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.e Jordan–Hölder theorem is proved by using Zassenhaus lemma which is a generalization of the Second Isomorphism.eorem
for groups. Goursat’s lemma is a generalization of Zassenhaus lemma, it is an algebraic theorem for characterizing subgroups of
the direct product of two groups G1 × G2, and it involves isomorphisms between quotient groups of subgroups of G1 and G2. In
this paper, we first extend Goursat’s lemma to R-algebras, i.e., give the version of Goursat’s lemma for algebras, and then
generalize Zassenhaus lemma to rings, R-modules, and R-algebras by using the corresponding Goursat’s lemma, i.e., give the
versions of Zassenhaus lemma for rings, R-modules, and R-algebras, respectively.

1. Introduction

.e Fundamental Homomorphism .eorem (or the First
Isomorphism .eorem) provided by Noether [1] in 1927
shows that every homomorphism gives rise to an isomorphism
and that quotient groups are merely constructions of homo-
morphic images. Even it has simple form, it expresses the
important properties of quotient group. Noether emphasized
the fundamental importance of this fact, and it has been widely
used in the field of universal algebra and to prove the existence
of some natural isomorphisms. .e Diamond Isomorphism
.eorem (or the Second Isomorphism .eorem) which is the
consequence of the Fundamental Homomorphism.eorem is
formulated in terms of subgroups of the normalizer and relates
two quotient groups involving products and intersections of
subgroups. After that, many researchers generalized the Second
Isomorphism.eorem to other structures, such as Tamaschke
[2, 3] generalized it to Schur semigroups [4] and Endam and
Vilela [5] extended it to B-algebras introduced by Neggers and
Kim [6, 7]. Sequentially, the First Isomorphism .eorem and
Second Isomorphism.eorem are generalized to rings, vector
spaces, R-modules, and R-algebras, respectively. In this paper,
we suppose that the readers are familiar with the structures of
groups, rings, R-modules, and R-algebras.

In 1934, Zassenhaus [8] found a new and beautiful proof
of the Jordan–Hölder theorem via Zassenhaus lemma.
Zassenhaus lemma (also called Butterfly lemma) is well
known in group theory as a generalization of the Second
Isomorphism .eorem for groups. Subsequently, many
researchers extended Zassenhaus lemma to other structures,
such as Teh [9, 10] extended it to universal algebras via
employment of the graph theory, Wyler [11] extended it to
categories under conditions, Ngaha Ngaha [12] considered
the Second Isomorphism .eorem and Zassenhaus lemma
in star-regular categories and described Zassenhaus lemma
in the category of commutative Hopf algebras, and Pra-
thomjit et al. [13] extended Zassenhaus lemma and the
Schreier refinement theorem to the case of gyrogroups and
then used these results to prove the Jordan–Hölder theorem
for gyrogroups.

On the other hand, as we know, there is a natural
question in group theory, that is, how many subgroups do
exist for the general group G? If we want to count the
number of subgroups of G, we should first express the form
of subgroups of G. In 1889, Goursat [14] gave Goursat’s
lemma which is an algebraic theorem for characterizing
subgroups of the direct product of two groups G1 × G2, and
involves isomorphisms between quotient groups of
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subgroups of G1 and G2. After that, many researchers
expressed the subgroups in certain classes of groups; for
instance, Usenko [15] introduced a reduced crossed ho-
momorphism and used it to describe the subgroups of a
semidirect product of groups and characterized the sub-
semidirect products and semidirect products with a given
structure of normal subgroups. Bauer et al. [16] obtained a
description of the subgroups of a direct product G1 × G2 ×

· · · × Gn of a finite number of groups by proving a gener-
alization of Goursat’s lemma. In 2009, Anderson and
Camillo [17] proved Zassenhaus lemma by using Goursat’s
lemma, whichmeans that Zassenhaus lemma is a corollary of
Goursat’s lemma. From Goursat’s lemma, one can recover a
more general version of Zassenhaus lemma. According to
the above, in this paper, our main aim is to extend Goursat’s
lemma to R-algebras and give the expression of the form of
subalgebras of general R-algebras. Further, we generalize
Zassenhaus lemma to rings, R-modules, and R-algebras by
using the corresponding Goursat’s lemma, respectively, and
show that the corresponding results are the generalization of
the Second Isomorphism.eorem for rings,R-modules, and
R-algebras, respectively.

In fact, Goursat’s lemma (see .eorem 1) gave a way to
describe the subgroups of a direct product G1 × G2 which
involves isomorphisms between quotient groups of sub-
groups of G1 and G2, i.e.,

H � h1, h2(  ∈ H12 × H22|fH h1H11(  � h2H21  (1)

is a subgroup ofG1 × G2, whereHi1 andHi2 are subgroups of
Gi such that Hi1⊲Hi2 for i � 1, 2, and fH: H12/
H11⟶ H22/H21 is a group isomorphism. Subsequently,
Anderson and Camillo (see .eorem 2) described the
subrings of a direct product R1 × R2 which involves iso-
morphisms between quotient rings of subrings of R1 and R2,
i.e.,

T � r1, r2(  ∈ T12 × T22|fT r1 + T11(  � r2 + T21  (2)

is a subring of R1 × R2, where Ti1 andTi2 are subrings of Ri

such that Ti1 is an ideal of Ti2 for i � 1, 2, and
fT: T12/T11⟶ T22/T21 is a ring isomorphism. For
R-modules, Dickson (see .eorem 3) described the sub-
modules of a direct product M1 × M2 which involves iso-
morphisms between quotient R-modules of submodules of
M1 and M2, i.e.,

M � m1, m2(  ∈M12 × M22|fM m1 + M11(  � m2 + M21 

(3)

is a submodule of M1 × M2, where Mi1 andMi2 are
R-submodules of Mi such that Mi1⊆Mi2 for i � 1, 2, and
fM: M12/M11⟶M22/M21 is a R-module isomorphism.

