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SARS-CoV-2, known as COVID-19, has a�ected the entire world, resulting in an unexpected death rate as compared to the death
probability before the pandemic. Prior to the COVID-19 pandemic, death probability has been assessed in a normal context that is
di�erent from those anticipated during the pandemic, particularly for the older population cluster. However, there is no such
evidence of excess mortality in Malaysia to date. �erefore, this study determines the excess mortality rate for speci�c age groups
during the pandemic outbreak in Malaysia. Before determining the excess mortality rate, this study aims to establish the e�ciency
of various parametrized mortality models in reference to the data set before the pandemic. �is study employs the hold-out,
repeated hold-out, and leave-one-out cross-validation procedures to identify the optimal mortality law for �tting the mortality
data. Based on the goodness-of-�t measures (mean absolute percentage error, mean absolute error, sum square error, and mean
square error), the Heligman-Pollard model for men and Rogers Planck model for women are considered as the optimal models. In
assessing the excess mortality, both models favour the hold-out technique. When the COVID-19 mortality data are incorporated
to forecast the mortality rate for people aged 60 and above, there is an excess mortality rate. However, the men’s mortality rate
appears to be delayed and more prolonged than the women’s mortality rate. Consequently, the government is recommended to
amend the existing policy to re�ect the post COVID-19 mortality forecast.

1. Introduction

�e pandemic COVID-19, known as Severe Acute Respira-
tory Syndrome Coronavirus 2 (SARS-CoV-2), is a highly
contagious disease, a�ecting human’s respiratory, hepatic,
gastrointestinal, and neurological systems has made a sig-
ni�cant negative impact on the entire world [1]. �is pan-
demic has the potential to have an unparalleled in�uence
around the globe, as the number of deaths continues to rise
day by day. Malaysia has almost 17,000 COVID-19 daily cases
on August 9, 2021, with 212 deaths, making it the Southeast
Asian country with the third-highest cumulative cases after

Indonesia and the Philippines [2]. Despite the Malaysian
government’s implementation of a nationwide movement
control order (MCO) on March 18, 2020, this pandemic
substantially impacted humanity, particularly the number of
deaths. Aside from the current overall population, predicting
the estimated size of future populations requires under-
standing mortality rates. Although the death rate is an un-
expected occurrence, it profoundly a�ects demographers,
insurance companies, legislators, and the government.
�erefore, all stakeholders should be aware of changes in
mortality rates to continue providing the highest quality of
service and deliver the best resources for future planning.
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According to the Department of Statistics Malaysia,
Malaysians aged 60 and more are expected to reach 3.5
million in 2020, accounting for 10.7% of the country’s total
population. However, the current COVID-19 pandemic is
anticipated to lower the number of senior citizen pop-
ulations, as COVID-19 mortality rates are higher in coun-
tries with a higher proportion of the population aged 65 and
over [3,4]. Consequently, the biggest concern articulated
prior to the pandemic outbreak concerning an ageing society
should be reconsidered, as the mortality rate of elderly
citizens has a significant influence during the pandemic. In
terms of post-pandemic support for Malaysia’s ageing
population, Jamaluddin et al. [5] proposed the following
steps: (i) reconsider whether the existing social security
framework meets the needs of the population post-pan-
demic and in the light of an ageing population and (ii)
reformation of the existing social security framework and a
holistic execution plan to be contemplated in light of the
projected economic outlook. Furthermore, Chung et al. [6]
emphasised the importance of assisting older adults in
Malaysia in adapting to their new surroundings and par-
ticipating actively in social and economic activities.

COVID-19 is exerting a detrimental influence on
humans all across the world, resulting in higher mortality
and shorter life expectancy. Nevertheless, age-specific
mortality rates have yet to be investigated in order to de-
termine whether Malaysia has been experiencing an excess
in mortality. Excess mortality rates occur when the total
number of deaths during a crisis (i.e., global pandemic)
exceeds what would be expected in normal circumstances
[7]. If an excess mortality rate was identified, the govern-
ment, demographers, insurance providers, and policymakers
might revise their existing strategy for dealing with the
current population numbers. As a result of this event, this
study determines the excess mortality for a specific age
group in Malaysia during the COVID-19 pandemic. Before
investigating the excess mortality rate, this study investigates
the optimum resampling method and parametrized mor-
tality model to forecast the mortality rate under normal
conditions. Parametrized functions, commonly known as
mortality laws, are one-factor models that aim to represent
the age pattern of death parsimoniously and they have
advantages in the smoothness of predicted rates over time
[8]. On the other hand, resampling methods are required as
one of the quantitative tools to analyze the existing and
anticipated conditions of mortality patterns [9].

