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To improve the employment forecasting accuracy of traditional grey models, the grey model with the fractional error accu-
mulation is proposed. �e estimation error is accumulated. �e proposed model can make use of the initial value x(1) and can
give more attention to the error of new data. �e monotonicity of the simulative value by the proposed model is data-driven and
uncertain. �e comparison results show that the proposed model can enhance the forecasting accuracy of traditional grey model.
It deserves to be applied to employment forecasting.

1. Introduction

High-quality personnel are very important for the entire
aviation industry. Based on the investigation and analysis of
the university student employment in the aviation industry,
the training countermeasures, the curriculum system, and
the improvement of teaching methods can be worked out.
�erefore, it is essential to predict the university student
employment of a school in the aviation industry. �e
methods of forecasting employment can be divided into two
kinds: qualitative forecasting and quantitative forecasting
[1]. At present, the forecast of the future human resource
demand is analyzed from the quantitative point of view, such
as the multiple regressionmodel [2], the grey forecast model,
and the neural network model [3]. Because the student
employment in the aviation industry is a complex grey
system, the in�uencing factors are uncertain and variable. In
this paper, the grey model is used to predict the student
employment in aviation industry for a university.

Due to the limitation of cost and time, it is di�cult to
obtain the adequate information in many forecasting sce-
narios [4, 5]. To address this problem, Deng Julong put
forward the grey system theory in 1982 [6, 7]. To enhance the
predictive accuracy of the traditional grey forecasting

models, the grey model has been developed. �e review of
previous studies is listed in Table 1.

However, the methods mentioned above cannot give
larger weight to the new information than that of the old
information, and cannot get rid of the limitation of the
development coe�cient in the grey forecast model. In this
paper, considering the memory superiority of fractional
order accumulation [22–28], the fractional error accumu-
lation grey model (FAGM(1, 1)) is proposed to give larger
weight to the new information than that of the old in-
formation. �e recent data can re�ect the recent situation.
�e future employment situation is very similar to the recent
information. �us, the employment prediction must give
more attention to the recent data. �e real cases also
demonstrated that FAGM(1,1) can obtain accurate fore-
casting results.

�e rest of this paper is as follows.�e FAGM(1,1) model
is put forward in Section 2. �e monotonicity and the ef-
fectiveness of the initial value by FAGM(1,1) is proved. Its
new information priority is discussed. �e validity of the
FAGM(1,1) model is demonstrated in Section 3. �e em-
ployment data of students in two universities are selected to
explain the application of FAGM(1,1) in Section 4. �e
conclusion is given in Section 5.
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2. FAGM(1, 1) and Its Properties

In most cases, the larger the weight of new information, the
better the forecasting results of the grey model. A non-
negative sequence is X � x(1), x(2), · · · , x(n){ }. For the
model,

x(k + 1) � ax(k) + b. (1)

To estimate the parameters a and b and pay more at-
tention to recent data in the meantime, we put forward the
definition.

Definition 1. For the actual data, εi(i � 1, 2, · · · , n − 1) is the
error. We can obtain

x(2) � ax(1) + b + ε1,

x(3) � ax(2) + b + ε2,

M,

x(n − 1) � ax(n − 2) + b + εn− 2,

x(n) � ax(n − 1) + b + εn− 1.

(2)

To frequently use the error of new data, we can obtain

􏽘

n

i�2
x(i) � a 􏽘

n− 1

i�1
x(i) +(n − 1)b + 􏽘

n− 1

i�1
εi,

􏽘

n

i�3
x(i) � a 􏽘

n− 1

i�2
x(i) +(n − 2)b + ε2 + 􏽘

n− 1

i�2
εi,

x(n − 1) + x(n) � a[x(n − 2) + x(n − 1)] + 2b + εn− 2 + εn− 1,

x(n) � ax(n − 1) + b + εn− 1.