Since an R-algebra has the ring structure and R-module
structure, as a generalization, we consider Goursat’s lemma
for R-algebras (see Corollary 1) and describe the subalgebras
of a direct product A1 × A2 which involves isomorphisms
between quotient R-algebras of subalgebras of A1 and A2,
that is,

A � a1, a2(  ∈ A12 × A22|fA a1 + A11(  � a2 + A21  (4)

is a subalgebra of A1 × A2, where Ai1 andAi2 are subalgebras
of Ai such that Ai1 is algebraic ideal of Ai2 for i � 1, 2, and
fA: A12/A11⟶ A22/A21 is an R-algebra isomorphism.
Indeed, Lambek [18] gave Goursat’s characterization of the
subgroups of the direct product of two groups (also for a
general class of algebras) under conditions by using graph
theory. In this paper, we give a different form for the
subalgebras of R-algebras. However, for other structures,
such as Lie algebras, quantum cluster algebras [19], B-al-
gebras, and free differential algebras [20], we still do not
know their Goursat’s characterization.

Furthermore, Anderson and Camillo [17] used Goursat’s
lemma to prove Zassenhaus lemma for groups (see.eorem
4) which is stated as follows:

N1 H1 ∩H2( 

N1 H1 ∩N2( 
�

N2 H1 ∩H2( 

N2 N1 ∩H2( 
, (5)

where H1, N1, H2, andN2 are subgroups of G such that
N1⊲H1 and N2⊲H2. As a generalization, we consider
Zassenhaus lemma for rings (see .eorem 5), R-modules
(see .eorem 6), and R-algebras (see .eorem 7), respec-
tively, and obtain the following results:

(1) If R1, I1, R2, and I2 are subrings of a ring R such that
Ii is an ideal of Ri for i � 1, 2, then

I1 + R1 ∩R2

I1 + R1 ∩ I2
�

I2 + R1 ∩R2

I2 + I1 ∩R2
. (6)

(2) If M1, N1, M2, and N2 are submodules of R-module
M satisfying N1⊆M1, N2⊆M2 for commutative ring
R with identity, then

N1 + M1 ∩M2

N1 + M1 ∩N2
�

N2 + M1 ∩M2

N2 + N1 ∩M2
. (7)

(3) If A is an R-algebra and B1, C1, B2, and C2 are sub-
algebras of A such that Ci is an algebraic ideal of Bi

for i � 1, 2, then
C1 + B1 ∩B2

C1 + B1 ∩C2
�

C2 + B1 ∩B2

C2 + C1 ∩B2
. (8)

.is paper is organized as follows. In Section 2, we first
complete the proof of Goursat’s lemma for R-modules and
then extend Goursat’s lemma to R-algebras, i.e., give the
version of Goursat’s lemma for algebras and give the form
of subalgebras of R-algebras, which is different from
Lambek’s form [18]. Further, since Zassenhaus lemma is
used to prove the Jordan–Hölder theorem and it is also the
generalization the Second Isomorphism .eorem for
groups, as a generalization, we extend Zassenhaus lemma
to rings, R-modules, vector spaces, and R-algebras in
terms of algebraic ideal in Section 3, i.e., give the versions
of Zassenhaus lemma for rings, R-modules, and R-alge-
bras, respectively.
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2. Goursat’s Lemma for Groups, Rings,
R-Modules, and R-Algebras

Anderson and Camillo [17] gave an exposition of Goursat’s
lemma for groups and rings, and Dickson [21] gave
Goursat’s lemma for R-modules without proof, respectively.
In this section, we complete the proof of Goursat’s lemma
for R-modules and give an exposition of Goursat’s lemma
for R-algebras as a corollary.

Theorem 1 (Goursat’s lemma for groups, .eorem 4 in
[17]). Let G1 andG2 be groups.

(1) Let H be a subgroup of G1 × G2, and

H11 � a ∈ G1|(a, 1) ∈ H ,

H12 � a ∈ G1|(a, b) ∈ H for some b ∈ G2 ,

H21 � b ∈ G2|(1, b) ∈ H ,

H22 � b ∈ G2|(a, b) ∈ H for some a ∈ G1 .

(9)

#en, Hi1 andHi2 are subgroups of Gi with Hi1⊲Hi2
for i � 1, 2, and the map

fH:
H12

H11
⟶

H22

H21
, aH11↦ bH21 (10)

is an isomorphism, where (a, b) ∈ H. Moreover, if
H⊲G1 × G2, then Hi1, Hi2⊲Gi and Hi2/Hi1 ⊆C(Gi/
Hi1), the center of Gi/Hi1.

