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�e goal of the article is the inference about the parameters of the inverse power ishita distribution (IPID) using progressively
type-II censored (Prog–II–C) samples. For IPID parameters, maximum likelihood and Bayesian estimates were obtained. Two
bootstrap “con�dence intervals” (CIs) are also proposed in addition to “approximate con�dence intervals” (ACIs). In addition,
Bayesian estimates for “squared error loss” (SEL) and LINEX loss functions are provided. �e Gibbs within Metropolis–Hasting
samplers process is used to provide Bayes estimators of unknown parameters also “credible intervals” (CRIs) of them by using the
“Markov ChainMonte Carlo” (MCMC) technique.�en, an application of the suggested approaches is considered a set of real-life
data this data set COVID-19 data from France of 51 days recorded from 1 January to 20 February 2021 formed of mortality rate. To
evaluate the quality of the proposed estimators, a simulation study is conducted.

1. Introduction

Statistical researchers in the �elds of industrial and me-
chanical engineering are spent so much time looking at
component and unit failure, which provide the foundation
of operational systems. �eir research involves watching
operating units until they fail, recording their lifetimes,
applying statistical inference methods to analyse obtained
data and then predicting reliability and risk functions for the
entire system using the data. However, because some ex-
perimental units are costly and have a high level of reliability.
Following a speci�ed censoring scheme, units are excluded
from the experiment, and the censored sample is the �nal
sample obtained by Klein et al. [1]. One of the main mo-
tivations for �ltering is to reduce the total test time and the
accompanying test. �e life test is considered to be complete
when all of the items under test are monitored until failure.
Inmost real conditions, the data available is incomplete. As a
result, whether due to test time or budget limits, censoring is
critical in lifetime data analysis. �e most common cen-
soring techniques are type-I and type-II censored. Following

that, a progressive censoring scheme is suggested. As a
result, the researchers can release the unused units of various
points throughout the test, making it more £exible and
realistic.

1.1. Progressive Type-II Censored. A progressive type-II
censoring strategy is a useful method for removing a par-
ticular fraction of at-risk participants from an experiment at
each of many ordered failure times. �e following is an
example of the Prog –II– C scheme: On the life test, the tester
allocates independent and identical units. Let us suppose at
the start of the experiment, there are n units to test. �e
lifetime test is ended when the mth (m< n) unit fails, as-
suming there are n units to test when the experiment begins.
After the �rst failure, time t1 is recorded, and R1 units were
selected randomly as from reminder n − 1 survival units. As
a result, when the second failure occurs, time t2 is recorded,
with the remnants n − R1 − 2 survival units R2 units were
chosen at random. �is experiment ends when the mth
failure occurs, at time tm, and Rm � n − m − ∑m− 1i�1 Ri as
shown in Figure 1.
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As special cases (if Ri � 0 and i � 1, 2, . . . , m with n � m)
and the conventional type-II right censoring scheme if Ri �
0 and i � 1, 2, . . . , m − 1 with Rm � n − m. Many authors
have devoted for a Prog–II–C method with various failure
time breakdowns. For example, Balakrishnan and Aggarwala
[2], Alshenawy [3], Balakrishnan [4], Ahmed [5], and
Almetwally et al. [6]. Mann et al. [7] and Meeker et al. [8]
looked into the characteristics of progressively censored
order statistics and it o¨ered an outline of several inferential
approach expansions depend on Prog-I and Prog-II right
censored samples, as well as identifying some for future
research challenges. Balakrishnan and Cramer [9] give a
thorough survey of the literature on progressive censoring,
as well as speci�cs on this progressive censoring technique
and its various uses. According to Tse et al. [10], the amount
of patients falls out of a clinical trial at each stage is random
and not possible predicted. With each failure, the pattern of
removal become more random. See Balakrishnan and
Sandhu [11] for further details on the gradually censored
samples. As lifetime distributions are exponential, log
normal, or Weibull, Aggarwala and Balakrishnan [12] has
studied inference for Prog–II–C cases. Balakrishnan [11] and
Aggarwala [12] have devised a method for simulating
general Prog–II–C samples drawn from continuous or
uniform distributions. Eryilmaz and Bairamov [13]and
Montanari et al. [14] also have been researching parameter
estimation from various lifetime distributions using
Prog–II–C. Other authors, include Balakrishnan et al. [9],
Mousa et al. [15], and Mousa et al. [16], have been
researching the estimate of parameters from various lifetime
distributions depending on Prog–II–C. In Prog-II right
censored order statistics, Salemi et al. [17] recently inves-
tigated A-optimal and D-optimal censoring strategies, Qin
et al. [18] o¨er a novel spacing-based test statistic for de-
termining whether general Prog–II–C data are from an