As a consequence of the pandemic’s domino effect, the
number of deaths is increasing tremendously.)erefore, this
study aims to forecast the mortality rate in normal condi-
tions by employing various resampling methods to fit the
Malaysian mortality rate in identifying the best model and
resampling method. )e main contribution of this research
is twofold: (i) identifying the best resampling method and
mortality model for forecasting the Malaysian mortality rate
in normal conditions and (ii) determining the existence of
an excess mortality rate during the pandemic. In the next
section, the parametric mortality models employed in this
study, as well as their development and application, are
briefly described. Several resampling techniques for fitting

mortality are briefly discussed in the next section. )e next
section utilizes goodness-of-fit measures to identify the best
model for forecasting the morality rate under normal
conditions in Malaysia. )e next section also determines the
existence of excess mortality during COVID-19 before
concluding this research. Finally, the optimal mortality
model and resampling technique to forecast normal and
excess mortality rates for specific age groups during a
pandemic are summarised in the final section.

2. Parametrized Mortality Models

)is section describes the parametric mortality models in-
volved to fit the mortality rates. )e mortality models de-
scribe the process of individuals in a population dying off
over the timeframe of a significant portion of their lives [10].
)e mortality rate formulation is expressed in Equation 1.

mx,t �
Dx,t

Ex,t

, (1)

where

(i) mx,t: the mortality rate for a specific age group of x
at a specific time t,

(ii) Dx,t: number of deaths for a specific age group of x
at a specific time t, and

(iii) Ex,t: exposures for a specific age group of x at a
specific time t.

)e number of populations at the beginning and end for
a certain age group at a specific time is averaged to compute
exposures.)e number of deaths and number of populations
are extracted for the Department of Statistics, Malaysia. )e
“MortalityLaws” package by Pascariu [10], which was de-
veloped in the R software, is utilized to fit the mortality rate.
For both men and women, the mortality rate is provided in a
five-year age group ranging from 0 to 84 years old. )e data
set covers the years 1995 to 2018 and fits the mortality rate in
normal conditions. Table 1 shows a descriptive analysis for
data characteristics used in this research study.

Table 2 describes the parametric mortality models to fit
the Malaysian mortality rate. )e HP model was developed
by Heligman and Pollard [11], which consists of eight
parameters with three terms: (i) the first term reflects the
mortality rate during early childhood from 0 to 9 years old,
(ii) the second term defines the adult mortality rate from 10
to 40 years old, and (iii) the third term illustrates the se-
nescence mortality rate for ages over 40 years old. )e
Nigerian mortality rate was employed by Umar and
Chukwudi [15] to investigate the performance of the HP
and the Lee and Carter [16] models. Besides that, Silva et al.
[17] applied the HP model to estimate life expectancy at
birth in Mexico. Also, Kostaki [12] developed the KTmodel
with nine parameters to eliminate a source of systematic
error that affects the fit of the HP formula. )e HP and KT
models differ in the second term, which describes the
spread of the accident hump to the left and right of its top
[18]. )e use of the KT model with mortality data [19–21]
demonstrated that the cubic splines modification resulted
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in the smoothing process to capture the mortality varia-
tions over time easily.

Furthermore, the WT model, which was introduced by
Wittstein [13] and consisted of four parameters with two terms,
was applied to investigate the human’s mortality pattern [22].
)e WT model is an alternative to the existing used logistic
function in fitting observed probabilities at the oldest ages [23].
)eWTmodel was postulated to overcome the Gompertz-law

anomaly on enhancing a model that works for many countries
with minor flaws such as lack of model fit for a particular age
group [24]. In addition, Rogers and Planck [14] developed the
RP model, which is a multiexponential that compromises of
four terms and nine parameters for modelling migration. )e
RP model consists of a constant, exponentially dropping child
mortality, a double exponential accident hump, and Gom-
pertzian senescent mortality [8].

Table 1: Descriptive statistics.