(2) Let Hi1 an dHi2 be subgroups of Gi with Hi1⊲Hi2 for
i � 1, 2, and let f: H12/H11⟶ H22/H21 be an
isomorphism. #en,

H � (a, b) ∈ H12 × H22|f aH11(  � bH21  (11)

is a subgroup of G1 × G2. Furthermore, suppose
Hi1, Hi2⊲Gi and Hi2/Hi1⊆C(Gi/Hi1) for i � 1, 2,
then H⊲G1 × G2.

(3) #e constructions given in (1) and (2) are inverses to
each other.

Theorem 2 (Goursat’s lemma for rings, .eorem 11 in
[17]). Let R1 andR2 be rings.

(1) Let T be a subring of R1 × R2, and

T11 � r ∈ R1|(r, 0) ∈ T ,

T12 � r ∈ R1|(r, s) ∈ T for some s ∈ R2 ,

T21 � s ∈ R2|(0, s) ∈ T ,

T22 � s ∈ R2|(r, s) ∈ T for some r ∈ R1 .

(12)

#en, Ti2 is a subring of Ri and Ti1 is an ideal of Ti2 for
i � 1, 2. Moreover, the map fT: T12/T11⟶ T22/T21
defined by fT(r + T11) � s + T21 for (r, s) ∈ T is a
ring isomorphism.

(2) Suppose thatTi2 is a subring ofRi andTi1 is an ideal of
Ti2 for i � 1, 2, and fT: T12/T11⟶ T22/T21 is a ring
isomorphism. #en,

T � (r, s) ∈ T12 × T22|fT r + T11(  � s + T21  (13)

is a subring of R1 × R2.
(3) #e construction given in (1) and (2) is inverse to each

other.

In Theorem 4 in [17], the authors stated Goursat’s
lemma for R-modules without proof (also see [21, 22]). In
the following, we provide a proof of Goursat’s lemma for
R-modules by using the submodule criterion [23].

Theorem 3 (Goursat’s lemma for R-modules). Let R be a
commutative ring with identity and M1 andM2 are
R-modules.

(1) Let M be a submodule of M1 × M2, and

M11 � m1 ∈M1| m1, 0(  ∈M ,

M21 � m2 ∈M2| 0, m2(  ∈M ,

M12 � m1 ∈M1| m1, m2(  ∈M for somem2 ∈M2 ,

M22 � m2 ∈M2| m1, m2(  ∈M for somem1 ∈M1 ,

(14)

then Mi1 andMi2 are submodules of Mi with
Mi1⊆Mi2 for i � 1, 2, and the map fM: M12/
M11⟶M22/M21 given by fM(m1 + M11) � m2 +

M21 is a R-module isomorphism, where (m1,

m2) ∈M.
(2) Suppose that Mi1 andMi2 are submodules of Mi with

Mi1⊆Mi2 for i � 1, 2 and the map fM: M12/
M11⟶M22/M21 is a R-module isomorphism, then

M � m1, m2(  ∈M12 × M22|fM m1 + M11(  � m2 + M21 ,

(15)
is a submodule of M1 × M2.

(3) #e construction given in (1) and (2) is inverse to each
other.

Proof. (1) From .eorem 1, it is obvious that Mi1⊆Mi2⊆Mi

for i � 1, 2. Since M is a submodule of M1 × M2, we have

m11, 0(  + r m11′ , 0(  � m11 + rm11′ , 0(  ∈M, (16)

for any m11, m11′ ∈M11 and any r ∈ R. .is means that
m11 + rm11′ ∈M11. .us, M11 is a submodule of M1 fol-
lowing the submodule criterion [23]. On the other hand, for
any m12, m12′ ∈M12, there exist m2, m2′ ∈M2 such that
(m12, m2), (m12′, m2′) ∈M. Hence,

m12, m2(  + r m12′ , m2′(  � m12 + rm12′ , m2 + rm2′(  ∈M,

(17)
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for any r ∈ R. It follows that m12 + rm12′ ∈M12, and then
M12 is a submodule of M1. Similarly, using the submodule
criterion, we can obtain that M21 an dM22 are submodules of
M2 easily.

For the map fM: M12/M11⟶M22/M21 given by
fM(m1 + M11) � m2 + M21, where (m1, m2) ∈M, it is clear
that M12/M11 andM22/M21 are R-modules and fM is an
additive group isomorphism by .eorem 1. So, it is enough
to prove that fM(r(m1 + M11)) � rfM(m1 + M11) for any
r ∈ R and m1 ∈M12. Since r(m1, m2) � (rm1, rm2) ∈M for
any m1 ∈M12, m2 ∈M22, and r ∈ R, we have fM(r(m1 +

M11)) � fM (rm1 + M11) � rm2 + M21 � rfM(m1 + M11).
Hence, fM is a R-module isomorphism.

(2) Suppose that Mi1 andMi2 are submodules of Mi with
Mi1⊆Mi2 for i � 1, 2, and the map fM: M12/M11
⟶M22/M21 is a R-module isomorphism. Since

M � (m1, m2) ∈M12 × M22|fM(m1 + M11) � m2+ M21},
we have fM(m1 + M11) � m2 + M21, fM(m1′ + M11) � m2′ +
M21 for any (m1, m2), (m1′, m2′) ∈M, and

fM m1 + M11( ( + r m1′ + M11(  � fM m1 + rm1′( ( + M11

� fM m1 + M11(  + rfM m1′ + M11( 

� m2 + M21 + r m2′ + M21( 

� m2 + rm2′(  + M21.

