10)

By choosing t � 4nε, we have P(I∗k,2 − Eh> ε)
≤ exp(− 2nε2); therefore, due to the symmetry of U sta-
tistics, we can obtain the bilateral tail inequality

P I
∗
k,2 − Eh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> ε􏼐 􏼑≤ 2 exp − 2nε2􏼐 􏼑. (A.11)

Using the relationship between I∗k,2 and Ik,2, we can show
that

P Mk,2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 2ε􏼐 􏼑 � P Ik,2 − wk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> 2ε􏼐 􏼑

� P I
∗
k,2 +

1
n
2 􏽘

i�j

log
􏽢p Xik, Yi( 􏼁

􏽢p Xik( 􏼁􏽢p Yi( 􏼁
− wk

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
> 2ε⎛⎝ ⎞⎠.

(A.12)

Under condition (C2), for ε> 0, we can take a large N1;
when n>N1,
(1/n2)􏽐i�jlog((􏽢p(Xik, Yi))/(􏽢p(Xik)􏽢p(Yi)))< (ε/3); we can
easily prove that

P Ik,2 − wk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> 2ε􏼐 􏼑≤P I

∗
k,2 − wk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌>

5
3
ε􏼒 􏼓. (A.13)

Note that

Ik,2 − wk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � Ik,2 − Eh + Eh − wk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (A.14)

Similarly, we can use the above skill and take larger N2;
when n>N2|wk − Eh|< (ε/3), this can directly show that

P I
∗
k,2 − wk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌>

5
3
ε􏼒 􏼓≤P I

∗
k,2 − Eh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌>

4
3
ε􏼒 􏼓. (A.15)

Let ε � cn− τ , where 0< τ < 1/2; from inequality (A.11),
together with property (A.1), and Bonferroni’s inequality, it
is implied that

P 􏽢wk − wk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ cn

− τ
􏽮 􏽯≤ 2 exp − 2c

2
n
1− 2τ

􏼐 􏼑 (A.16)

We thus have

P max
1≤k≤p

􏽢wk − wk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ cn

− τ
􏼨 􏼩≤ 2p exp − 2c

2
n
1− 2τ

􏼐 􏼑

� O p exp − C1n
1− 2τ

􏼐 􏼑􏽨 􏽩􏼐 􏼑.

(A.17)

+en, we proof the second part of +eorem 1.
If D ⊂ 􏽢D

∗, this implies that there must exist some k ∈ D

satisfying the fact that 􏽢wk < cn− τ . Using condition (C3),
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􏽢wk < cn− τ implies that |􏽢wk − wk|> cn− τ for some k ∈ D.
+us, the event D ⊂ 􏽢D

∗
􏽮 􏽯⊆ |􏽢wk − wk|􏼈

> cn− τ , for some k ∈ D}; we take complement on both sides,

and we get max
k∈D

|􏽢wk − wk|≤ cn− τ􏼚 􏼛⊆ D⊆ 􏽢D
∗

􏽮 􏽯. +erefore,

P D⊆ 􏽢D
∗

􏼐 􏼑≥P max
k∈D

􏽢wk − wk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ cn

− τ
􏼚 􏼛

� 1 − P min
k∈D

􏽢wk − wk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ cn

− τ
􏼚 􏼛

� 1 − snP 􏽢wk − wk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ cn

− τ
􏽮 􏽯

≥ 1 − O sn exp − C1n
1− 2τ

􏼐 􏼑􏽨 􏽩􏼐 􏼑.

(A.18)

In the above equation, sn is the cardinality of D. +is is the
end of the proof. □

Data Availability

+e LSVT (Lee Silverman voice treatment) Voice Rehabil-
itation Dataset was adopted to illustrate the proposed MI-
SIS procedure in Section 4. +e dataset is available at UCI
website: http://archive.ics.uci.edu/ml/datasets/LSVT+
Voice+Rehabilitation.
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