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In this paper, we study L-congruences and their kernel in a subclassKn,0 of the variety of Ockham algebras A. We prove that the
class of kernel L-ideals of an Ockham algebra forms a complete Heyting algebra. Moreover, for a given kernel L-ideal ξ on A, we
obtain the least and the largest L-congruences on A having ξ as its kernel.

1. Introduction

�e concept of an Ockham algebra was �rst introduced by
Berman [1], in 1977. Next, it has been studied by Urquhart
et al. [2], Goldberg et al. [3, 4], and Blyth and Varlet [5].
Blyth and Silva [5] presented the concept of kernel ideals in
Ockham algebra.Wang et al. [6] presented Congruences and
kernel ideals on a subclass Kn,0 of the variety of Ockham
Algebras (in which h2n � idA). �e varieties of Boolean al-
gebras, De Morgan algebras, Kleene algebras, and Stone
algebras are some of the well-known subvarieties of Ockham
algebra. We see [7] for the basic concepts of the class of
Ockham algebras.

On the other side, for the �rst time, the concept of fuzzy
sets was presented by Zadeh as an extension of the classical
notion of set theory [8]. He de�ned a fuzzy subset of a
nonempty setK as a function fromK to [0, 1]. Goguen in [9]
presented the notion of L-fuzzy subsets by replacing the
interval [0, 1] with a complete lattice L in the de�nition of
fuzzy subsets. Swamy and Swamy [10] studied that complete
lattices that ful�ll the in�nite meet distributive law are the
most appropriate candidates to have the truth values of
general fuzzy statements.

�e study of fuzzy subalgebras of di¢erent algebraic
structures has been begun after Rosenfeld presented his
paper [11] on fuzzy subgroups. �is paper has provided

su¤cient motivation to researchers to study the fuzzy
subalgebras of di¢erent algebraic structures.

Fuzzy congruence relations on algebraic structures are
fuzzy equivalence relations that are compatible (in a fuzzy
sense) with all fundamental operations of the algebra. �e
concept of fuzzy congruence relations was presented in
di¢erent algebraic structure: in semigroups (see [12, 13]), in
groups, semirings, and rings (see [14–19]), in modules and
vector spaces (see [20, 21]), in lattices (see [22, 23]), in
universal algebras (see [24, 25]), and more recently in MS-
algebras and Ockham Algebras (see [26–28]).

Initiated by the above results, we present Kernel L-ideals
and L-Congruence on a subclass FIk(A) of Kn,0 of the
variety of Ockham algebras and study their characteristics.
We prove that the class of kernel L-ideal LIk(A) of
Kn,0-algebraA forms Heyting algebras. Also, we get the least
and the biggest L-congruences, respectively, onKn,0-algebra
A having a given L-ideal as an L-kernel.

2. Preliminaries

�is section contains basic de�nitions and important results
which will be used in the sequel.

De�nition 1. (see [5]). An algebra (A;∧,∨, h, 0, 1) of type
(2, 2, 1, 0, 0) is said to be an Ockham algebra if
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(1) (A,∧,∨, 0, 1) is a bounded distributive lattice
(2) h: A↦A is a dual endomorphism

In this paper, for simplicity, any Ockham algebra
(A;∧,∨, h, 0, 1) is denoted by a pair (A, h). If the dual
endomorphism on A satisfies that h2n � idA, then this
subclass is the Berman subclass Kn,0.

Definition 2 (see [5]). An equivalence relation Ψ on A is a
congruence on (A, h) if it is lattice congruence on A and for
every a, b ∈ A,

(a, b) ∈ Ψ⇒(h(a), h(b)) ∈ Ψ. (1)

Definition 3 (see [7]). An ideal I of (A, h) is said to be a
kernel ideal if there is a congruence Ψ on A such that

I � Ψ(0) � a ∈ A: (a, 0) ∈ Ψ{ }. (2)

Definition 4 (see [29]). A Heyting algebra is an algebra
(K,∨,∧,⟶ , 0, 1) of type (2, 2, 2, 0, 0) where (K,∨,∧, 0, 1)

is a bounded distributive lattice and ⟶ is a binary op-
eration on K such that for every a, b ∈ K,
c≤ a⟶ b⇔c∧a≤ b.

Lemma 1 (see [6]). Let (A, h) ∈Kn,0 and a, b ∈ A. If a∨ �

∨
k�0

n−1
h2k(a) and a∧ � ∧

k�0

n−1
h2k+1(a), then

(1) a≤ b⇒a∨ ≤ b∨

(2) a≤ b⇒a∧ ≤ b∧

(3) h(a∨) � b∧

(4) h(a∧) � a∨

(5) a∨∨ � a∧∧ � a∨

(6) a∨∧ � a∧∨ � a∧

(7) (a∨b)∨ � a∨∨b∨

(8) (a∨b)∧ � a∧∧b∧

(9) (a∧b∧)∧ � a∧∨b∨

(10) (a∧b∧)∨ � a∨∧b∧

)roughout this article, L is a none trivial complete
lattice satisfying infinite meet distributive law:
a∧∧K � ∨ a∧x: x ∈{ }, ∀a ∈ A, and K⊆L. An L-fuzzy subset λ
of a nonempty K is a mapping from K into L.