exponential distribution and parameters of a log-logistic
distribution under the Prog–II–C sample, when Maiti et al.
[19] given access to a managed step-wise sample of the
second type, there was also a look at the generalized Rayleigh
distribution. �e IPID is a generalized of the Ishita distri-
bution, which was presented by Elnagar et al. [20] is shown
to be a good model for the Covid-19 and glass �ber data
failure times.�ey also started at the maximum likelihood of
the unknown parameters estimators, besides their asymp-
totic con�dence intervals, using complete data. �e random
variable X of the IPI distribution, has a probability density
function (PDF):

f(y) � αθ3

θ3 + 2
θ + y− 2α( )y− α− 1e− θy

− α
, y> 0, θ, α> 0, (1)

and cumulative distribution function (CDF) is

F(y) � 1 +
θy− α θy− α + 2( )

θ3 + 2
[ ]e− θy

− α
y> 0, θ, α> 0. (2)

�e IPID is a generalized of the ishita distribution, which
was presented by Shanker and Shukla [21] and proven to be
adaptable to a variety of applications.

Modeling the COVID-19 is the driving force behind the
new distribution.�e COVID-19 of France was employed of
51 days that is recorded from 1 January to 20 February 2021
as real data for evaluating model techniques. COVID-19
data on new cases or deaths are discrete data (count). For
France, we have been using the COVID-19 daily mortality
rate. �e daily mortality rate is continuous data.

Let X1:m:n, X2:m:n, . . . , Xm:m:n ; 1≤m≤ n be a result of a
Prog–II–C sample lifetime test that included n units derived
from a IPI (α, θ) distribution and its censoring scheme is
R1, R2, . . . , Rm. Balakrishnan and Aggarwala [2] gives the
joint PDF of a Prog-II.

f x1:m:n, x2:m:n, . . . .xm:m:n( ) � C∏
m

i�1
f xi:m:n;α,θ( ). 1 − F xi:m:n;α,θ( )[ ]

Ri , m< n, (3)

as C � n(n − R1 − 1) . . . (n − ∑m− 1i�1 (Ri − 1)).
Balakrishnan et al. [4] have excellent provides a review

essay a recent report on progressive censoring schemes. �is
article is organized as follows: Section 2, introducedMLEs of

α and θ. We survey the con�dence intervals for the unknown
parameters in Section 3. Two parametric bootstrap ap-
proaches are used to constructed unknown parameters in
Section 4. In Section 5 di¨erent loss functions, such as SEL

remove remove remove remove

X1:m:n X2:m:n X3:m:n Xm:m:n

R1 R2 R3 Rm

Figure 1: Type-II progressive censoring.
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and LINEX loss functions, Bayes estimates for unknown
parameters were introduced. In Section 6, a real data set was
studied. Section 7 introduces a simulation study to evaluate
the accuracy of the various estimators generated in this
study. At the end of this paper, conclusions are given in
Section 8.

2. Maximum-Likelihood Estimation

)e maximum likelihood estimation method (MLE) is used
to study the problem of estimating IPID parameters under
Prog–II–C data.

