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Linear programming is an important approach that is used to represent a large class of combinatorial optimization problems. �e
simplex algorithm is one of the algorithms for solving linear programming problems with exponential time complexity. For-
tunately, this algorithm solves real-world problems with polynomial time complexity. In particular, a new Integer Linear
Programming model (ILPM) is proposed for partially ordered sets. Robert Dilworth’s Decomposition theorem is formulated by
ILPM and proves its correctness using the paradigm of strong duality in linear programming. Finally, ILPM is run on �fteen
benchmark partially ordered sets for �nding their width.�e computational experiments show the validity of the proposedmodel.

1. Introduction

Linear programming is a very rich problem-solving model
which is used to represent a large class of optimization
problems. Optimization problems are de�ned as problems
whose solutions represent maximum values (such as max-
imum pro�t) or minimum values (such as minimum cost).
�ere are various types of optimization problems such as
constraint optimization problems and unconstraint opti-
mization problems. On the other hand, there are many types
according to the nature of the variables of the optimization
problem, such as linear programming, integer linear pro-
gramming, and nonlinear programming. �ere are various
algorithms to solve linear programming problems, the most
famous of which are the simplex algorithm and the interior
point algorithm.�e simplex algorithm is one of the ten best
mathematics algorithms of the twentieth century [1]. By a
common numerical example, Klee andMinty [2] proved that
the simplex algorithm is not a polynomial time algorithm.
Fortunately, this algorithm solves real-world problems of
polynomial time complexity.

Casting optimization problems into a linear program
version is an art. �e tools of this art are represented in the

complete knowledge of the issue of optimization to be
represented by a linear program.�e second of these tools is
the complete knowledge of the general form of the linear
program (objective function–constraints–the right-hand
side of the constraints (constants)–non-negative–etc). �e
third of these tools is the practice of formulating a set of
optimization problems into a linear program version. For
graph labeling problems, Badr et al. [3–5] introduced new
integer linear programming models (ILPMs) to �nd the
upper bounds of the radio number, a radio mean number,
and radio mean square number for a given graph, respec-
tively. �e proposed ILPMs outperformed other algorithms
according to the running time. For the metric dimension of a
given graph, Chartrand et al [6] formulated the optimization
problem of determining the metric dimension of a given
graph (G). For the traveling salesman problem, there are
di�erent mathematical models [7–9] for the traveling
salesman problems.

�e problem of e�cient tasks scheduling is ubiquitous in
many areas of computer science and engineering. We are
often given a collection of tasks to complete, in which some
jobs can be done in parallel, and others must be done in a
prede�ned sequence. In general, we can formulate these
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problems by constructing a poset of objects (representing
tasks) in which some elements are “comparable” (jobs that
must be done in predefined sequence), and others are
“incomparable” (jobs that can be done in parallel). If our
goal is to devise an efficient task scheduling algorithm, we
might be interested in finding the largest subset of tasks that
can be completed in parallel (the maximum antichain
problem). Or we may be interested in the related problem of
distributing all the tasks between the fewest number of
subgroups (e.g., for parallel processing) such that all jobs in a
subgroup must be completed in a predefined sequence (the
minimum chain covering problem).

For more details about the history of the decomposition
of the partially ordered sets posets, the reader can refer to
[10–16]. On the other hand, for more details about how to
formulate a problem as a mathematical model the reader is
referred to [17–19]. Finally, for more details about the well
know optimal PMU placement the reader is referred to
[20–22].

In this paper, a new integer linear programming model
(ILPM) is proposed for posets. Robert Dilworth’s Decom-
position theorem is formulated by ILPM and proves its
correctness using the paradigm of strong duality in linear
programming. Finally, ILPM is run on fifteen benchmark
partially ordered sets for finding their width. %e compu-
tational experiments show the validity of the proposed
model.