In this work, for simplicity, we say L-subsets instead of
L-fuzzy subsets and write ζ ∈ LK to say that ζ is an L-subset
of K.

)e union and intersection of any class λi i∈Δ of
L-subsets of K, respectively, represented by ∪

i∈Δ
λi and ∩

i∈Δ
λi,

are defined as follows:

∪
i∈Δ

λi (a) � ∨
i∈Δ

λi(a) and ∩
i∈Δ

λi (a) � ∧
i∈Δ

λi(a), (3)

for all a ∈ A, respectively.

Definition 5 (see [9]). For every λ and σ in LK, define a
binary relation“⊆” on LK by

λ⊆σ⇔λ(a)≤ σ(a), ∀a ∈ K. (4)

It can be easily proved that ″⊆″ is a partial ordering on
the set LK of L-subsets of K and the poset (LK,⊆) forms a
complete lattice in which for any λi i∈Δ⊆LK,

∨
i∈Δ

λi � ∪
i∈Δ

λi and ∧
i∈Δ

λi � ∩
i∈Δ

λi. (5)

)e partial ordering ″⊆” is called the point wise
ordering.

For λ ∈ LK and α ∈ L, the set

λα � x ∈ K: λ(a)≥ α{ }, (6)

is called the α-level subset of λ and for each a ∈ K, we have

λ(a) � ∨ α ∈ L: a ∈ λα . (7)

For any α ∈ L, we write α to denote the constant L-subset
of K which maps every element of K onto α{ }.

Definition 6 (see [11]). Suppose h is a function from T into
R, and suppose λ is an L-subset ofT and σ is an L-subset ofR.
)en, the image of λ under h, h(λ), is an L-subset of R

defined as for each b ∈ R,

h(λ)(b) �
sup λ(a): a ∈ h

− 1
(b) , if h

− 1
(b)≠∅,

0, otherwise.

⎧⎨

⎩ (8)

)e preimage of σ under h, h− 1(σ), is an L-subset of T

and h− 1(σ)(a) � σ(h(a)) for each a ∈ T.

Definition 7 (see [22]). An L-fuzzy subset ξ of a lattice K is
called an L-fuzzy ideals of K if ξ(0) � 1, ξ(x∨b)≥ ξ(x)∧ξ(b),
and ξ(x∧b)≥ ξ(x)∨ξ(b).

An L-fuzzy subset ξ of a lattice K is called an L-fuzzy
filters of K, if ξ(1) � 1, ξ(x∧b)≥ ξ(x)∨ξ(b), and
ξ(x∨b)≥ ξ(x)∧ξ(b), for each x, y ∈ K.

It was also proved in [22] that an L-subset ξ of a lattice K

with 0 is called an L-ideal of K if ξ(0) � 1 and ξ(x∨y) �

ξ(x)∧ξ(y) for each x, y ∈ K. Dually, an L-subset ξ of a
lattice K with 1 is called an L-filter of K if ξ(1) � 1 and
ξ(x∧y) � ξ(x)∧ξ(y), for each x, y ∈ K.

An L-ideal (respectively, L-filter) λ of K is called proper
if it is not a constant map 1.

Definition 8 (see [28]). An L-subset λ of K is said to be an
L-down set (respectively, L-up set) if a≤ b, then λ(a)≥ λ(b)

(respectively, λ(a)≤ λ(b)) for every a, b ∈ K.

Lemma 2 (see [28]). Let λ be an L-subset of K. 3en, the
L-subset λ↓ of K defined by
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λ↓(a) � ∨ λ(b): a≤ b{ } for every a ∈ K, (9)

is the least L-down set containing λ.

Dually, we have the next result.

Lemma 3 (see [28]). Let λ be an L-subset of A. 3en, the
L-fuzzy subset λ↑ of A defined by

λ↑(a) � ∨ λ(b): b≤ a{ } for each a ∈ A, (10)

is the least L-up set including λ.

In what follows, for an Ockham algebra A, we shall
denote byLIK(A) the set of all kernel L-ideals of A and by
LI(A) the lattice of L-ideals of A in which the lattice
operations ∧ and ∨ are given by

λ∧σ � λ∩ σ; (λ∨σ)(a) � ∨ μ(x)∧σ(y): a � x∨y , for all a ∈ A. (11)

By an L-binary relation on a nonempty set K, we mean
an L-subset of K × K. For an L-binary relation Ψ on K and
each α ∈ L, the set

Ψα � (a, b) ∈ K × K: Ψ(a, b)≥ α{ }, (12)

is called the α−level binary relation of Ψ on K.