Statistics Age group Male Female Age group Male Female
Mean

0–4

1.9189×10− 03 1.5988×10− 03

45–49

5.1574×10− 03 2.8259×10− 03

Median 1.7668×10− 03 1.4725×10− 03 5.0859×10− 03 2.7961× 10− 03

Standard deviation 4.2349×10− 04 3.4035×10− 04 2.4775×10− 04 1.5721× 10− 04

Variance 1.7935×10− 07 1.1584×10− 07 6.1382×10− 08 2.4714×10− 08

Mean

5–9

3.1772×10− 04 2.3448×10− 04

50–54

8.0693×10− 03 4.6852×10− 03

Median 2.8665×10− 04 2.1560×10− 04 7.9484×10− 03 4.5973×10− 03

Standard deviation 8.4148×10− 05 5.3021× 10− 05 4.0884×10− 04 2.8896×10− 04

Variance 7.0810×10− 09 2.8112×10− 09 1.6715×10− 07 8.3497×10− 08

Mean

10–14

4.0113×10− 04 2.5182×10− 04

55–59

1.2566×10− 02 7.5739×10− 03

Median 3.8506×10− 04 2.3364×10− 04 1.2481× 10− 02 7.3453×10− 03

Standard deviation 7.7224×10− 05 6.2299×10− 05 7.9368×10− 04 6.2704×10− 04

Variance 5.9636×10− 09 3.8812×10− 09 6.2992×10− 07 3.9317×10− 07

Mean

15–19

1.0895×10− 03 3.5803×10− 04

60–64

1.9787×10− 02 1.2390×10− 02

Median 1.0535×10− 03 3.4772×10− 04 1.8959×10− 02 1.1582×10− 02

Standard deviation 2.0656×10− 04 6.3557×10− 05 2.0697×10− 03 1.6288×10− 03

Variance 4.2666×10− 08 4.0395×10− 09 4.2837×10− 06 2.6529×10− 06

Mean

20–24

1.3148×10− 03 4.3422×10− 04

65–69

3.0495×10− 02 2.0521× 10− 02

Median 1.2013×10− 03 4.1210×10− 04 3.0506×10− 02 2.0650×10− 02

Standard deviation 3.3529×10− 04 7.0974×10− 05 3.2912×10− 03 3.3641× 10− 03

Variance 1.1242×10− 07 5.0374×10− 09 1.0832×10− 05 1.1317×10− 05

Mean

25–29

1.3885×10− 03 5.2769×10− 04

70–74

4.7377×10− 02 3.5058×10− 02

Median 1.2929×10− 03 5.0828×10− 04 4.6831× 10− 02 3.5481× 10− 02

Standard deviation 3.7518×10− 04 7.3722×10− 05 5.7506×10− 03 6.0824×10− 03

Variance 1.4076×10− 07 5.4349×10− 09 3.3070×10− 05 3.6995×10− 05

Mean

30–34

1.8474×10− 03 7.3459×10− 04

75–79

7.2970×10− 02 6.0594×10− 02

Median 1.9535×10− 03 7.2005×10− 04 6.9602×10− 02 5.9331× 10− 02

Standard deviation 3.1984×10− 04 7.1331× 10− 05 9.5451× 10− 03 9.5346×10− 03

Variance 1.0230×10− 07 5.0881× 10− 09 9.1109×10− 05 9.0909×10− 05

Mean

35–39

2.4806×10− 03 1.0957×10− 03

80–84

1.0441× 10− 01 9.6537×10− 02

Median 2.5103×10− 03 1.0635×10− 03 9.7229×10− 02 9.6189×10− 02

Standard deviation 2.3528×10− 04 8.6181× 10− 05 1.3292×10− 02 9.0265×10− 03

Variance 5.5355×10− 08 7.4271× 10− 09 1.7668×10− 04 8.1478×10− 05

Mean

40–44

3.5092×10− 03 1.7307×10− 03

Median 3.5147×10− 03 1.7259×10− 03

Standard deviation 1.5476×10− 04 1.0189×10− 04

Variance 2.3950×10− 08 1.0383×10− 08

Table 2: List of parametrized mortality models, acronyms, and equations.