%e remaining of this paper is organized as follows: basic
definitions and notations are introduced in Section 2. In
Section 3, Dilworth theorem and its mathematical formu-
lation are proposed. In Section 4, the experimental results
analysis of the proposed ILPM on fifteen benchmark posets
are provided. In Section 5, conclusions are made.

2. Preliminaries

Before presenting Dilworth’s %eorem, we need to have a
notion of comparability between elements in a set. To
formalize this notion, we define some properties of binary
relations to represent a partially ordered set (poset). We then
illustrate how subsets of elements in a poset can have chain
or antichain properties.

2.1. Binary Relations. Elements of a set can have relational
properties such as transitivity or antisymmetry.

Definition 1. A binary relation,≺, on a set P is transitive if
and only if (a ≺ b and b ≺ c) implies a ≺ c for all a, b, c ϵ P

Definition 2. A binary relation ≺ , on a set P is anti-sym-
metric if and only if (a ≠ b and a ≺ b) implies b ≺ a for all a, b
ϵ P.

We use binary relations with these specific properties to
represent a partial order on a set of elements, in which some
pairs of elements are comparable by ai≺aj In context of a
task scheduling problem, this means that job.ai must be
completed before.

Definition 3. A partially-ordered set, or poset, is a set of
elements P, along with a binary relation ≺, having the
property that ≺ is transitive and antisymmetric for all ele-
ments in P.

Note that, two elements ai and aj can also be incom-
parable, that is, when we have both ai ⊀ aj and aj ⊀ ai . In this
case, tasks ai and aj may be completed in parallel.

We also define maximal and minimal elements in a
poset:

An element ai is maximal in a subset S⊆P if it is not
smaller than, any other element in S, i.e. ai ⊀ aj for all aj ∈∈S .
Similarly, an element ai is minimal S if it is not greater than
any other element i.e. aj ⊀ ai for all ai ∈∈S.

Definition 4. A subset of elements � a1, . . . , ak  ⊆ P forms
an antichain if and only if ai ⊀ aj for all i≠ j. %at is all
elements in A are pairwise incomparable.

Definition 5. A subset of elements C � a1, . . . , ak ⊆ Ƥ
forms a chain if and only if they satisfy for all
a1≺a2≺ . . . . . .≺ak for some ordering of elements in C. %at
is all elements in C are pairwise comparable.

For example, in a task scheduling problem, if a subset of
jobs forms an antichain. %en, all these jobs may be com-
pleted in parallel. If a subset of jobs forms a chain, then these
jobs must be completed in the sequence determined by
a1≺a2≺ . . . . . .≺ak. Furthermore, it is useful to describe a
covering of a poset P by chains to be a collection of chains
C1, . . . . . . , Ck  such that every element of Ƥ is contained in
the union of these chains, that is,⋃Ci � P. %is is related to
distributing all tasks on parallel processors C1, C2 . . . . . .  so
that jobs assigned to any processor Ci are to be completed in
a predefined sequence.

3. Dilworth’s Theorem

With these definitions in hand, we can now formulate
Dilworth’s theorem [10] on the size of maximum antichains
and minimum chain coverings in a poset.

Theorem 1 (Dilworth’s %eorem). İe size of the largest
antichain in any poset P is equal to the size of the minimum
coverage of P by chains.

We can construct a proof of Dilworth’s theorem using
the pigeonhole principle and Duality in linear programming.
If we let:

A�max {|A|:A is antichain of Ƥ} (size of largest anti-
chain in P), and B�min k: ∪ C1, . . . . . . , Ck  � P (mini-
mum number of chains needed to cover P), then one way to
prove Dilworth’s theorem is to show A≤B and B≤A.

To prove A≤B, we use the pigeonhole principle.

Lemma 1. 1e size of any chain in a poset P is equal to at
most the minimum number of chains needed to cover P, i.e.
A≤B.