Let x1: m: n, x2: m: n, . . . ., xm: m: n be a Prog–II–C sample
from the IPI distribution with PDF (1) and parameters α and
θ. )e likelihood function has the following:

L(α, θ) � C
αmθ3m

θ3 + 2 
me

− θ 

m

i�1
y

− α
i



m

i�1
θ + y

− 2α
i y

− α− 1
i 

m

i�1
1 − 1 +

θy− α
i θy− α

i + 2( 

θ3 + 2
 e

− θy− α
i 

Ri

.
(4)

On Prog–II–C samples, the log-likelihood function of α
and θ parameters as a result of

l � ln L(α, θ)

� ln c + mln α + 3mln θ − mln θ3 + 2  − θ
m

i�1
y

− α
i + 

m

i�1
ln θ + y

− 2α
i 

− (α + 1) 

m

i�1
lnyi + 

m

i�1
Riln 1 − 1 +

θy
− α
i θy

− α
i + 2( 

θ3 + 2
 e

− θy− α
i .

(5)

Computing the first partial derivatives of (5) in relation
to α and θ and solving this nonlinear system of equations
z/zαlnL(α, θ) � 0 and z/zθlnL(α, θ) � 0, the maximum

likelihood estimates (α and θ) are obtained. Accordingly,
results in

m

α
+ 

m

i�1
θy

− α
i − 1( lnyi + 

m

i�1
Ri

θy
− α
i lnyie

− θy− α
i

1 − 1 + θy
− α
i θy

− α
i + 2( /θ3 + 2 e

− θy− α
i

⎡⎢⎢⎣ ⎤⎥⎥⎦ � 0, (6)

and

3m

θ
− m

3θ2

θ3 + 2
− 

m

i�1
y

− α
i + 

m

i�1

1
θ + y

− 2α
i

,

+ 
m

i�1
Rie

− θy− α
i y

− α
i 1 +

θy
− α
i θy

− α
i + 2( 

θ3 + 2
  − y

− α
i

2 θ3 + 2  θy
− α
i + 1(  − 3θ2 θy

− α
i + 2( 

θ3 + 2 
2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦1⎡⎢⎢⎢⎢⎣

− 1 + θy
− α
i θy

− α
i + 2( /θ3 + 2 e

− θy− α
i  � 0,

(7)

Since Equations (6) and (7) cannot be solved analytically,
so to obtain the estimations, a numerical method like
Newton–Raphson method should be employed. In Ahmed
[5], the algorithm is given in detail.

3. Asymptotic Confidence Intervals

)e elements of the Fisher information matrix’s inverse give
us the approximate variances and covariances of theMLEs, α
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and θ; Iij � E[− [z2l(Ψ)/zψizψj]], As i, j � 1, 2 also
Ψ � (ψ1,ψ2) � (α, θ). So, precise asymptotic forms for these
equations are tough to comprehend get. )e Fisher infor-
mation matrix Iij � − [z2l(Ψ)/zψizψj]Ψ�Ψ

is then used, we
will use the expectation to establish confidence intervals
(CIs) for the parameters, which is obtained through infer-
ence. Consequently, the information matrix that has been
seen is

I
(α,θ)

�

− z2l

zα2
− z2l

zα zθ

− z2l

zθ zα
− z2l

zθ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(α�α,θ�θ)

. (8)

As a result, the asymptotic variance-covariance matrix V

for MLEs derived through converting observed information
matrix I(α, θ) or similar to the asymptotic variance-co-
variance matrix

V � I
− 1
(α,θ)

�
var(α) cov(α, θ)

cov(α, θ) var(θ)

⎡⎣ ⎤⎦

(α,θ)

. (9)

It is evident that (α, θ) is approximately distributed as
multivariate normal with mean (α, θ) and covariance matrix
I− 1(α, θ) given specific symmetry requirements, see Beb-
bington et al. [22]. As a result. )e (1 − c)100% convergent
confidence intervals (ACIs) for α and θmay be calculated as
follows:

α ± zc/2

������
var(α)



,

θ ± zc/2

������
var(θ)



,

(10)

as zc/2 is the right-tail probability percentile standard normal
distribution for c/2 See Lawless [23].