Definition 9 (see [30]). An L-relationΨ on a nonempty setK

is said to be

(1) Reflexive if Ψ(a, a) � 1, for all a ∈ k

(2) Symmetric if Ψ(a, b) � Ψ(b, a), for each a, b ∈ X

(3) Transitive if for each a, b ∈ K:
Ψ(a, b)≥ Ψ(a, c)∧Ψ(c, b) for all c ∈ K

An L-equivalence relation on K is a reflexive, symmetric,
and transitive L-relation on K.

Definition 10 (see [28]). Ψ is an L-equivalence relation on
(A, h) and is called an L-congruence relation on (A, h) if it
compatible with ∧,∨ and a unary operation h.

For any a ∈ L and Ψ is L-congruence relation, L-subset
Ψt of (A, h) is defined as follows:

Ψt(a) � Ψ(t, a), for each a ∈ A. (13)

We call Ψt an L-congruence class of Ψ determined by t,
and in particular, Ψ0 is called the kernel of Ψ and Ψ1 is called
the cokernel of Ψ. One can easily observe that the kernel Ψ0 of
Ψ is an L-ideal ofA and the cokernelΨ1 ofΨ is an L-filter ofA.

Put A/Ψ � Ψ(a): a ∈ A{ } and ∧,∨ are binary operations
and h is a unary operation on A/Ψ expressed as follows:

Ψ(a)∧Ψ(b) � Ψ(a∧b),Ψ(a)∨Ψ(b) � Ψ(a∨b) and h(Ψ(a))

� Ψ(h(a)).
(14)

After routine work, it can be proved that
(A/Ψ,∧,∨, h,Ψ(0),Ψ(1)) is an Ockham algebra and it is
said to be the quotient Ockham algebra of A modulo Ψ.

Definition 11 (see [28]). An L-ideal λ of (A, h) is called a
kernel L-ideal if λ � Ψ0 for some L-congruence Ψ of A.

Lemma 4 (see [28]).An L-ideal λ of (A, h) is a kernel L-ideal
if and only if it holds the following conditions:

(1) h2(λ)⊆λ
(2) (h(λ))↑(s)∧λ(a∧s)≤ λ(a), for each a, s ∈ A

Lemma 5 (see [28]). İe intersection of a class of kernel
L-ideals of (A, h) is a kernel L-ideal.

3. Kernel L-Ideals in a Subclass of
Ockham Algebra

In the present topic, we present the structure of the set of
kernels L-ideals in a subclassKn,0 of the class O of Ockham
algebra.

Lemma 6 Let (A, h) ∈Kn,0. 3en, any kernel L-ideal of A is
determined by an L-filter of A.

Proof. Suppose that λ be a kernel L-ideal of A. )is implies
that there exists an L-congruence Ψ on A such that
λ � kerΨ. Put c � cokerΨ � Ψ1, which is an L-filter of A.

Consider an L-subset of A defined as follows:

c0(a) �∨ c(x): a≤ ∨
k�0

n−1
h
2k+1

(x),x ∈A , foralla ∈A. (15)

To determine λ by the L-filter c of A, we want to show
that λ � c0. Now, for any a ∈ A,

λ(a) � kerΨ(a) � Ψ(a, 0)≤Ψ(h(a), 1) � c(h(a)). (16)

Since a≤ ∨
k�0

n−1
h2k(a) � ∨

k�0

n−1
h2k+2(a) � ∨

k�0

n−1
h2k+1(h(a)).

Now, we get that

λ(a) � c(h(a)) ≤∨ c(h(a)): a≤ ∨
k�0

n−1
h
2k+1

(h(a))  � c0(a). (17)

)erefore, λ⊆c0.

Journal of Mathematics 3



Also for every a ∈ A, c0(a) � ∨ c(x): a≤ ∨
k�0

n−1
h
2k+1

(x), x ∈ A 

� ∨ Ψ(a, 1): a≤ ∨
k�0

n−1
h
2k+1

(x), x ∈ A 

≤∨ Ψ ∨
k�0

n−1
h
2k+1

(x), 0 : x≤ ∨
k�0

n−1
h
2k+1

(x), x ∈ A 

≤Ψ a∧ ∨
k�0

n−1
h
2k+1

(x), a∧0 

� Ψ(a, 0)

� λ(a).

(18)

)at is, c0⊆λ and hence c0 � λ. )us, the result
holds. □

Next, we see an equivalent characterization of an L-fuzzy
ideal of a Kn,0-algebra to get a kernel L-ideal.