Proof. As above-mentioned, let B be the minimum number
of chains C1, . . . . . . , CB needed to cover P. Assume, for the
sake of contradiction, that an antichain A � a1, a2, . . . an in
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Ƥ has size n>B. %en, by the pigeonhole principle, at least
two distinct elements ai, aj must be members of the same
chain so that, by Definition 5, we have aiaj or aj ai .
However, by Definition 4, this means ai and aj are not in the
same chain, a contradiction. %us, no antichain in P can
have size greater than B, whereby it follows the maximum
size antichain in P is also no larger B. □

3.1. Casting as a Linear Program. To prove B≤A A is more
difficult. We can begin by trying to cast the objective of
finding the maximum size antichain of a poset as a linear
program.

3.1.1. Primal Form. Assign non-negative weights
x
→

� (x1, . . . , xn) respectively to each element a1, . . . . . . a1
ϵP. Each chain Ck ⊂ Ρ will have an associated constrain
inequality over the elements ai ∈ Ck that comprise it.
Consider the following linear program in canonical form:

max z � 
n

i�1
xi,

s.t


i: ai∈Ck

xi ≤ 1 for all chains Ck ⊆Ρ

x1 ≥ 0 for i � 1. . . . . . . n.

. (1)

3.1.2. Dual Form. In addition, we can convert (1) to its dual
form, where variables represent chains on P, and each el-
ement ai ∈ Ρ has an associated constrain inequality over the
collection of chains that contain it (note the symmetry).
Assign non-negative weights.

y
→

� (y1, . . . , yk), respectively, to each chains
C1, . . . Ck ⊆P. %e dual of (1) (henceforth denoted (2)) is

Minimizew � 
k

j�1
yj,

Subject to :


j: ai∈Cj

yj ≥ 1 for all elements ai ∈ P

yj ≥ 0 for j � 1, . . . , k.

(2)

We begin by showing that if the primal (1) and (2) have
integer solutions, then the objective z in (1) gives the size of
the maximum antichain in P, and the objective w in (2) gives
the size of the minimum coverage of P by chains.

Proposition 1. If xiεZ for all weights in x
→, then solving

primal (1) gives the maximum antichain in P.

Proof. In the case that all xi are non-negative integers, we
wish to show that the objective of (1), z � 

n
i�1 xi , is equal to

|Amax|, where Amax is any maximum antichain in P.
Observe that constrains in (1), i: ai∈Ck

xi ≤ 1 for all chains
Ck ⊆P impose the following requirement on the variable xi if
we assume they are all non-negative integers: □

Claim 1. For all chains Ck⊆P, at most one of the weights
associated with elements inCk is equal to 1. All other weights
must be 0.

Proof of Claim 1. For the sake of contradiction, assume that
more than one element in chain C has a positive weight. We
would then have i: aiεCxi > 1 since all xi are non-negative
integers, thereby violating constrains of the linear program.

It follows that xi ∈ 0, 1{ } for all i. Now consider each xi as
an indicator variable for whether element ai appears in an
antichain Amax, i.e. let xi � 1 if aiεAmax and xi � 0
otherwise.

Since at most one indicator variable in any chain is
positive, the solution to (1) satisfies the requirement that no
two elements chosen for the maximum antichain come from
the same chain.

Furthermore, under the indicator variable interpreta-
tion, the objective of maximizing z �  xi corresponds to
choosing the maximum number of elements to include in an
antichain of P, so we have Maxz � |Amax|, as desired. %is
proves Proposition 1 that an integer solution to (1) gives the
size of the maximum antichain in P.

Now, we prove the analogous proposition for the dual
form. □

Proposition 2. If yjεZ for all weights in y
→ then solving dual

(2) gives the size of the minimum covering of P by chains.

Proof. %e reasoning is analogous to that of Proposition 1.
%e constrains, in (2), j: ai∈Cj

yj ≥ 1 for all ele-
mentsai ∈ P, impose the following requirement on variables
yj if we assume they are all non-negative integers: □

Claim 2. For all ai ∈ P, at least one of weights associated
with the set of chains containing ai is positive.