4. Bootstrap Confidence Intervals

Different bootstrap confidence intervals are suggested here.
)e percentile bootstrap (Bp) and bootstrap-t (Bt) confi-
dence intervals are used in this study. Efron [24] and Hall
[25] have more information on bootstrap confidence
intervals.

4.1. Parametric Percentile Bootstrap (Boot-P). )e formula
for calculating the parametric percentile bootstrap confi-
dence interval for model parameters is as follows:

(1) Calculate the MLE of α and θ by maximizing
Equations (6) and (7).

(2) Create bootstrap samples with α and θ to get the
bootstrap estimate of α and θ, say ψ⋆ where ψ be α or
θ, from the bootstrap sample.

(3) To get ψ1
⋆
, ψ2
⋆
, . . . , ψN boot

⋆, repeat step 2 N times,
where ψi

⋆
� ( αi
⋆, θ
⋆
i ), i � 1, 2, 3, ..N boot.

(4) Assign ψ⋆i � 1, 2, 3, .., N boot to ψ⋆(1), ψ⋆(1), . . . ,
ψ⋆(Nboot) in ascending order.

ψboot− p

η
2

 , ψboot− p 1 −
η
2

  , (11)

Gives a two-sided 100(1 − η)% bootstrap-p for the
unknown parameters α and θ.

4.2. Parametric Bootstrap-t Boot-t. )e percentile bootstrap-
t confidence interval for model parameters can be calculated
using the following algorithm:

(1) Steps 1 and 2 in boot-p are the same
(2) Using the asymptotic variance-covariance matrix

(9), the variance-covariance matrix
I− 1⋆(z2l/zψizψj), i, j � 1, 2 and get the t-statistic of ψ
as T⋆ψ � (ψ⋆ − ψ)/

�������
var(ψ⋆)



(3) NBoot times repeat steps 2 and 3 to get
T
⋆ψ
1 , T
⋆ψ
2 , . . . , T

⋆ψ
Nboot

(4) T
⋆ψ
1 , T
⋆ψ
2 , . . . , T

⋆ψ
Nboot the ordered sequences are

sorted in ascending order as T
⋆ψ
1 , T
⋆ψ
2 , . . . , T

⋆ψ
Nboot

ψboot− t

η
2

 , ψboot− t 1 −
η
2

  , (12)

Calculates a two-sided bootstrap-t 100(1 − η)% CI for
the unknown parameters α and θ.

5. Bayes Estimation

)eBayesian study of the IPID under Prog–II–C is discussed
in this section. Under the SEL function and LINEX loss
functions, we obtain Bayes estimators. When the parameters
α and θ are independent and follow the following gamma
prior distributions according to Zellner [26].

π1(α)∝ αk1− 1 exp − h1α( , α> 0,

π2(θ)∝ θk2− 1 exp − h2θ( , θ> 0,
(13)

where the hyper-parameters ki and hi, i � 1, 2 are assumed to
be known and chosen to reflect the prior belief about the
unknown parameters. )e posterior distribution is derived
from the likelihood function equation (4) and the prior
distribution (13), and with the outcomes posterior distri-
bution of α and θ denoted as π∗(α, θ| x).

π∗ α, θ| x(  �
L(α, θ; x)π1(α)π2(θ)


∞
0 
∞
0 L(α, θ; x)π1(α)π2(θ)dαdθ

. (14)

5.1. Loss Function. We need to design an asymmetric loss
function to make statistical Bayesian inference more prac-
tical and relevant. )e loss function, as defined by Press and
James [27], is a real-valued function that satisfies all feasible
estimates and parameters. We must adopt an asymmetric
loss function as well as create statistical Bayesian inference
extra sensible and relevant. According to Press and James
[27], the loss function is a real-valued function that satisfy all
possible estimations and parameters.
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5.1.1. Squared Error Loss Function (SEL). )e SEL function
is

L(ψ, ψ) � (ψ − ψ)
2
, (15)