Lemma 7. Let (A, h) ∈Kn,0. 3en, an L-ideal λ of (A, h) is a
kernel L-ideal if and only if the following conditions are
satisfied:

(1) λ(h2(a))≥ λ(a), for each a ∈ A

(2) λ(x)∧λ(a∧ ∧
k�0

n−1
h2k+1(x))≤ λ(a), for each a, x ∈ A

Proof. Assume that λ is a kernel L-ideal of A. Let a ∈ A.
)en, by Lemma 4 (1), we have
λ(a)≤ h2(λ)(h2(a))≤ λ(h2(a)). Hence, (1) holds.

For each x, a ∈ A,

λ(x)∧λ a∧ ∧
k�0

n−1
h
2k+1

(x) ≤ λ ∨
k�0

n−1
h
2k

(x) ∧λ a∧ ∧
k�0

n−1
h
2k+1

(x) 

≤ h(λ) ∧
k�0

n−1
h
2k+1

(x) ∧λ a∧ ∧
k�0

n−1
h
2k+1

(x) 

≤ [h(λ)) ∧
k�0

n−1
h
2k+1

(x) ∧λ a∧ ∧
k�0

n−1
h
2k+1

(x) 

≤ λ(a)(byLemma 2.15 (2)).

(19)

)us, (2) is proved. Conversely, suppose that the given
conditions hold. Let a ∈ A,

h
2
(λ)(a) � ∨ λ(x): a � h

2
(x) 

≤∨ λ h
2
(x) : a � h

2
(x) 

� λ(a).

(20)

Hence, h2(λ)⊆λ. Again for every a, b ∈ A,

(h(λ))
↑
(b)∧λ(a∧b) � ∨ h(λ)(x): x≤ b{ }∧λ(a∧b)

� ∨ ∨ λ(y): h(y) � x : x≤ b ∧λ(a∧b)

≤∨ λ(y): h(y)≤ b ∧λ(a∧b)

� ∨ λ(y)∧λ(a∧b): h(y)≤ b 

≤∨ λ(y)∧λ(a∧h(y)): h(y)≤ b 

≤∨ λ(y)∧λ a∧ ∧
k�0

n−1
h
2k+1

(y)  : h(y)≤ b 

≤ λ(a)(by(2)).

(21)

)en, it follows from Lemma 4 that λ is a kernel
L-ideal. □

In the following result, we characterized the least kernel
L-ideal of (A, h).

Theorem 1. Let (A, h) ∈Kn,0 and λ be an L-ideal of A. Let
λ° be an L-subset of A defined by

λ°(a) � ∨ λ(x): a∧x∧ ≤x
∨∧x∧ , forall a ∈ A, (22)

where x∨ and x∧ are as stated in Lemma 1.3en, λ° is the least
kernel L-ideal of A containing λ.

Proof. First we prove that λ° is an L-ideal of A.

λ°(0) � ∨ λ(x): 0∧x∧ ≤x
∨∧x∧ 

� ∨ λ(x): 0≤x
∨∧x∧ 

≥ λ(0) � 1. as 0≤ 0∨∧0∧( .

(23)
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Hence, λ°(0) � 1.
Now, for each a, b ∈ A,

λ°(a)∧λ°(b) � ∨ λ(x): a∧x∧ ≤x
∨∧x∧ ∧∨ λ(y): b∧y∧ ≤y

∨∧y∧ 

� ∨ λ(x)∧λ(y): a∧x∧ ≤x
∨∧x∧, b∧y∧ ≤y

∨∧y∧ 

≤∨ λ(x∨y): (a∨b)∧(x∨y)
∧ ≤ (x∨y)

∨∧(x∨y)
∧

 

� λ°(a∨b).

(24)

)is implies that λ°(a)∧λ°(b)≤ λ°(a∨b) for each
a, b ∈ A.

On the other side,

λ°(a∨b) � ∨ λ(x): (a∨b)∧x∧ ≤x
∨∧x∧ 

≤∨ λ(x): a∧x∧ ≤ x
∨∧x∧ 

� λ°(a).

(25)

With similarly approach, we can prove that
λ°(a∨b)≤ λ°(b) and so λ°(a∨b)≤ λ°(a)∧λ°(b). )erefore,
λ°(a∨b) � λ°(a)∧λ°(b) and thus λ° is an L-ideal of A.

Next, we prove that λ° is a kernel L-fuzzy ideal of A.

λ°(a) � ∨ λ(x): a∧x∧ ≤x
∨∧x∧ 

≤∨ λ h
2
(x) : h

2
a∧x∧( ≤ h

2
x
∨∧x∧(  

� ∨ λ h
2
(x) : h

2
(a)∧h2

x
∧

( ≤ h
2

x
∨

( ∧h2
x
∧

(  

∨ λ h
2
(x) : h

2
(a)∧x∧ ≤x

∨∧x∧ 

� λ° h
2
(a) .

(26)

)us, λ°(a)≤ λ°(h2(a)), for each a ∈ A, and the property
(1) of Lemma 7 holds.

To see the property (2) of Lemma 7 holds, let a, s ∈ A.