Proof of Claim 2. It follows immediately from the con-
strains. If, for some element ai, none of the weights asso-
ciated with chains that contain ai are positive, then
j: ai∈Cj

yj � 0≯1, thereby violating the constrain of the
linear program.

Furthermore, since the linear program seeks to minimize
 yj with all yj as integers, we must have that yj � 1
whenever yj is chosen positive. %us, with yjε 0, 1{ } for all j,
we can again consider each yj as an indicator variable for
whether chain Cj in a minimum covering of P.

Note again that for each element ai ∈ P, at least one
indicator variable is associated with a chain containing ai

equal 1, so the solution to (2) satisfies the requirement that
all elements aεP appear in the minimum chain covering.

Furthermore, under the indicator variable interpre-
tation, the objective of minimizing w �  yj corre-
sponds to choosing the minimum number of chains
to include in a covering of P, so we have Min w �

min c: C1, . . . , Cc coversP , as desired. %is proves
Proposition 2 that an integer solution to (2) gives the
minimum covering of P by chains.

Now, we need to show that both the primal and dual
linear programs indeed have integer solutions. □
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Lemma 2. For any distribution of chains in a poset, (1) has
an optimal solution where all variables take on integer values.

Proof. Proof is by the Well-ordering Principle and con-
tradiction of an optimal solution to (1) with the fewest
number of noninteger variables (xi weights). Let N be the set
of elements in P corresponding to these noninteger weights.
Some of these elements will be maximal in N, and others will
be minimal (recall definitions in Section 2). We first need to
verify that. □

Claim 3. No elements in N can be both minimal and
maximal.

Proof of Claim 3. Suppose, for the sake of contradiction, that
an element amεN is both minimal and maximal. %en, am is
incomparable to all other elements in N (recall definitions in
Section 2). It follows that is associated weight xm is subject
only to a single constrain that xm ≤ 1 in (1), whereby xm

would be assigned a value of 1 to maximize the objective.
%is contradicts the assumption that xmεN is a not an in-
teger, thus proving the claim.

Since no elements inN are both minimal and maximal, it
follows that each chain C ∈ N has exactly one maximal
element, and a different minimal element.

Suppose we add a small value ∈> 0 to each maximal
element in N, and subtract e from each minimal in N. Since
all elements inN are nonintegers we ensure that the resulting
assignment of variables is feasible by choosing ∈> 0 small
enough so that 0≤xi ≤ 1 is still satisfied by all xi , as required
by the constraints of (1).

If we keep repeating this procedure, then at least one
variable corresponding to a maximal/minimal element in N
will reach a boundary value of 0 or 1. %is contradicts the
assumption that N has the fewest number of noninteger
variables in a feasible solution.%us, all variable assignments
in an optimal solution to (1) must be integers, so Lemma 2
holds for primal (1). Next, we need to show that dual (2) also
has integer solutions. □

Lemma 3. For any distribution of chains in a poset, (2) has
an optimal solution where all variables take on integer values.

Proof. First, we apply the result of strong duality in linear
programming (see [19] for details). Which says that the
primal and dual forms of a linear program have the same
optimal value. We prove using induction that if k ϵ Z is the
optimal value to LP2 on a poset P, then P has a covering by k
chains where all variables y

→ in (2) take on integer values.
Inductive hypothesis: for any poset P having an integer

optimal (2) objective value of k, the optimal solutions to the
LPs associated with strict subsets of P are integers.

Base case. Consider a post P1 in which all elements form
a single, with optimal objective value Min w � k � 1. From
the constraints of (2), this optimal solution will have a single
variable y1 (corresponding to the chain containing all ele-
ments in P1) take on the value of 1, and the other y’s take on

the value of 0. It follows that optimal solutions to each LP
associated with subsets of P1 will also have integer weights.
%us, the inductive hypothesis holds for k � 1.

Now, suppose that an optimal solution for (2) on poset P

has a variable assignment yi � a that is not an integer (note
that the optimal value for this LP must be an integer
Minw � k ∈ Z). We can remove from P all elements in the
chain Ci associated with variable yi to obtain a new poset
P/C � P′ ⊂ P.