)en, for any function of α and θ, the Bayes estimate is
g(α, θ) under the SEL function is

gBS(α, θ|x) � Eα,θ|x(g(α, θ)), (16)

where

Eα,θ|x(g(α, θ)) �

∞
0 
∞
0 g(α, θ)π1(α)π2(θ)L(α, θ)|x)dαdθ


∞
0 
∞
0 π1(α)π2(θ)L(α, θ|x)dαdθ

. (17)

5.1.2. Linear Exponential (LINEX) Loss Function. )e
LINEX loss function L(Δ) for a parameter ψ is proposed
according to Varian and Hall [28] given by the following
equation:

L(Δ) � e
cΔ

− cΔ − 1 ,

c≠ 0,

Δ � ψ − ψ,

(18)

Hence, the bayes estimate of a function g(α, θ) under
LINEX loss function illustrated by the following equation:

gBL(α, θ|x) � −
1
c
log E e

− g(α,θ)
|x  , c≠ 0,

E e
− g(α,θ)

  �

∞
0 
∞
0 e

− g(α,θ)π1(α)π2(θ)L(α, θ|x)dαdθ


∞
0 
∞
0 π1(α)π2(θ)L(α, θ|x)dαdθ

.

(19)

It should be noted that the ratio of multiple integrals in
(17) and (19) cannot be expressed explicitly. To produce
samples from the joint posterior density function in (14), the
MCMC approach is used. We use the Gibbs within Met-
ropolis–Hasting samplers process to add the MCMC ap-
proach.)e joint posterior distribution expressed as follows:

π∗(α, θ|x)∝m
αm+k1− 1θ3m+k2− 1

θ3 + 2 
m e

− h1α+h2θ 

m

i�1
y

− α
i

⎛⎝ ⎞⎠



m

i�1
θ + y

− 2α
i y

− α− 1
i 

m

i�1
1 − 1 +

θy− α
i θy− α

i + 2( 

θ3 + 2
 e

− θy− α
i 

Ri

.

(20)

)e conditional posterior densities of α and θ repre-
sented as follows:

π∗1(αθ, x)∝ αm+k1− 1
e

− h1α+θ 

m

i�1
y

− α
i

⎛⎝ ⎞⎠



m

i�1
θ + y

− 2α
i y

− α− 1
i 

m

i�1
1 − 1 +

θy− α
i θy− α

i + 2( 

θ3 + 2
 e

− θy− α
i 

Ri

,
(21)

and

π∗2(θ|α, x)∝
θ3m+k2− 1

θ3 + 2 
me

− θ h2+ 

m

i�1
y

− α
i

⎛⎝ ⎞⎠



m

i�1
θ + y

− 2α
i  

m

i�1
1 − 1 +

θ θy− α
i + 2( 

θ3 + 2
 e

− θy− α
i 

Ri

.
(22)

Because the conditional posteriors of α and θ in the
previous equations do not qualify for a specified distribu-
tion, the Metropolis–Hasting sampler must be used to apply
the MCMC approach. Tierney and Luke [29] proposed the
Metropolis–Hastings algorithm within Gibbs sampling,
which generates the posterior samples as follows:

(1) Begin with the first suggestion (α(0), θ(0))

(2) Specify j � 1
(3) Produce α(j) and θ(j) by using M-H algorithm below

using Equations (23) and (24) with the normal in-
dicated distribution N(αj− 1, var(α)) and the inverse
Fisher information matrix is used to calculate
N(θj− 1, var(θ)), where var(α) and var(θ)

(i) Create a N(αj− 1, var(α)) is suggestion to α∗ and
θ∗ by N(θj− 1, var(θ))

(ii) Calculate the probabilities of approval

ρα � min 1,
π∗1 α∗|θj− 1

, x 

π∗1 αj− 1
|θj− 1

, x 
⎡⎢⎣ ⎤⎥⎦, (23)

and

ρθ � min 1,
π∗2 θ∗|αj

, x 

π∗2 θj− 1 ∣ αj
, x 

⎡⎢⎣ ⎤⎥⎦. (24)