)en,

λ°(s)∧λ° a∧ ∧
k�0



n−1

h
2k+1

(t)⎛⎝ ⎞⎠ � λ°(s)∧λ° a∧s∧( 

� ∨ λ(x): s∧x∧ ≤ x
∨∧x∧ ∧

∨ λ(y): a∧s∧( ∧y∧ ≤y
∨∧y∧ 

� ∨ λ(x)∧λ(y): s∧x∧ ≤ x
∨∧x∧, a∧s∧( ∧y∧ ≤y

∨∧y∧ 

≤∨ λ(x∨y): a∧(x∨y)
∧ ≤ (x∨y)

∧∧(x∨y)
∨

 

≤ λ°(y).

(27)

Hence, by Lemma 7, λ° is a kernel L-ideal of A. Suppose λ
is a kernel ideal of A such that λ⊆c.

)is implies there exists an L-congruence Ψ on A such
that c � kerΨ. Let x ∈ A. As a∧a∧ ≤ a∨∧a∧, we clearly get

λ°(a) � ∨ λ(x): a∧x∧ ≤x
∨∧x∧, ≥ λ(a). (28)

And hence λ⊆λ°. Again for each a ∈ A,

λ°(a) � ∨ λ(x): a∧x∧ ≤x
∨∧x∧ 

≤∨ c(x): a∧x∧ ≤ x
∨∧x∧ 

� ∨ Θ(x, 0): a∧x∧ ≤x
∨∧x∧ 

≤∨ Ψ h
2k+1

(x), 1 : a∧x∧ ≤x
∨∧x∧ 

≤∨ Ψ ∧
k�0

n−1
h
2k+1

(x), 1 : a∧x∧ ≤x
∨∧x∧ 

� ∨ Ψ x
∧
, 1( : a∧x∧ ≤x

∨∧x∧ 

≤Ψ a
∧
, 1( .

(29)

Similarly, we can show that
λ°(a)≤∨ Θ(x∨, 0): a∧x∧ ≤x∨∧x∧{ }.

)is implies that

λ°(a)≤∨ Ψ x
∧
, 1( : a∧x∧ ≤x

∨∧x∧ ∧∨ Ψ x
∨
, 0( : a∧x∧ ≤x

∨∧x∧ 

� ∨ Ψ x
∧
, 1( ∧Ψ x

∨
, 0( : a∧x∧ ≤x

∨∧x∧ 

� ∨ Ψ a∧x∧, a( ∧Ψ x
∨∧x∧, 0( : a∧x∧ ≤x

∨∧x∧ 

≤ Ψ x
∨∧x∧, a( ∧Ψ x

∨∧x∧, 0( 

≤Ψ(a, 0) � c(a).

(30)

And so λ°⊆c.)erefore, from these observations, λ° is the
least kernel L-ideal of A including λ. □

)e following corollaries follows )eorem 1.

Corollary 1. Suppose (A, h) ∈Kn,0 and λ is an L-ideal of A.
3en, λ is a kernel L-ideal if and only if λ � λ°.

Corollary 2. If (A, h) ∈Kn,0, then the following properties
hold, for all λ, c ∈LI(A):

(1) λ⊆c⇒λ°⊆c°

(2) λ⊆λ° � λ°°

(3) λ°∨c°⊆(λ∨c)°
(4) (λ∩ c)°⊆λ° ∩ c°
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Given a Kn,0- algebra A and L-ideals λ, c of A, we shall
define

λ°⊓c° � (λ∩ c)° and λ°⊔c° � (λ∨c)°. (31)

Suppose that λ and c kernel L-ideals of A, then
λ⊓c � λ∩ c. Indeed, since λ and c are kernel L-ideals of A,
we have λ � λ° and c � ]°, and λ∩ c is also a kernel L-ideal.
)us,

λ⊓c � λ°⊓c° � (λ∩ c)° � λ∩ c. (32)

)en, we have the following.

Theorem 2. Let (A, h) ∈Kn,0 and LIk(A) denote the set
of all kernel L-ideals. 3en, (LIk(A),⊓,⊔) is a complete
bounded distributive lattice.

Proof. Suppose that λ, c ∈LIk(L). )en, λ⊓c � λ∩ c is a
kernel L-ideal and the infimum of λ and c. It follows by
)eorem 1 that λ⊔c � λ°⊔c° � (λ∨c)° is a kernel L-ideal and
λ, c⊆λ∨c⊆(λ∨c)°. Suppose that ξ is a kernel L-ideal of A such
that ξ is an upper bounded of λ and c, then λ∨c⊆ξ and there
follows (λ∨c)°⊆ξ° � ξ. Hence, (λ∨c)° is the supremum of
both λ and c inLIK(A). )us, (FIK(A),⊓, ∩ ) is a lattice.
Obviously, χ 0{ } and χL are the least and biggest kernel L-ideals
in LIk(A), respectively. )is implies that LIk(A) is
bounded.)e completeness is clear since the intersection of a
family of kernel L-ideals is also a kernel L-ideal of A (Lemma
4). As far as the distributivity, let λ, c, ξ ∈LIk(A). Since