Let w′ be the objective function value of LP2′ for this a
new poset P′. We observe that Minw′ is at most k − a

because all elements comprising the chain with weight
yi � a were removed so that w′ ≤w − a � k − a. Since
P′ ⊂ P is a strict subset of P, k − a is an integer by the
inductive hypothesis, so Minw′ � k − 1. Furthermore, the
inductive hypothesis tells us that P′ has a covering by k − 1
chains where all weights assignments to the chains are
integers. It follows that we get a covering of P � P′⋃Ci by
k chains if we simply assign weight of yi � 1 to Ci,
achieving the desired objective the desired value of
Minw � Minw′ + yi � (k + 1) + 1 � k. %is completes the
inductive argument and proof of Lemma 3.

Taking Lemma 2 and 3 in conjunction with Proposition
1 and 2 gives the desired result that, for all partially-ordered
sets P:

Solving (1) gives the size of the largest antichain in P

Solving (2) gives the size of the smallest covering ofP by
chains

Again, by applying the result of strong duality [19] in
linear programming, we conclude that primal (1) and dual
(2) have the same optimal value. %erefore, (1) s solution for
the size of the largest antichain in a poset and (2) solution for
the size of the minimum chain covering of a poset are equal,
proving %eorem 1 (Dilworth’s %eorem). □

3.2. A Polynomial-Size Linear Program. In this section, we
introduce Proposition 3 on which the proposed integer
linear programming model is based.

Proposition 3. An assignment of indicator values {0, 1} to
x
→

� (x1, . . . , xn) produces an antichain if and only if xi +

xj1 for all edges (ai, aj) ∈ E(G).

Proof. First, we show that any antichain in P satisfies the
constraints. An antichain cannot contain any two elements
that are comparable (Definition 4). Note that, any two
comparable elements in P are connected by an edge in G.
%us, we may choose at most one vertex from each edge
(ai, aj) ∈ E(G), meaning that at most one of xi , xj equals 1,
from which it follows that xi + xj ≤ 1 for all edges
(ai, aj) ∈ E(G).

Conversely, we show that any assignment of indicator
variables satisfying the constraints produces a valid
antichain.
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Figure 1: A poset with 6 elements and its width equal to three.
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Figure 2: 15-Benchmark partially ordered sets with their width and jump number.
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If xi + xj ≤ 1 for all edges (ai, aj) ∈ E(G), then most one
indicator variable xi , xj is positive because xi ∈ 0, 1{ }.
Hence, at most one vertex (element in P) on each edge is
chosen to be in the antichain. Since all pairwise comparable
elements in P are connected by edges in our construction of
E(G), it follows that no two elements chosen in the antichain
will be comparable, satisfying Definition 4. %is proves
Proposition 3.6. □

3.2.1. Formulation of the Problem as a Mathematical Model.
For any poset P with element set a1, . . . , an , we can
construct an n × n comparable incidence matrix A, having
entry A(i, j) � 1 if elements ai, aj ∈ Pare comparable and
A(i, j) � 0 otherwise. Now, associated with each element
ai ∈ P an indicator variable xi ∈ 0, 1{ } that corresponds to
using or not using that element in an antichain of P.

Now, we can formulate the problem of the decomposed
poset P as follows:

max z � 
n

i�1
xi,

Subject to: A
∗
x≤ b : x1, x2, . . . , xn ∈ 0, 1{ },

(3)

where A∗ ∈ Rm×n is the m × n matrix which is generated
from the matrix A (based on Proposition 3) such that m is
the number of ones in the matrix A, x ∈ Rn and b ∈ Rm (all
elements in vector b equal to 1).

Example 1. We show how to formulate the problem of
decomposed partially ordered set (as shown in Figure 1) as
an integer linear programming model.

%e n × n comparable incidence matrix A that is cor-
responding to the post P.