Abbreviations of
Models Models References Equations

HP Heligman-
Pollard [11] mx � A(x+B)C

+ D∗ exp[− E(ln(x/F))2] + (GHx/1 + GHx)

KT Kostaki [12] mx/1 − mx �
A

(x+B)C

+ D
∗
exp[− E1(ln(x/F))

2
] + GH

x
, for x≤F

A
(x+B)C

+ D
∗
exp[− E2(ln(x/F))

2
] + GH

x
, for x>F

⎧⎨

⎩

WT Wittstein [13] mx � 1/BA− (Bx)N

+ A− (M− x)N

RP Rogers Plank [14] mx � A0 + A1
∗ exp[− Ax] + A2

∗exp[B(x − U) − exp[− C(x − U)]] + A3
∗exp[Dx]
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3. Resampling Methods

)is section briefly describes the resampling methods to
select the parametric mortality model that best fits the
Malaysian case for both men and women in normal cir-
cumstances. First, each model is fitted to acquire the pa-
rameters for their particular models for the entire study
period by using the observed mortality rate expressed in
Equation 1.)en, for each model and gender, a different loss
function is applied to optimize the model (refer to Table 3).
Refer to [10] for further information about the loss function.
After acquiring all parameters for each model, hold-out,
repeated hold-out, and leave-one-out cross-validation
(LOOCV) methods are used to resample each parametric
mortality model. Table 4 illustrates the goodness-of-fit
measures in fitting the observed mortality data for each
model, which are the mean absolute percentage error
(MAPE), mean absolute error (MAE), sum square error
(SSE), and mean square error (MSE).

Table 4 reveals that the HP model has the lowest values
for all goodness-of-fit measures for the men’s mortality rate,
followed by the WT, RP, and KT models. )e lower the
goodness-of-fit measures, the better the parametric mor-
tality model. )e bold values indicate the best mortality
models according to their respective goodness-of-fit mea-
sures. All of the goodness-of-fit measures display a con-
sistent result for each model’s performance when fitting the
observed mortality rate. Based on Table 4, the HP model is
the best-parametrized mortality model for fitting the ob-
served mortality rate since the model has scored the best
values for all measurements. Although the HP fits the men’s
mortality rate well, it cannot fit the women’s mortality rate
due to an overparameterization issue [25,26]. )is issue is
also applicable to our research study here. )erefore, Table 5
solely illustrates the goodness-of-fit measures for the KT,
WT, and RP models in fitting the women’s mortality rate.

Table 5 shows that the RP model has scored the best value
for all goodness-of-fit measurements. Note that the lower the
goodness-of-fit measure, the better the parametric mortality
model. )erefore, the RP model is the best fit for the women’s
mortality rate.)eRPmodel is the best based onMAPE values,
followed by the WT and KT models. On the other hand, the
MAPE value yields inconsistent results when compared to the
other three measurements. In contrast, the RP model appears
to be the best mortality model followed by the KT and WT
models based on the MAE, SSE, and MSE values. It is im-
portant to note that the first procedure fits the observed
mortality rate to acquire the parameters for each model and
gender. While other studies applied MAE and MAPE to de-
termine the level of prediction in forecasting crude oil prices
[27,28], this study research study utilizes the same accuracy
measures to determine the best parametric model in fore-
casting the mortality rate. )en, the next step is to apply hold-
out, repeated hold-out, and LOOCV resampling methods to
forecast the parameters for each model and gender.

3.1. Hold-Out Methods. Hold-out methods, also known as
out-of-sample methods, require two sets of data: training

and testing.)e training set is a set of data designed to fit the
model, whereas the testing set is used to evaluate the model’s
forecasting performance [29]. )e training and testing sets
are randomly divided depending on the number of samples.
For instance, the training set contains 75% of the sample,
while the testing set contains the remaining of 25%. How-
ever, this varies according to the situation, such as 80% and
20% or 2/3 and 1/3 [30,31]. )e sample should be ordered
chronologically because this study involves time-series data
[32]. Refer Figure 1(a) in for an example of how to divide the
data. For eachmortality model, the methods for applying the
hold-out method were as follows:

(1) )e data are separated into two sets, with the training
set having a 2 :1 ratio to the testing set. In addition,
the training set spans the years 1995 through 2010,
whereas the testing set spans the years 2011 through
2018.

(2) )e testing set parameters are forecasted using the
parameters from the training set.

(3) For all age groups, the parameters are fitted to ac-
quire the forecasted mortality rate.