λ⊓(c⊔ξ) � λ°⊓ c°⊔ξ°( 

� λ°⊓(c∨ξ)°
� [λ∩ (c∨ξ)]°
� [(λ∩ ξ)∨(c∨λ)]°
� (λ∩ ξ)°∨(c∧ξ)°
� λ°⊓ξ°( ∨(c∧ξ)°
� (ξ ∩ ξ)°⊔ c°⊓ξ°( 

� (λ⊓ξ)⊔(c⊓ξ).

(33)

It follows that LIk(A) is a distributive lattice. □

In order to further characterize the structure of the
lattice of kernel L-ideals of a Kn,0-algebra, we require the
following:

Theorem 3. Let (A, h) ∈Kn,0. 3en, (LIk(A),⊓,⊔, ∗ ) is
a Heyting algebra in which for λ, c ∈LIk(A), the relative
pseudocomplement of λ and c is defined as for every a ∈ A,

(λ∗ c)(a) � ∨ ξ a
∨

( : ξ ∈LI(A), ξ°⊓λ⊆c . (34)

Proof. Since c°⊓λ⊆c and

c 0∨(  � c ∨
k�0

n−1
h
2k

(0)  � ∧
k�0

n−1
c h

2k
(0) ≥ c(0) � 1, (35)

we have (λ∗ c)(0)≥ c(0∨) � 1.

(λ∗ c)(a) � ∨ ξ a
∨

( : ξ ∈FI(A), ξ°⊓λ⊆c 

≤∨ ξ (a∨b)
∨

( : ξ ∈ FI(A)ξ°⊓λ⊆c 

� (λ∗ c)(a∨b).

(36)

Similarly, we can prove that (λ∗ c)(b)≤ (λ∗ c)(a∨b)

and hence

(λ∗ c)(a)∨(λ∗ c)(b)≤ (λ∗ c)(a∨b). (37)

On the other side, for each a, b ∈ A,

(λ∗ c)(a)∧(λ∗ c)(b) � ∨ ξ a
∨

( : ξ ∈FI(A), ξ°⊓λ⊆c ∧

∨ σ y
∨

( : σ ∈FI(A), σ°⊓λ⊆c 

� ∨ ξ a
∨

( ∧σ b
∨

( : ξ°⊓λ⊆c, σ°⊓λ⊆c 

≤∨ (ξ⊔σ) a
∨

( ∧(ξ⊔σ) b
∨

( : (ξ⊔σ)°⊓λ⊆c 

≤∨ (ξ⊔σ)(a∨b)
∨
: (ξ⊔σ)°⊓λ⊆c 

� (λ∗ c)(a∨b).

(38)

)us, (λ∗ c)(a∨b) � (λ∗ c)(a)∧(λ∗ c)(b), for each
a, b ∈ A, and hence λ∗ c is an L-ideal of A.

Next, we show that λ∗ c is a kernel L-ideal of A.

(λ∗ c)(a) � ∨ ξ a
∨

( : ξ ∈ FI(A), ξ°⊓λ⊆c 

� ∨ c f
2

a
∨

(  : c ∈ FI(A), c°⊓λ⊆c 

� (λ∗ c)f
2

a
∨

( .

(39)

Also, for any a, s ∈ A,

(λ∗ c)(s)∧(λ∗ c) a∧t∧(  � ∨ ξ s
∨

( : ξ ∈ FI(A), ξ°⊓λ⊆c ∧

∨ δ a∧s∧( 
∨

 : δ ∈ FI(A), δ°⊓λ⊆c 

� ∨ ξ s
∨

( ∧δ a
∨∧s∧( : ξ°⊓λ⊆c, δ°⊓λ⊆c 

≤∨ (ξ∨δ) s
∨

( ∧(ξ∨δ) a
∨∧s∧( : ξ°⊓λ⊆c, δ°⊓λ⊆c 

≤∨ (ξ∨δ) s
∨∨ a
∨∧s∧( ( : (ξ∨δ)°⊓λ⊆c 

≤∨ (ξ∨δ) a
∨

( : (ξ∨δ)°⊓λ⊆c 

≤ (λ∗ c)(a).