A �

0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

%e m × n matrixA∗ ∈ Rm×n is generated frommatrixA:

A
∗

�

1 0 0 0 1 0

1 0 0 0 0 1

0 1 0 1 0 0

0 1 0 0 1 0

0 0 1 1 0 0

0 0 1 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

Each row in the matrix A∗ ∈ Rm×n represents an in-
equality based on Proposition 3.7.

Finally, the complete integer linear programming model
is as the following:

max z � 
6

i�1
xi,

Subject to:

x1 0 0 0 x5 0≤ 1

x1 0 0 0 0 x6 ≤ 1

0 x2 0 x4 0 0≤ 1

0 x2 0 0 x5 0≤ 1

0 0 x3 x4 0 0≤ 1

0 0 x3 0 0 0≤ 1
x1, x2, x3, x4, x5, x6 ∈ 0, 1{ }.

(6)

Table 1: A comparison between the standard width and directed acyclic graph (DAG).

Poset n Standard w(P)
Proposed model MATLAB

w(P) CPU time
P1 4 2 2 0.073318
P2 6 2 2 0.089859
P3 6 2 2 0.101679
P4 6 3 3 0.102334
P5 6 3 3 0.104611
P6 5 3 3 0.108036
P7 7 3 3 0.123854
P8 8 3 3 0.146553
P9 5 3 3 0.166726
P10 8 4 4 0.207229
P11 8 4 4 0.328825
P12 7 4 4 0.471679
P13 7 4 4 0.47268
P14 7 4 4 0.546337
P15 7 4 4 0.649021
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We can use an available software package such as (MAT-
LAB, Python, and LINGO) for solving the above mathematical
model which returns the solution is equal to three.

4. Computational Experiments

In this section, we evaluate the proposed ILPM by fifteen
benchmark posets. %ese posets are characterized by some
characteristics such as (various widths w(P), various sizes

(n), and various heights h(P)) Figure 2 contains fifteen
benchmark posets with their width and jump number.

%e used environment is a 64-bit Windows 8.1 Op-
erating System with Core (TM) i5 CPUM 460 @2.53 GHz,
4.00 GB of memory, and MATLAB v7.01 Software
Package.

From Table 1 and Figure 3, it is obvious that the results of
the proposed mathematical model (ILPM) coincide with the
standard results for all fifteen benchmark posets.
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Figure 3: Shows that the relation between posets and standard width, (DAG).
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It is also evident from Table 1 and Figure 4 that the
execution time of ILPM increases as the width of the poset
increases. %at is, the running time of ILPM is directly
proportional to the width of the post. Fortunately, the be-
havior of the simplex algorithm used to solve ILPM is a
polynomial time to solve real-world applications, regardless
of being exponential time as proven in [2]. For this reason,
we have done our best to create a poset in the form of the
examples provided by Klee and Minty in 1972 in which they
proved that the simplex algorithm is exponential time, but
we have failed to do.

Because the examples presented by Klee and Minty
depend on (right-hand side constants, the coefficients of the
constraint matrix, and the coefficients of the objective
function), rarely, do these problems exist as real-world
problems. We conclude from this that the presented model
will be implemented in a polynomial time. It is well-known
that the complexity of the simplex algorithm is O(n2) for
real-world applications in the average case where n is the
number of elements of a poset.

5. Conclusion

A new integer linear programming model (ILPM) has been
proposed for posets. Robert Dilworth’s Decomposition
theorem is formulated by ILPM and proved its correctness
using the paradigm of strong duality in linear programming.
Finally, ILPM is run on fifteen benchmark partially ordered
sets for finding their width. %e computational experiments
showed the validity of the proposed model. On the other
hand, CPU Time has been calculated for fifteen benchmark
partially ordered sets. From computational experiments, it
was concluded that the CPU time increases as the width
increases. In future work, the proposed ILPM will be
evaluated by using special posets such as interval posets,
lattice, crown posets, and k-tower poset. ILPM will be ap-
plied on the jump-critical ordered sets [23].
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