(4) )e goodness-of-fit measurements are used to assess
each mortality model’s forecasting performance for
each age group.

3.2. Repeated Hold-Out Methods. )e second resampling
method is the repeated hold-out, which follows a similar
procedure to the hold-out but involves several iterations
[33]. An infinite new sample with a certain Bayesian dis-
tribution can be generated using this method [34]. Unlike
the hold-out method, this method selects the training and
testing sets at random for each iteration. )e repeated hold-
out, as proposed by Bergmeir et al. [35], applies the standard
procedure for time series data without any adjustments.
Refer Figure 1(b) in for an example of how the repeated
hold-out method is applied in the analysis. )e repeated
hold-out method follows a similar procedure but takes into
accounts the sample’s peculiarities as follows:

(1) )e sample is divided into two sets, with two-third of
the sample serving as the training set and one-third
serving as the testing set. )e procedure is repeated
for a number of iterations. For the first iteration, the
training set corresponds to the years 1996, 1997,
1999, 2001, 2002, 2003, 2007, 2008, 2009, 2012, 2013,
2014, 2015, 2016, 2017, and 2018. Whereas the testing
set corresponds to the years 1995, 1998, 2000, 2004,
2005, 2006, 2010, and 2011 for the first iteration.

Table 3: Loss function in optimizing the parametric mortality
model to obtain the fitted value for both genders.

Models Men Women
HP Poisson None
KT LF6 LF6
WT LF5 LF2
RP LF3 LF2

4 Journal of Mathematics



(2) Since the data are in a random order, the parameters
for the testing set are obtained using the package
“imputeTS” [36].

(3) )e parameters of the testing set are fitted to acquire
the forecasted mortality rate for all age groups in the
testing set.

(4) )e goodness-of-fit measures for each age group are
computed to evaluate the forecasting ability for each
mortality model.

Using the looping function in the R software, different
training and testing sets are generated randomly for each
iteration and model. )e number of iterations is repeated
100 times as applied by Atance et al. [9].

3.3. Leave-One-Out Cross-Validation. )e third method is
leave-one-out cross-validation (LOOCV), nearly identical to
the first hold-out method but differs in the proportion of the
training and testing sets. For a more detailed discussion of the
analysis involved in this analysis, see [37]. )is method has

several advantages over other methods: (a) it minimizes
sample bias because the training set is made up of n-1 ob-
servations, which covers almost the entire sample and (b) it
selects the training and testing sets without involving ran-
domness because almost all data are used for fitting and testing
purposes [38]. )e training set has a window with a defined
period. For the following iteration, a new datum of time series
is added chronologically, also known as an “assessment on a
rolling forecasting origin one-step-ahead” [39]. For a visual
representation of how this method works, see Figure 1(c) in .
)e following are the approaches for modifying this method:

(1) )e first three years (1995, 1996, and 1997) are
utilized as a training set in the first iteration because
three is the least number of samples to fit the
mortality model [40].

(2) )e ARIMA model is used to forecast the parameter
for the year 1998 based on the first three time-series
data.

(3) )e number of training data is raised by one to
acquire the next forecasted parameter for the

Table 4: Goodness-of-fit measures in fitting the men’s mortality rate.

Models MAPE (%) MAE SSE MSE
HP 4.5572 7.0954 × 10−04 4.4854 × 10−05 2.6385 × 10−06

KT 33.5167 1.3949×10− 03 1.7418×10− 04 1.0246×10− 05

WT 13.4823 1.0489×10− 03 5.9971× 10− 05 3.5277×10− 06

RP 22.7458 1.0584×10− 03 6.8785×10− 05 4.0462×10− 06

Note: bold values indicate the lowest values from their respective columns.

Table 5: Goodness-of-fit measures in fitting of women.

Models MAPE (%) MAE SSE MSE
KT 71.1260 2.0610×10− 03 2.2707×10− 04 1.3357×10− 05

WT 13.6325 2.3856×10− 03 6.0150×10− 04 3.5382×10− 05

RP 5.2998 1.0288 × 10−03 1.5532 × 10−04 9.1365 × 10−06

Note: bold values indicate the lowest values from their respective columns.