(18)

.is means that (m1 + rm1′, m2 + rm2′) � (m1, m2)+

r(m1′, m2′) ∈M. .erefore, M is a submodule of M1 × M2 by
the submodule criterion.

(3) From the proofs of (1) and (2), we can easily obtain
(3).

It is well known that an R-algebra A has the ring
structure and R-module structure concurrently, and the
operations of these two structures are compatible, i.e.,
r(xy) � (rx)y � x(ry) for any x, y ∈ A and r ∈ R. We
firstly introduce some definitions about R-algebras for the
commutative ring R with identity.

Definition 1 (see [23–25]). Let R be a commutative ring with
identity. An R-algebra is a ring A with identity together with
a ring homomorphism f: R⟶ A mapping 1R to 1A such
that the subring f(R) of A is contained in the center of A,
i.e., f(r) commutes with every element of A for each r ∈ R.
A subalgebra of an R-algebra A is a subring of A and a
submodule of A. A left (respectively, right, two sided) al-
gebraic ideal of an R-algebra A is a left (respectively, right,
two sided) ideal of the ring A and a submodule of A.

If A andB are two R-algebras, an R-algebra homo-
morphism (respectively, isomorphism) is a ring homo-
morphism (respectively, isomorphism) φ: A⟶ B

mapping 1A to 1B such that φ(r · a) � r · φ(a) for all r ∈ R

and a ∈ A.
It is easy to check that if A is an R-algebra, then A is a

ring with identity and has a natural left and right R-module

structure defined by r · a � a · r � f(r)a, where f(r)a is just
the multiplication in the ring A. Every ring with identity is
actually an Z-algebra.

Since R-algebra has the ring structure and module
structure by Definition 1, according to .eorem 2 and
.eorem 3, we can obtain Goursat’s lemma for R-algebras
easily.

Corollary 1 (Goursat’s lemma for R-algebras). Let R be a
commutative ring with identity and A1 andA2 be R-algebras.

(1) Let A be a subalgebra of A1 × A2, and

A11 � a ∈ A1|(a, 0) ∈ A ,

A12 � a ∈ A1|(a, b) ∈ A for some b ∈ A2 ,

A21 � b ∈ A2|(0, b) ∈ A ,

A22 � b ∈ A2|(a, b) ∈ A for some a ∈ A1 ,

(19)

then Ai1 andAi2 are subalgebras of Ai such that Ai1 is
an algebraic ideal of Ai2 for i � 1, 2, and the map

fA:
A12

A11
→

A22

A21
, a + A11↦b + A21, (20)

is an R-algebra isomorphism, where (a, b) ∈ A.
(2) Suppose that Ai1 andAi2 are subalgebras of Ai such

that Ai1 is an algebraic ideal of Ai2 for i � 1, 2, and
fA: A12/A11⟶ A22/A21 is an R-algebra isomor-
phism, then

A � (a, b) ∈ A12 × A22|fA a + A11(  � b + A21  (21)

is a subalgebra of A1 × A2.
(3) .e construction given in (1) and (2) is inverse to

each other.

Example 1. Let A � Z2[x]/(x3 − 1), which is an Z2-algebra.
We want to find out all the subalgebras of A × A.

Step 1. Find out all the subalgebras Ai’s (1≤ i≤ 6) and their
corresponding algebraic ideals in A. Here, we omit the case
when the corresponding algebraic ideal is Ai itself.

Case 1. .e subalgebra A1 � 0, 1, x, x2, 1 + x, 1 + x2,

x + x2, 1 + x + x2} with 8 elements of A, and the algebraic
ideals of A1 are as follows:

J11 � 0, 1 + x, 1 + x
2
, x + x

2
 ,

J12 � 0, 1 + x + x
2

 ,

J13 � 0{ }.

(22)

.us,
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A1

J11
� [0] � [1 + x] � 1 + x

2
  � x + x

2
 , [1] � [x] � x

2
  � 1 + x + x

2
  ,

A1

J12
� [0] � 1 + x + x

2
 , [1] � x + x

2
 , [x] � 1 + x

2
 , x

2
  � [1 + x] ,

A1

J13
�

R1

0{ }
� A1,

(23)

and A1/J11 has 2 elements, A1/J12 has 4 elements, and A1 has
8 elements.

Case 2. .e subalgebra A2 � 0, 1, x + x2, 1 + x + x2  with 4
elements of A, and the algebraic ideals of A2 are

J21 � 0, x + x
2

 ,

J22 � 0, 1 + x + x
2

 ,

J23 � 0{ },

A2

J21
� [0] � x + x

2
 , [1] � 1 + x + x

2
  ,

A2

J22
� [0] � 1 + x + x

2
 , [1] � x + x

2
  ,

A2

J23
�

A2

0{ }
� A2,

(24)

and A2/J2i has 2 elements for i � 1, 2, and A2 has 4 elements.