(iii) Create a u1 and u2 from a Uniform (0, 1)

distribution
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(iv) If u1 � ρα, confess the proposition and Specify
αj � α∗ else Specify αj � αj− 1

(v) If u1 � ρθ, confess the proposition and Specify
θj � θ∗ else Specify θj � θj− 1

(4) Calculate α(j) and θ(j)

(5) Specify j � j + 1
(6) Steps from 3 to 6 should be reiterated N times
(7) To evaluate the CRIs of α and θ of ψi

k, i � 1, 2, .., N,
k � 1, 2 and (ψ1,ψ2) � (α, θ) as ψ1

k <ψ
2
k < . . . <ψN

k

then the (1 − c)100% CRIs of ψk is

ψk

c

2
(N − M) ,ψk 1 −

c

2
 (N − M)  . (25)

For sufficiently large N, the samples chosen are
ψ(i)

k , j � M + 1, . . . , N. SEL function is accustomed to get the
approximate Bayes estimates of α and θ as follows:

αBS �
1

N − M


N

j�M+1
α(j)

, (26)

and

θBS �
1

N − M


N

j�M+1
θ(j)

. (27)

And, the estimates for the mentioned parameters under
LINEX loss function are

αBL �
− 1
c
log

1
N − M



N

i�M+1
e

− cα(i)
⎡⎣ ⎤⎦, (28)

and

θBL �
− 1
c
log

1
N − M



N

i�M+1
e

− cθ(i)

⎡⎣ ⎤⎦. (29)

6. Real-Life Data Application

In this section, the proposed estimation methods are applied
to the parameters of the IPI model under a Prog–II–C
scheme using a real data set from the COVID-19 data from
France, which was analyses by Almetwally [6]. )e con-
sidered COVID-19 data belong to France of 51 days that is
recorded from 1 January to 20 February 2021. )is data
formed of mortality rate. A Prog–II–C sample of size m � 10
simulated randomly from the sample of size n � 20 with
censoring scheme (5, 5, 0, 0, 0, 0, 0, 0, 0, 0). For the data, we
calculated the Kolmogorov–Smirnov (K–S) distance (D)
between the fitted and empirical distribution functions, with
K–S� 0.0999069 and p-value� 0.688698.)e MLEs of pa-
rameters depend on Prog-II failure data in Table 1 are α and
θ respectively, and are shown in Table 2. )e mean of 1000

Boot-p and Boot-t samples of the lifetime parameters also
given in Table 2 through using the algorithm defined in
Section 4 of the bootstrap methods. For various values of the
LINEX loss function’s shape parameter c, the parameters α
and θ, Table 3 calculated and shewed the Bayes estimates
related to both SEL and LINEX functions; the 95% ACIs and
CRIs of the parameters α and θ have calculated. )e LINEX
loss function becomes symmetric as c going to zero, as is well
known. In Table 2, the outputs of the SEL and LINEX loss
functions are identical at c � 0.0001, confirming accuracy of
presented s. Figure 2 indicate simulation numbers of the
parameters α and θ for COVID-19 data.

7. Simulated Data

Simulation experiments are carried out utilizing 1000 (Prog
–II–C) samples per one simulation in order to compare
parameter estimators for the IPI distribution. IPID is used to
create (Prog –II– C) samples, with initial values α � 1 and
θ � 0.6. )e comparison of the different approaches of the
producing α and θ estimators, has been taken into account in
the computation of their mean square error (MSE), for
k � 1, 2(ψ1 � α,ψ2 � θ), as MSE (ψk) � 1/M( ψk − ψk)2, as
M � 1000 simulated samples numbers. )e 95% CIs gen-
erated through utilizing asymptotic distributions of the
MLEs and CRIs are compared using another criterion. )e
average confidence interval lengths (ACLs) and coverage
probability (CP) are used to make comparisons between
them. In this study the progressive schemes that have
considered:

Scheme I: R1 � n − m, Ri � 0 for i≠ 1
Scheme II: Rm/2 � Rm/2+1 � n − m/2, Ri � 0 for i≠m/2
and i≠m/2 + 1
Scheme III: Rm � n − m, Ri � 0 for i≠m

Tables 4 and 5 illustrate the estimated parameters’ results
and their MSE and Table 6 shows outcomes of ACL and CP
of 95% CIs. From the results, the following notices can be
observed:

(1) Tables 4 and 5 show that as sample size increase,
MSEs decrease, with Bayes estimates having the
smallest MSEs for α and θ. As a result, Bayes esti-
mates performance MLE approaches in all situations
studied.