TRAINING SET TESTING SET OMITTED SET

ITERATION 1

ITERATION 2

ITERATION 3

ITERATION 1

ITERATION 2

ITERATION 3

(a)

(b)

(c)

Figure 1: Schematic diagrams for (a) hold-out, (b) repeated hold-out, and (c) LOOCV resampling method.
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following iteration. Finally, the forecasted parame-
ters are fitted to provide the forecasted mortality rate
for each testing set’s age group.

(4) Goodness-of-fit measures are calculated for each age
group to evaluate the forecasting ability of each
mortality model.

4. Goodness-of-Fit Measures

)is section presents the goodness-of-fit measurements for
each model to assess its forecasting ability: (i) MAPE, (ii)
MAE, (iii) SSE, and (iv) MSE.

Table 6 summarizes previous studies on goodness-of-fit
measures for selecting the best model for fitting and fore-
casting the mortality rate in normal conditions. Equation 2
displays the MAPE formula, Equation 3 represents the MAE
formula, Equation 4 illustrates the SSE formula, and
Equation 5 shows the MSE for the hold-out method
specifically.

MAPE �
1
nd

􏽘
t

􏽘
x

mx,t − 􏽢mx,t

mx,t

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (2)

MAE �
1
nd

􏽘
t

􏽘
x

mx,t − 􏽢mx,t

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (3)

SSE � 􏽘
t

􏽘
x

mx,t − 􏽢mx,t􏼐 􏼑
2
, (4)

MSE �
1
nd

􏽘
t

􏽘
x

mx,t − 􏽢mx,t􏼐 􏼑
2
. (5)

Meanwhile, Equation (6) indicates the goodness-of-fit
measure for repeated hold-outs, while Equation (7) exhibits
the goodness-of-fit measure for the LOOCVs.

Repeated hold − out �
1
k

􏽘

k

j�1
Goodness − of − fitmeasurej,

(6)

LOOCV �
1
n

􏽘

n

i�1
Goodness − of − fitmeasurei.

(7)

)e number of iterations involved in a repeated hold-out
is represented by k. Since the iteration is repeated 100 times,
k is equivalent to100. On the other hand, n represents the
number of observations in this study, which is 24. )e
forecasting performance of each mortality model is assessed
using goodness-of-fit measures. Table 7 shows the goodness-
of-fit measures for the men, while Table 8 shows the
goodness-of-fit measures for the women.

Table 7 indicates the goodness-of-fit measure for each
parametrizedmortality model of resamplingmethods for the
men’s mortality data. In terms of resampling methodologies,
the repeated hold-out method favours the KT model for
men’s mortality, whereas the hold-out method favours the
HP, WT, and RP models. Note that the HP model is the best

mortality model for fitting the men’s mortality data, and the
hold-out method is the best resampling method for men’s
data. Although the RPmodel has scored the lowest values for
all goodness-of-fit measurements of the hold-out resampling
method, the HP model has scored the lowest values for three
goodness-of-fit measurements. )e fact that the HP model
has the lowest values for MAE, SSE, and MSE for the hold-
out resampling method resulting the HP model as the op-
timal model for the men’s mortality data.

Table 8 illustrates the goodness-of-fit measures in fitting
the women’s mortality rate. )e hold-out resampling
method is the best in fitting the women data based on the
KT and RP models. However, when it comes to fitting the
WTmodel, the repeated hold-out resampling method is the
best. Note that the RP model fits the women’s mortality
data well, and the hold-out is the best resampling method
for women data. Overall, the HP model for the men’s
mortality rate and the RPmodel for women’s mortality data
are the best models for fitting the mortality rate. Despite the
fact that the repeated hold-out is the best resampling
method for KTmen andWTwomen, the hold-out has been
demonstrated to be the best resampling method in other
situations.