Case 3. For the subalgebras A3 � 0, 1 + x, 1 + x2, x + x2 ,

A4 � 0, x + x2 , A5 � 0, 1 + x + x2 , andA6 � 0, 1{ }, their
algebraic ideals are only 0{ } and Ai for i � 3, 4, 5, 6.

Step 2. According to Corollary 1, we first construct the
isomorphism and then give the subalgebras of A × A.

Case 4 (with 2 elements). Here, we only discuss one case.
We have an isomorphism A2/J21 � A4/ 0{ }, and the sub-
algebra of A × A is

(0, 0), x + x
2
, 0 , 1, x + x

2
 , 1 + x + x

2
, x + x

2
  . (25)

Case 5 (with 4 elements).

(a) We have an isomorphism f: A1/J12⟶ A3/ 0{ }

defined by f([0]) � 0, f([1]) � x + x2, f([x]) � 1+

x, f([x2]) � 1 + x2, and the subalgebra of A × A is

(0, 0), 1 + x + x
2
, 0 , 1, x + x

2
 , x + x

2
, x + x

2
 , (x, 1 + x), 1 + x

2
, 1 + x , x

2
, 1 + x

2
 , 1 + x, 1 + x

2
  . (26)

(b) We have an isomorphism f: A1/J12⟶ A1/J12
which is an identity or defined by f([0]) �

[0], f([1]) � [1], f([x]) � [x2], an df([x2]) � [x],
and the subalgebra of A × A for the identity case is

(0, 0), 0, 1 + x + x
2

 , 1 + x + x
2
, 0 , 1 + x + x

2
, 1 + x + x

2
 , (1, 1), 1, x + x

2
 ,

x + x
2
, 1 , x + x

2
, x + x

2
 , (x, x), x, 1 + x

2
 , 1 + x

2
, x , 1 + x

2
, 1 + x

2
 ,

x
2
, x

2
 , x

2
, 1 + x , 1 + x, x

2
 , (1 + x, 1 + x),

(27)

and the subalgebra of A × A for the other case is

(0, 0), 0, 1 + x + x
2

 , 1 + x + x
2
, 0 , 1 + x + x

2
, 1 + x + x

2
 , (1, 1),

1, x + x
2

 , x + x
2
, 1 , x + x

2
, x + x

2
 , x, x

2
 , (x, 1 + x), 1 + x

2
, x

2
 ,

1 + x
2
, 1 + x , x

2
, x , x

2
, 1 + x

2
 , (1 + x, x), 1 + x, 1 + x

2
 .

(28)
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(c) For the isomorphism f: A3/ 0{ }⟶ A3/ 0{ } which is
an identity or defined by f(0) � 0, f(x + x2) � x +

x2, f(1 + x) � 1 + x2, andf(1 + x2) � 1 + x, the
subalgebra of A × A for the identity case is

(0, 0), x + x
2
, x + x

2
 , (1 + x, 1 + x), 1 + x

2
, 1 + x

2
  ,

(29)

and the subalgebra of A × A for the other case is

(0, 0), x + x
2
, x + x

2
 , 1 + x, 1 + x

2
 , 1 + x

2
, 1 + x  .

(30)

(d) For the isomorphism f: A2/ 0{ }⟶ A2/ 0{ } which is
an identity or defined by f(0) � 0, f(1) � 1,

f(x + x2) � 1 + x + x2, an df(1 + x + x2) � x + x2,
the subalgebra of A × A for the identity case is

(0, 0), (1, 1), x + x
2
, x + x

2
 , 1 + x + x

2
, 1 + x + x

2
  ,

(31)

and the subalgebra of A × A for the other case is

(0, 0), (1, 1), x + x
2
, 1 + x + x

2
 , 1 + x + x

2
, x + x

2
  .

(32)

Case 6. (with 8 elements). .e isomorphism
f: A1/ 0{ }⟶ A1/ 0{ } is an identity, and the subalgebra of
A × A is

(0, 0), (1, 1), (x, x), x
2
, x

2
 , x + x

2
, x + x

2
 , (1 + x, 1 + x), 1 + x

2
, 1 + x

2
 , 1 + x + x

2
, 1 + x + x

2
 . (33)

3. The Zassenhaus Lemma for Groups, Rings,
R-Modules, and R-Algebras

In group theory, it is well known that the four basic iso-
morphism theorems (Fundamental Homomorphism .e-
orem, Diamond Isomorphism .eorem, Freshman
.eorem, and Correspondence .eorem) about homo-
morphism and their structure are very useful in the study of
groups. All of these theorems have analogues in other al-
gebraic structures, such as rings, vector spaces, R-modules,
and R-algebras. Furthermore, for the Second Isomorphism
.eorem, the set-theoretic version of the product formula
(i.e., if G1 and G2 are subgroups of G, then there is a natural
bijection between |G1/(G1 ∩G2)| and |G1G2/G2|), establishes
a bijection which is the same as the bijection of the Second
Isomorphism .eorem, but without the conditions of
normality, and the bijection is purely at the set-theoretic
level. In 1934, Zassenhaus gave Zassenhaus lemma which is a
generalization of the Second Isomorphism .eorem for
groups (see Lemma 5.10 in [26] and Lemma 4.52 in [27]). In
this section, we give Zassenhaus lemma for rings, R-mod-
ules, and R-algebras, which is also a generalization of the
Second Isomorphism .eorem for rings, R-modules, and
R-algebras, respectively.