(2) In the sense that MSEs are smaller, Bayes estimates
under LINEX with c � − 2 better results estimates.

(3) Scheme I outperforms schemes II and III in terms of
MSEs when the sample size is fixed at n and the
effective size is fixed at m.

(4) Adapted from Table 6. It can be seen that the CRIs
produce more accurate results. )en, the ACIs for
different sample sizes, observed failures, and schemes.
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Table 1: �e Progressively Type-II failure COVID-19 data.

xi: 0.0995 0.0525 0.0615 0.0455 0.1474

Ri 5 5 0 0 0
xi: 0.3373 0.1087 0.1055 0.2235 0.0633
Ri 0 0 0 0 0
xi: 0.0565 0.2577 0.1345 0.0843 0.1023
Ri 0 0 0 0 0
xi: 0.2296 0.0691 0.0505 0.1434 0.2326
Ri 0 0 0 0 0

Table 2: Point estimates for the parameters α, θ, for COVID-19 data.

Parameter MLE Boot-p Boot-t SEL
LINEX

c1 � − 2 c2 � 2 c3 � 0.0001

α 1.00871 1.3251 1.1135 0.982731 0.983072 0.982389 0.982731
θ 0.307831 0.5218 0.4231 0.27371 0.273741 0.27371 0.27371

Table 3: 95% ACIs and CRI α and θ COVID-19 data.

Parameter MLE Boot-p Boot-t MCMC
α (0.603973, 1.41345) (0.8751, 1.6324) (0.5891, 1.3271) (0.951173,1.01104)
θ (-0.0186961, 0.634358) (0.6782, 0.8792) (0.4351, 0.7452) (0.264976,0.285227)
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Figure 2: Simulation numbers of the parameters for COVID-19 data.

Table 4: MSE of MLE and BE parameters estimators α with α0 � 1.

MLE SEL
LINEX

(n,m) Scheme C � − 2 C � 2 C � 0.0001

(15, 10)

I 0.3703 0.6855 1.878 0.5904 0.6854
(40.24) (9.0013) (1.24439) (10.3129) (9.001)

II 0.3784 0.8011 2.738 1.1106 0.8007
(39.37) (23.2342) (6.55607) (22.5079) (23.2216)

III 0.4204 0.7239 2.8229 1.5548 0.7236
(35.29) (20.2274) (3.03739) (42.8603) (20.2287)

(20, 15)

I 0.2742 0.4937 1.159 0.1183 0.4936
(5.294) (0.80339) (0.60741) (1.18222) (0.80343)

II 0.2774 0.2852 0.897 0.3366 0.2851
(5.268) (3.8652) (3.8086) (5.715) (3.8653)

III 0.3221 0.8523 2.5606 0.7491 0.8519
(4.651) (1.068194) (1.07274) (1.20591) (1.68009)
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Table 5: MSE of MLE and BE estimates for the parameter β with β0 � 0.6.