5. Forecasting Mortality under Normal
Conditions and COVID-19

)e HP model is applied for the men’s data, and the RP
model is utilized for the women’s data using the hold-out
resampling method to forecast the mortality rate under
normal conditions and account for the COVID-19 mortality
data. )e mortality rate under normal conditions is fore-
casted from 2019 to 2030 without considering the COVID-
19 mortality data. )en, the COVID-19 mortality data for
2019 and 2020 are included to predict the mortality rate until
2030. )e excess mortality rate is determined by comparing
the mortality forecast under normal conditions to the
mortality forecast using the COVID-19 data. Figure 2 de-
picts the mortality rate for men aged 60 years and over. )e
straight line represents the observed mortality rate from
1995 until 2020, while blue dotted line indicates the fitted
mortality rate under normal conditions from 1995 until
2030. )e red dotted line indicates the forecasted mortality
rate by considering the COVID-19 mortality data. When the
mortality rate for people aged 60 and over is forecasted, the
mortality rate shows a decreasing pattern after 2020.
However, when the COVID-19 data for 2019 and 2020 are
incorporated in the forecasting, the mortality rate begins to
rise in 2023 and continues to rise after that. When using the
COVID-19 data in forecasting, it demonstrates that there is

Table 6: Summary of goodness-of-fit measures.

Goodness-of-fit Articles
MAPE [41–46]
MAE [17, 47–49]
SSE [17, 50–52]
MSE [17, 41, 48, 53]
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an aftereffect of mortality rate for men population aged 60
and over.

Figure 3 displays the mortality rate of women for the age
group of 60 years and over. Based on the observed mortality
rate, all age groups showed a decreasing pattern. However,
when the mortality rate is forecasted, considering the
COVID-19 mortality data, the mortality rate indicates a
slight increase in 2023 and then a reduction after that. )e
women’s mortality rate increases with age, but not as much
as the men’s mortality rate. Compared to the women’s
mortality rates, the men’s mortality rates have a delayed
effect but last longer. )is is most likely related to the fact
that women have a higher chance of outliving men.

6. Discussion

As the mortality rates for the elderly population of 60 years and
over improve, the ageing population becomes a major concern
[54, 55]. )e mortality rate of an ageing population has been
steadily increasing from 1950 to 2015 in Malaysia, consistent
from 1950 to 2015 [56]. Furthermore, Malaysia’s number of

people aged 60 and over is predicted to increase, resulting in an
ageing population. However, when the mortality rate is fore-
casted using the COVID-19 mortality data for 2019 and 2020,
themen’s mortality rate displays a delayed effect. Still, the trend
begins to indicate an increasing pattern starting in 2023. )e
mortality rate has increased significantly after 2023 across all
age groups for men aged 60 and over.

Furthermore, when the COVID-19 mortality data are
considered, the women’s mortality rate also shows an im-
pact, although it does not last as long as the men’s mortality
rate. Due to the COVID-19, it seems that the population of
men has a greater impact than the population of women.)e
women’s mortality rate has only impacted a short-term until
2023, after which it will return to a stable trend as forecasted
under normal conditions. )e COVID-19 mortality rate
exhibits a bigger impact when the age group increases. )e
result is consistent with the studies in [7, 57], which
demonstrated an excess mortality rate, particularly in
countries with a large population of people aged 65 years and
above during the COVID-19 pandemic.)e excess mortality
increased with age above 70 years and correlated in time

Table 7: Results of the goodness-of-fit measures for the men’s mortality.

Models Measures Hold-out Repeated hold-out LOOCV

HP

MAPE (%) 5.6770 5.1238 7.8842
MAE 7.8611 × 10−04 8.1409×10− 04 1.2178×10− 03

SSE 5.1695 × 10−05 7.8236×10− 05 1.697110− 04

MSE 3.0409 × 10−06 4.6021× 10− 06 9.9829×10− 06

KT

MAPE (%) 34.9447 33.1597 35.7525
MAE 1.4566 × 10−03 1.4572×10− 03 2.1629×10− 03

SSE 1.8423×10− 04 1.8385 × 10−04 4.3728×10− 04

MSE 1.0837×10− 05 1.0815 × 10−05 2.5723×10− 05

WT

MAPE (%) 14.7517 18.2086 27.8585
MAE 1.4752×10− 01 1.7130 × 10−03 3.3979×10− 03

SSE 6.1264 × 10−05 4.0727×10− 04 1.1290×10− 03

MSE 3.6038 × 10−06 2.3957×10− 05 6.6410×10− 05

RP

MAPE (%) 19.1942 22.7014 39.1911
MAE 1.0162 × 10−03 1.1772×10− 03 2.6291× 10− 03

SSE 6.6918 × 10−05 1.0276×10− 04 5.2375×10− 04

MSE 3.9363 × 10−06 6.0449×10− 06 3.0809×10− 05

Note: bold values indicate the lowest measurements from their respective rows.