Theorem 4 (Zassenhaus lemma for groups, Lemma 4.52 in
[27]). Suppose that G is a group with subgroups
H1, N1, H2, andN2 such that N1⊲H1 and N2⊲H2, then

N1 H1 ∩N2( ⊲N1 H1 ∩H2( , N2 N1 ∩H2( ⊲N2 H1 ∩H2( ,

(34)

and there is an isomorphism

N1 H1 ∩H2( 

N1 H1 ∩N2( 
�

H1 ∩H2( 

H1 ∩N2(  N1 ∩H2( 

�
N2 H1 ∩H2( 

N2 N1 ∩H2( 
.

(35)

Remark 1. Zassenhaus lemma for groups implies the Second
Isomorphism .eorem for groups, i.e., if H and N are
subgroups of a group G with N⊲G, then

NH

N
�

H

(H∩N)
. (36)

In fact, we can let H � H1 ∩H2 and N � N1(H1 ∩N2).
.us, according to .eorem 4, we have

N1 H1 ∩H2( 

N
�

H

H1 ∩N2(  N1 ∩H2( 
. (37)

Indeed, for any xy ∈ (H1 ∩N2)(N1 ∩H2) where
x ∈ H1 ∩N2⊆H1 ∩H2 and y ∈ N1 ∩H2⊆H1 ∩H2, since
xy � y(y−1xy) ∈ N1(H1 ∩N2), we have xy ∈ (H1 ∩H2)

∩N1(H1 ∩N2) � H∩N. Conversely, for any n1x ∈
(H1 ∩H2)∩N1(H1 ∩N2) � H∩N where n1 ∈ N1 and
x ∈ H1 ∩N2⊆H1 ∩H2, there exists h2 ∈ H2 such that
n1x � h2 ∈ H1 ∩H2, i.e., n1 � h2x

−1 ∈ H2. It follows that
n1x � x(x−1n1x) ∈ (H1 ∩N2)(N1 ∩H2). .us,

H1 ∩N2(  N1 ∩H2(  � H1 ∩H2( ∩N1 H1 ∩N2( 

� H∩N.
(38)

Further, it is easy to obtain that

N1 H1 ∩H2(  � N1 H1 ∩N2( (  H1 ∩H2(  � NH. (39)
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.erefore, (37) can be written as NH/N � H/(H∩N).
Following Lemma 4.52 in [27], we can also set

H1 � G, N1 � N, H2 � H, and N2 � N∩H and then obtain
that NH/N � H/(H∩N).

Example 2. Consider the symmetric group S4 with 24 ele-
ments which are as follows:

(1), (12), (13), (14), (23), (24), (34), (12)(34), (13)(24), (14)(23), (123), (124), (132), (134), (142),{

(143), (234), (243), (1234), (1243), (1324), (1342), (1423), (1432)}.
(40)

Let

N1 � (1), (1324), (12)(34), (1423){ },

N2 � (1), (123), (132), (134), (143), (124), (142), (234), (243), (12)(34), (13)(24), (14)(23){ },

H1 � (1), (12), (34), (1324), (1423), (12)(34), (13)(24), (14)(23){ },

(41)

then N2H1 � N2N1 by applying for .eorem 4. In fact,
according to the definitions of N1, N2, andH1, we have

H1 ∩N2 � (1), (12)(34), (13)(24), (14)(23){ }, (42)

and H1, N1, andN2 are subgroups of S4 with N1⊲H1. Let
H2 � S4, then N2⊲H2. .us,

N1 H1 ∩H2(  � N1H1 � H1,

N1 H1 ∩N2(  � (1), (12), (34), (1324), (1423), (12)(34), (13)(24), (14)(23){ } � H1,

N2 H1 ∩H2(  � N2H1,

N2 N1 ∩H2(  � N2N1.

(43)

By .eorem 4, we have N2H1/N2N1 � H1/H1, which
means that N2H1 � N2N1.

As a generalization of the Second Isomorphism.eorem
for rings, by using .eorem 2, we obtained Zassenhaus
lemma for rings stated as follows.

Theorem 5 (Zassenhaus lemma for rings). Let
R1, I1, R2, and I2 be subrings of a ring R such that Ii is an ideal
of Ri for i � 1, 2, then I1 + R1 ∩ I2 (respectively, I2 + I1 ∩R2)
is an ideal of I1 + R1 ∩R2 (respectively, I2 + R1 ∩R2), and

I1 + R1 ∩R2

I1 + R1 ∩ I2
�

I2 + R1 ∩R2

I2 + I1 ∩R2
. (44)