MLE SEL
LINEX

(n, m) Scheme C � − 2 C � 2 C � 0.0001

(15, 10)

I 0.9585 0.6084 2.44 2.44 0.6082
(14.85) (12.6991) (1.80526) (14.96) (12.6988)

II 0.9306 0.6808 2.8284 2.8284 0.6806
(12.8) (11.3128) (1.5829) (2.31639.9981) (11.3137)

III 0.9845 0.9995 3.2166 3.2166 0.9992
(17.54) (2.3791) (0.31721) (4.35105) (2.379)

(20, 15)

I 0.8452 0.6675 2.3146 0.1183 0.6672
(0.812) (0.38233) (0.2418) (0.8796) (0.38221)

II 0.8261 0.6913 2.0049 2.0049 2.0049
(6.98) (5.751) (0.83298) (0.99981) (0.99981)

III 0.9156 0.8301 3.103 3.103 0.8294
(12.71) (0.0325622) (0.0356730) (0.9974) (0.325915)

(30, 20)

I 0.8798 1.1282 1.7577 1.1281 1.2181
(0.1006) (0.030879) (0.020327) (0.02195) (0.0309)

II 0.8307 0.8266 1.6663 1.663 0.8265
(0.725) (0.39378) (0.047928) (0.047928) (0.39377)

III 1.0391 1.0708 1 .9744 1.9744 1.0707
(2.074) (0.058934) (0.0087964) (0.049418) (0.058932)

(40, 20)

I 1.1567 0.8393 1.739 1.739 0.8372
(0.03138) (0.00437) (0.00571) (0.00571) (0.0636)

II 1.0661 0.9043 2.9307 1.7436 1.1098
(0.2308) (0.04472) (0.05844) (0.059018) (0.06479)

III 0.9937 1.11 2.5991 2.5991 1.1098
(1.643) (0.0080091) (0.001266) (0.01403) (0.0901)

(50, 20)

I 1.1712 1.2884 2.035 2.035 1.2884
(0.03312) (0.00392) (0.000067) (0.00319) (0.003914)

II 1.0273 1.094 2.1157 2.1157 1.094
(0.1902) (0.00744) (0.00894) (0.00813) (0.0074286)

III 0.9647 0.534 3.4552 3.4552 0.5336
(0.1407) (0.002475) (0.000545) (0.00472) (0.02475)

Table 4: Continued.

MLE SEL
LINEX

(n, m) Scheme C � − 2 C � 2 C � 0.0001

(30, 20)

I 0.2088 0.097 0.2514 0.0584 0.097
(0.6282) (0.13922) (0.11393) (0.17185) (0.13923)

II 0.202 0.2392 0.4757 0.0126 0.2392
(0.6389) (0.14607) (0.13187) (0.1949) (0.14608)

III 0.2124 0.2377 0.4532 0.02 0.2377
(0.6242) (0.15856) (0.14083) (0.20695) (0.15856)

(40, 20)

I 0.1596 0.2231 0.3151 0.1302 0.2231
(0.7071) (0.10083) (0.009619) (0.01739) (0.010083)

II 0.1871 0.3382 0.0891 0.0891 0.3382
(0.06631) (0.16286) (0.007436) (0.017436) (0.016284)

III 0.2888 0.3395 1.5987 0.969 0.3394
(0.5133) (0.096754) (0.02266) (0.0758) (0.096828)

(50, 20)

I 0.158 0.1879 0.2888 0.0828 0.1879
(0.007097) (0.0011341) (0.001328) (0.01085) (0.001879)

II 0.2254 0.4393 0.8991 0.0106 0.4393
(0.06032) (0.0018168) (0.0026371) (0.023192) (0.0018168)

III 0.3913 2.9493 7.8626 1.9799 2.9482
(0.379) (0.0823423) (0.0212) (0.05568) (0.0823)
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8. Conclusion

We discuss an iterative technique for derivingMLEs from an
inverse power ishita lifetime distribution using progressively
Type-II censored samples. Another estimation approach,
based on Bayes estimates, is also considered. )e Bayes
estimates were produced using loss functions; however, they
are not available in explicit form. Propose that the Bayes
estimators and associated IPI distribution CIs be computed
using theMCMC technique. Derive the posterior summaries
of interest, such as credible intervals for the parameters, in a
simple way using typical MCMC simulation methods for a
Bayesian study of the model. )e findings of this study used
to the estimate problem of the IPID using complete data,
which are usually progressive type-II censoring samples.)e
proposed methods are demonstrated with numerical ex-
amples [30, 31].
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