Table 8: Results of the goodness-of-fit measures for the women’s mortality.

Models Measures Hold-out Repeated hold-out LOOCV

KT

MAPE (%) 74.1485 71.3582 66.8255
MAE 2.1718 × 10−03 2.2875×10− 03 2.5198×10− 03

SSE 2.2437 × 10−04 2.8220×10− 04 2.6727×10− 04

MSE 1.3198 × 10−05 1.6635×10− 05 1.5722×10− 05

WT

MAPE (%) 14.342 13.8261 16.6043
MAE 2.5703×10− 03 2.4004 × 10−03 2.5159×10− 03

SSE 7.2283×10− 04 6.1679 × 10−04 7.5042×10− 04

MSE 4.2519×10− 05 3.6282 × 10−05 4.4142×10− 05

RP

MAPE (%) 5.6581 5.9980 10.3610
MAE 1.0511 × 10−03 1.0693×10− 03 1.4759×10− 03

SSE 1.5562 × 10−04 1.6674×10− 04 2.8049×10− 04

MSE 9.1539 × 10−06 9.8081× 10− 06 1.6500×10− 05

Note: bold values indicate the lowest measurements from their respective rows.
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Figure 2: Men’s mortality rate for the age groups of (a) 60–64, (b) 65–69, (c) 70–74, (d) 75–79, and (e) 80–84.
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Figure 3: Women’s mortality rate for the age groups of (a) 60–64, (b) 65–69, (c) 70–74, (d) 75–79, and (e) 80–84.
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with the COVID-19 reported mortality rate time series in
Italy [58].

Based on the forecasted mortality rates for men and
women, the excess mortality rate only takes place after 2023.
)is is due to the fact that the mortality rate shows a de-
creasing pattern and increases after 2023. It can be con-
cluded that the Malaysia’s population experience the ageing
population to the point that the mortality rate due to
confirmed COVID-19 mortality has not impacted imme-
diately as soon as the COVID-19 outbreak in 2020. )is is
most likely due to the fact that an increasing of the ageing
population resulting from the tremendous achievements of
public health policies and social and economic development
in Malaysia [59].

Moreover, the mortality rates were higher for ages above
50 due to the pandemic in Spain but no evidence in the
Czech Republic [7]. )e empirical result suggests that the
COVID-19 mortality has a delayed and longer effect on the
men’s mortality rate. On the other hand, COVID-19 has a
quick and short effect on the mortality rate of women.
Although the forecasting only considers the mortality data
for two years due to data availability, the results could be
used as a benchmark to predict the post-COVID-19 mor-
tality rate for future planning.

7. Conclusion

)is study determines the excess mortality rate for particular
age groups during the COVID-19 in Malaysia. In order to
determine the excess mortality rate, this study employed
various parametrized mortality models to forecast the
mortality rate under normal conditions, including the
Heligman-Pollard, Kostaki, Wittstein, and Rogersplanck
models. )e data set involved in this study ranges from the
year 1995 to 2018. Furthermore, this study identifies the
optimal mortality law for fitting the mortality data utilising
multiple resampling methods, such as hold-out, repeated
hold-out, and leave-one-out cross-validation. )e optimal
model for men and women’s mortality rates is determined
using a variety of goodness-of-fit measures (mean absolute
percentage error, mean absolute error, sum square error, and
mean square error). )e Heligman-Pollard model for men
and the Rogers Planck model for women are the optimal
models based on goodness-of-fit measures. Both models
favour the hold-out technique as the best resampling
method. While our study has been conducted in a yearly
basis, there is no outlier detected by observing the boxplot.
)e post-COVID-19 mortality rate is projected for ten years
up to 2030 using the COVID-19 mortality data for 2019 and
2020. )e empirical results revealed that the COVID-19
mortality in Malaysia has an excess mortality rate, partic-
ularly among those aged 60 and over. )e men’s mortality
rate appears to have a delayed and longer effect than the
women’s mortality rate based on the forecasted mortality
rate. )is is most likely due to the risk of a woman living
longer than a man. In conclusion, this study recommends
amending the existing policy to reflect the post-COVID-19
mortality forecast. Furthermore, the mortality rate reveals
that excess mortality rate is caused not just by the illness

itself but also by other psychological matters such as suicide
and health treatment delay.
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