Proof. Let T � (a + c, b + c) ∈ R1 × R2|a ∈ I1, b ∈ I2, c ∈

R1 ∩R2}, then T is a subring of R1 × R2. Indeed, for any
(a1 + c1, b1 + c1), (a2 + c2, b2 + c2) ∈ T, where ai ∈ I1, bi ∈
I2, ci ∈ R1 ∩R2 for i � 1, 2, since R1 ∩R2 is also a subring of R

and Ii is an ideal of Ri for i � 1, 2, we have

a1 + c1, b1 + c1(  − a2 + c2, b2 + c2(  ∈ T,

a1 + c1, b1 + c1(  a2 + c2, b2 + c2(  ∈ T,
(45)

which implies that T is a subring of R1 × R2. According to
.eorem 2, let

T12 � r ∈ R1|(r, s) ∈ T for some s ∈ R2 ,

T22 � s ∈ R2|(r, s) ∈ T for some r ∈ R1 ,
(46)

then T12 � I1 + R1 ∩R2, T22 � I2 + R1 ∩R2, and Ti2 � Ii+

R1 ∩R2 is a subring of Ri for i � 1, 2 clearly. Further, let

T11 � r ∈ R1|(r, 0) ∈ T ,

T21 � s ∈ R2|(0, s) ∈ T ,
(47)

then T11 � I1 + R1 ∩ I2, T21 � I2 + I1 ∩R2, and Ti1 is an ideal
of Ti2 for i � 1, 2. Following .eorem 2, we have
T12/T11 � T22/T21, which shows that

I1 + R1 ∩R2

I1 + R1 ∩ I2
�

I2 + R1 ∩R2

I2 + I1 ∩R2
. (48)

□

Remark 2. .e Zassenhaus lemma for rings implies the
second isomorphism theorem for rings, i.e., if S is a subring
of a ring R and I an ideal of R, then

(S + I)/I � S/(S∩ I). (49)
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In fact, let I1 � I, R1 � R, I2 � I∩ S, and R2 � S, since
I + I∩ S � I, I∩ S + S � S, and I∩ S + I∩ S � I∩ S, we have

I1 + R1 ∩R2 � I1 + S � I + S,

I1 + R1 ∩ I2 � I1 + I2 � I + I∩ S � I,

I2 + R1 ∩R2 � I2 + S � I∩ S + S � S,

I2 + I1 ∩R2 � I2 + I∩ S � I∩ S + I∩ S � I∩ S.

(50)

According to .eorem 5, we have (S + I)/I � S/(S∩ I).

For R-modules, we know that a module is a mathe-
matical object in which things can be added together
commutatively by multiplying coefficients and in which
most of the rules of manipulating vectors hold. A module is
abstractly very similar to a vector space although in modules
coefficients are taken in rings that are much more general
algebraic objects than the fields used in vector spaces.
R-modules can be thought of as generalizations of vector
spaces and abelian groups. We will also see that they can be
regarded as “representations” of a ring.

For the Second Isomorphism .eorem for R-modules,
by using Goursat’s lemma for R-modules, we have the
following generalized Zassenhaus lemma.

Theorem 6 (Zassenhaus lemma for R-modules). Let R be a
commutative ring with identity and M an R-module. Suppose
that M1, N1, M2, andN2 are submodules of M satisfying
N1⊆M1, N2⊆M2, then N1 + M1 ∩N2 (respectively, N2+

N1 ∩M2) is a submodule of N1 + M1 ∩M2 (respectively,
N2 + M1 ∩M2), and

N1 + M1 ∩M2

N1 + M1 ∩N2
�

N2 + M1 ∩M2

N2 + N1 ∩M2
. (51)

Proof. Let L � (a + c, b + c) ∈M1 × M2|a ∈ N1, b ∈ N2,

c ∈M1 ∩M2}; since M1 ∩M2 is also a submodule of M and
Ni is a submodule of Mi for i � 1, 2, we have

a1 + c1, b1 + c1(  + r a2 + c2, b2 + c2( 

� a1 + ra2 + c1 + rc2, b1 + rb2 + c1 + rc2(  ∈ L,
(52)

for any r ∈ R, ai ∈ N1, bi ∈ N2, ci ∈M1 ∩M2, i � 1, 2, which
implies that L is a submodule of M1 × M2 by the submodule
criterion [23]. Following .eorem 3, let

M11 � m1 ∈M1| m1, 0(  ∈ L ,

M21 � m2 ∈M2| 0, m2(  ∈ L ,

M12 � m1 ∈M1| m1, m2(  ∈ L for somem2 ∈M2 ,

M22 � m2 ∈M2| m1, m2(  ∈ L for somem1 ∈M1 ,

(53)

as in the proof of .eorem 5, we have

M11 � N1 + M1 ∩N2,

M12 � N1 + M1 ∩M2,

M21 � N2 + N1 ∩M2,

M22 � N2 + M1 ∩M2,

(54)

and Mi1 andMi2 are submodules of Mi with Mi1⊆Mi2 for
i � 1, 2. .us, by .eorem 3, we have

N1 + M1 ∩M2

N1 + M1 ∩N2
�

N2 + M1 ∩M2

N2 + N1 ∩M2
. (55)

□

Remark 3. Zassenhaus lemma for modules implies the
Second Isomorphism .eorem for modules, i.e., if
K1 andK2 are submodules of a R-module M, then
(K1 + K2)/K1 � K2/(K1 ∩K2). In fact, let N1 � K1,
M1 � M,N2 � K1 ∩K2, andM2 � K2; sinceK1 + K1 ∩K2 �

K1, K2 + K1 ∩K2 � K2, K1 ∩K2 + K1 ∩K2 � K1 ∩K2, we
have

N1 + M1 ∩M2 � K1 + K2,

N1 + M1 ∩N2 � K1 + K1 ∩K2 � K1,

N2 + M1 ∩M2 � K1 ∩K2 + K2 � K2,

N2 + N1 ∩M2 � K1 ∩K2 + K1 ∩K2 � K1 ∩K2.