(40)
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Hence, by Lemma 4, λ∗ c is kernel L-ideals of A.
Next, we prove that μ∗ λ is the biggest kernel L-ideals of

A such that λ⊓λ∗ c⊆ξ. Suppose that σ ∈LIK(A) such that
λ⊓σ⊆ξ. Now, since for each a ∈ A,

σ(a)≤ σ a
∨

(  and σ°⊓λ � σ°⊓λ° � (σ ∩ λ)° � σ⊓λ⊆c. (41)

We have clearly

(λ∗ c)(a) � ∨ ξ a
∨

( : ξ ∈LI(A), ξ°⊓λ⊆c ≥ σ a
∨

( ≥ σ(a). (42)

And hence σ⊆λ∗ c. )erefore, λ∗ c is the pseudo-
complement of λ relative to c. □

Theorem 4. Let (A, h) ∈Kn,0 and λ be a proper kernel
L-ideal of A and L � [0, 1]. 3en, λ is the intersection of a
family of prime kernel L-ideals including it.

Proof. Assume that λ is a proper L-ideal of A. )en, there
exists x ∈ A such that λ(x)≠ 1. Put λ(x) � α and consider
the set

Δ � σ ∈LIK(A): σ⊆λ and σ(x)≤ α . (43)

Clearly, λ ∈ Δ and soΔ is nonempty and hence it forms a
poset under the point wise ordering “⊆”. By using Zorn’s
lemma, we can choose a maximal element, say ξ in Δ; we
prove that ξ is a prime kernel L-ideal. Let c and σ be L-ideals
of A such that c∩ σ⊆ξ. Suppose on contrary that c⊈ξ and
σ⊈ξ. )en,

ξ ⊂ ξ∨c⊆(ξ∨c)° and ξ ⊂ ξ∨σ⊆(σ∨ξ)°. (44)

By the maximality of ξ in Δ, it follows that (c∨ξ)° ∉ Δ
and (σ∨ξ)° ∉ Δ. So that (]∨ξ)°(a)≰α and (σ∨ξ)°(a)≰α.

Now,

(ξ∨c)°⊓(ξ∨σ)° � ((ξ∨c)∩ (ξ∨σ))°
� (ξ∨(c∩ σ))°
⊆ξ° � ξ,

(45)

which is a contradiction.
Let ξi i∈Δ be the set of prime kernel L-ideals that contain

λ. )en, λ⊆∩ i∈Δξi. Suppose that ∩ i∈Δξi⊈λ. )en, there is
x ∈ A such that (∩ i∈Δξi)(x)≰λ(x). )is implies that
λ(x)≠ 1 and hence λ is proper. )us, from the above, there
exists a prime kernel L-ideal ξ which contains λ and ξ ≤ α �

λ(x) and hence (∩ i∈Δξi)(x)≤ ξ(x)≤ α � λ(x), which is a
contradictions. Hence, ∩

i∈Δ
ξi⊆λ and so λ � ∩ i∈Δξi. □

4. L-Congruences of a Kn,0-Algebra

In this topic, we characterize an interesting property of the
least L-congruence on theKn,0-algebraA such that the given
kernel L-ideal ξ of A as its L-congruence class.

Let ξ be a kernel L-ideal of (A, h). As shown in [28], the
smallest L-congruence ΩL(ξ) on A with kernel ξ which is
given by: for x, y ∈ A,

ΩL(ξ)(x, y) � ∨ ξ(a)∧[h(ξ))(b): (x∨a)∧b � (y∨a)∧b .

(46)

Theorem 5. If (L, h) ∈Kn,0 and ξ, λ ∈LIK(A), then

ΩL(ξ⊔λ) � ΩL(ξ)∨ΩL(λ). (47)

Proof. Let ξ, λ ∈LIk(A). It is easily proved that

ξ⊆λ⇔ΩL(ξ)⊆ΩL(λ). (48)

)en, we have ΩL(ξ)∨ΩL(λ)≤ΩL((ξ∨λ)0) � ΩL(ξ⊔λ).
On the other side, let x, y ∈ A. )en, by (46), we have

ΩL(ξ⊔λ)(x, y) � ∨ (μ⊔λ)(r)∧[h(ξ⊔λ))(t): (x∨r)∧t

� (y∨r)∧t.
(49)

Consider the following equation:

(ξ⊔λ)(r) � (ξ∨λ)
0
(r)

� ∨ (ξ∨λ)(a): r∧a∧ ≤ a
∧∧a∨ 

� ∨ (ξ∨λ)(a): r∨a∨( ∧a∧ � a
∧∧a∨ 

� ∨ ∨ ξ r1( ∧λ t1( : a � r1∨t1: r∨a∨( ∧a∧ � a
∧∧a∨ .