(56)

Following .eorem 6, we have (K1 + K2)/K1 �

K2/(K1 ∩K2).
Similarly, we can easily obtain Zassenhaus lemma for

vector spaces, which is also a generalization of the Second
Isomorphism .eorem for vector spaces; that is, if V is a
vector space and V1 andV2 are linear subspaces of V, then
(V1 + V2)/V2 � V1/(V1 ∩V2). By .eorem 6, we have the
following corollary.

Corollary 2 (Zassenhaus lemma for vector spaces). Let V be
a vector space and U1, V1, U2, andV2 are linear subspaces of
V satisfying V1⊆U1, V2⊆U2, then V1 + U1 ∩V2 (respectively,
V2 + V1 ∩U2) is a subspace of V1 + U1 ∩U2 (respectively,
V2 + U1 ∩U2), and

V1 + U1 ∩U2

V1 + U1 ∩V2
�

V2 + U1 ∩U2

V2 + V1 ∩U2
. (57)

For the Second Isomorphism #eorem for R-algebras, by
using Corollary 1, we have the following generalized Zas-
senhaus lemma.

Theorem 7 (Zassenhaus lemma for R-algebras). Suppose
that A is an R-algebra and B1, C1, B2, andC2 are subalgebras
of A such that Ci is an algebraic ideal of Bi for i � 1, 2, then
C1 + B1 ∩C2 (respectively, C2 + C1 ∩B2) is an algebraic ideal
of C1 + B1 ∩B2 (respectively, C2 + B1 ∩B2), and

C1 + B1 ∩B2

C1 + B1 ∩C2
�

C2 + B1 ∩B2

C2 + C1 ∩B2
. (58)

Proof. Since B1 ∩B2 is a subring and a submodule of A, it
tells that B1 ∩B2 is a subalgebra of A. Let Γ � (a + c,{

b + c) ∈ B1 × B2|a ∈ C1, b ∈ C2, c ∈ B1 ∩B2}; since Ci is an
algebraic ideal of Bi for i � 1, 2, then Γ is a subring and a
submodule of B1 × B2 from .eorem 5 and .eorem 6,
which implies that Γ is a subalgebra of B1 × B2. Following
.eorem 3, let
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Γ11 � c1 ∈ B1| c1, 0(  ∈ Γ ,

Γ21 � c2 ∈ B2| 0, c2(  ∈ Γ ,

Γ12 � c1 ∈ B1| c1, c2(  ∈ Γ for some c2 ∈ B2 ,

Γ22 � c2 ∈ B2| c1, c2(  ∈ Γ for some c1 ∈ B1 ,

(59)

then we have

Γ11 � C1 + B1 ∩C2, Γ12 � C1 + B1 ∩B2,

Γ21 � C2 + C1 ∩B2, Γ22 � C2 + B1 ∩B2,
(60)

and Γi1 an dΓi2 are subalgebras of Bi such that Γi1 is an al-
gebraic ideal of Γi2 for i � 1, 2 according to .eorem 5 and
.eorem 6. .us, by .eorem 3, we have

C1 + B1 ∩B2

C1 + B1 ∩C2
�

C2 + B1 ∩B2

C2 + C1 ∩B2
. (61)

□

Remark 4. Zassenhaus lemma for R-algebra implies the
Second Isomorphism .eorem for R-algebra, i.e., if A is an
R-algebra and B and J are subalgebras of A such that J is an
algebraic ideal of A, then

J + B

J
�

B

B∩ J
. (62)

In fact, let C1 � J, B1 � A, C2 � J∩B, and B2 � B; since
J + J∩B � J, B + J∩B � B, J∩B + J∩B � J∩B, we have

C1 + B1 ∩B2 � J + B,

C1 + B1 ∩C2 � J + J∩B � J,

C2 + B1 ∩B2 � J∩B + B � B,

C2 + C1 ∩B2 � J∩B + J∩B � J∩B.

(63)

Following .eorem 7, we have (J + B)/J � B/(B∩ J).

Example 3. Let C1 � (1 + x) � (1 + x)f(x)|f(x) ∈ Z[x] ,
B1 � Z[x] which is an Z-algebra, C2 � (x2), and B2 �

(x2, 5) � x2f(x) + 5g(x)|f(x), g(x) ∈ Z[x] , then Ci is
an algebraic ideal of Bi for i � 1, 2, and

C1 + B1 ∩B2 � (1 + x) + x
2
, 5  � 1 + x, x

2
, 5 ,

C1 + B1 ∩C2 � (1 + x) + x
2

  � 1 + x, x
2

 ,

C2 + B1 ∩B2 � x
2

  + x
2
, 5  � x

2
, 5 ,

C2 + C1 ∩B2 � x
2

  +(1 + x)∩ x
2
, 5 .

(64)

According to .eorem 7, we have

1 + x, x
2
, 5 

1 + x, x
2

 
� 5Z �

x
2
, 5 

x
2

  + x
2
, 5 ∩ (1 + x) 

. (65)
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