(50)

[h(ξ⊔λ))(t) � ∨ (ξ∨λ)
0
(b): h(b)≤ t 

� ∨ ∨ (ξ∨λ)(c): b∧c∧ ≤ c
∧∧c∨ : h(b)≤ t 

� ∨ ∨ (ξ∨λ)(c): b∨c∨( ∧c∧ � c
∧∧c∨ : h(b)≤ t 

� ∨ ∨ ∨ ξ r2( ∧λ t2( : c � r2∨t2 : b∨c∨( ∧c∧ � c
∧∧c∨: h(b)≤ t 

� ∨ ξ r2( ∧λ t2( : c � r2∨t2, b∨c∨( ∧c∧ � c
∧∧c∨, h(b)≤ t 

� ∨ ξ r2( ∧λ t2( : b∨r∨2∨t
∨
2( ∧r∧2∧t

∧
2 � r

∨
2∨t
∨
2( ∧r∧2∧t

∧
2 , h(b) ≤ t 

≤∨ ξ r2( ∧λ t2( : h(b)∧r∧2∧t
∧
2( ∨r∨2∨t

∨
2 � r

∧
2∧t
∧
2( ∨r∨2∨t

∨
2 , h(b) ≤ t .

(51)
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By (49) and (50), we have

ΩL(ξ⊔λ)(x, y)≤∨ (ξ⊔λ)(r): (x∨r)∧t � (y∨r)∧t 

� ∨ ξ r1( ∧λ t1( : r∨r∨1∨t
∨
1( ∧r∧1∧t

∨
1

� r
∨
1∨t
∨
1( ∧r∧1∧t

∨
1(x∨r)∧t � (y∨r)∧t,.

(52)

From (51), we have

ξ r1( ≤ΩL(ξ) 0, r1( 

≤ΩL(ξ) 0, r
∨
1( ∧ΩL(ξ) 1, r

∧
1( 

≤ΩL(ξ) r, r∨r∨1( ∧ΩL(ξ) r∨r∨1∨t
∨
1 , r∨r∨1∨t

∨
1( ∧r∧1( ,

(53)

ΩL(ξ) 1, r
∧
1(  � ΩL(ξ) 1, r

∧
1( ∧ΩL(ξ) r

∨
1∨t
∨
1 , r
∨
1∨t
∨
1( 

≤ΩL(ξ) r
∨
1∨t
∨
1 , r
∨
1∨t
∨
1( ∧r∨1( .

(54)

Also, from (51), we have

λ t1( ≤ΩL(λ) 0, t1( 

≤ΩL(λ) 0, t
∨
1( ∧ΩL(λ) 1, t

∧
1( 

� ΩL(λ) 0, t
∨
1( ∧ΩL(λ) r∨r∨1 , r∨r∨1( ∧ΩL(λ) 1, t

∧
1( ∧

ΩL(λ) r∨r∨1∨t
∨
1( ∧r∧1 , r∨r∨1∨t

∨
1( ∧r∧1( 

≤ΩL(λ) r∨r∨1 , r∨r∨1∨t
∨
1( ∧ΩL(λ) 1, t

∧
1( ∧

ΩL(λ) r∨r∨1∨t
∧
1( ∧r∧1 , r∨r∨1∨t

∨
1( ∧r∧1∧t

∧
1( ,

(55)

ΩL(λ) t
∧
1 , 1(  � ΩL(λ) t

∧
1 , 1( ∧ΩL(λ) r

∨
1∨t
∨
1 , r
∨
1∨t
∨
1( 

≤ΩL(λ) r
∨
1∨t
∨
1( ∧r∧1 , r

∨
1∨t
∨
1( ∧r∧1( 

≤ΩL(λ) r
∨
1∨t
∨
1( ∧r∧1∧t

∧
1 , r
∨
1∨t
∨
1( ∧r∧1( .

(56)

From (52), (53), (54), (55), and (56), we have

ΩL(ξ⊔λ)(x, y)≤∨ ΩL(ξ)∨ΩL(λ)( (r, 0) . (57)

Similarly,

ΩL(ξ⊔λ)(x, y)≤∨ ΩL(ξ)∨ΩL(λ)( (t, 1) . (58)

From (57) and (58), we get

ΩL(ξ⊔λ)(x, y)≤ ΩL(ξ)∨ΩL(λ)( (x, y). (59)

Hence, ΩL(ξ⊔λ) � ΩL(ξ)∨ΩL(λ). □

We now give a description on the biggest L-congruence
on aKn,0-algebraA such that the given kernel L-ideal ofA as
its L-congruence class.

Theorem 6. Let (A, h) ∈Kn,0 and ξ be a kernel L-ideal of A.
A binary relation δ(ξ) on A is defined as follows: δ(ξ)(a, b) �

∨ ξ(hK(a)∧x)∧ξ(hK(b)∧x)  for all x ∈ A and
(k � 0, 1, 2, 2n − 1). 3en, δ(ξ) is the biggest congruence on A

with δ(ξ) � ξ.

5. Conclusion

In this work, we studied Kernel L-ideals and L-congruence
on a subclass of Ockham algebras and investigate their
properties.We proved that the set of kernel L-idealFIk(A)

of Kn,0-algebra A forms Heyting algebras. Also, we obtain

the least, respectively, the biggest L-congruences on
Kn,0-algebra A having a given L-ideal as a kernel and de-
scribe it using algebraic operations in an L setting.
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