(3)

Equation (3) is called the one-order error accumulation.
Similarly, we can give the two-order error accumulation.
Without loss of generality, the FAGM(1, 1) with the frac-
tional r-order error accumulation is

􏽘
n− 1

k�i

k + r − i − 1

k − i
􏼠 􏼡x(k + 1)

� a 􏽘
n− 1

k�i

k + r − i − 1

k − i
􏼠 􏼡x(k) + b 􏽘

n− 1

k�i

k + r − i − 1

k − i
􏼠 􏼡 + 􏽘

n− 1

k�i

k + r − i − 1

k − i
􏼠 􏼡εk, i � 1, 2, · · · , n − 1.

(4)

From Equation (3), we can see that all equations can
memorize the error εn− 1, and only 􏽐

n
i�2 x(i) � a􏽐

n− 1
i�2 x(i) +

(n − 1)b + 􏽐
n− 1
i�2 εi canmemorize the error ε1.)us, the bigger

r can give more weight to the error of new data. To give more
weight to the new information, its modelling process is as
follows.

Step 1. For the r-order error accumulation

􏽐
n− 1
k�i

k + r − i − 1
k − i

􏼠 􏼡εk, positive error and negative error

may be neutralized. )e neutralized error may be smaller
than the error of the positive error and negative error,
because the error εi(i � 1, 2, · · · , n − 1) may be negative, and
the error εi(i � 1, 2, · · · , n − 1) may be positive. )erefore,
the FAGM (1, 1) model is written as

􏽘

n− 1

k�i

k + r − i − 1

k − i
􏼠 􏼡x(k + 1) � a 􏽘

n− 1

k�i

k + r − i − 1

k − i
􏼠 􏼡x(k) + b 􏽘

n− 1

k�i

k + r − i − 1

k − i
􏼠 􏼡, i � 1, 2, · · · , n − 1. (5)

r is a fraction. When r � 1, FAGM (1, 1) model is [29]

􏽘

n− 1

k�i

x(k + 1) � a 􏽘

n− 1

k�i

x(k) + b(n − i), i � 1, 2, · · · , n − 1. (6)

To minimize the sum of the squared residuals, the un-
known parameters, 􏽢a, 􏽢b, is solved by the following least
squares estimation:

􏽢a

􏽢b
􏼢 􏼣 � D

T
D􏼐 􏼑

− 1
D

T
Y, (7)
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where

D �

􏽘

n− 1

k�1

k + r − 2

k − 1
􏼠 􏼡x(k) 􏽘

n− 1

k�1

k + r − 2

k − 1
􏼠 􏼡k

􏽘

n− 2

k�1

k + r − 3

k − i
􏼠 􏼡x(k) 􏽘

n− 2

k�1

k + r − 3

k − i
􏼠 􏼡k

⋮ ⋮

x(n − 1) 1
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,

Y �

􏽘
n

k�2

k + r − 2

k − i
􏼠 􏼡x(k)

􏽘

n− 1

k�3

k + r − 3

k − i
􏼠 􏼡x(k)

⋮

x(n)
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.

(8)

Step 2. For X � x(1), x(2), · · · , x(n), · · ·{ }, the predictive
sequence is

􏽢X � 􏽢x(1), 􏽢x(2), · · · , 􏽢x(n), 􏽢x(n + 1), · · ·{ }, (9)

where 􏽢x(k + 1) � 􏽢ax(k) + 􏽢b, 􏽢x(1) � x(1), 􏽢x(k) is the fitting
value at time k.

Step 3. )e mean absolute percentage error (MAPE) and
root mean square error (RMSE) are the performance criteria
of the model, where

MAPE �
1
n

􏽘

n

k�1

􏽢x(k) − x(k)

x(k)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 100%,

RMSE �

�����������������

􏽐
n
k�1 [􏽢x(k) − x(k)]

2

n
.

􏽳 (10)

)e forecasting function of FAGM(1, 1) is
􏽢x(k + 1) � 􏽢ax(k) + 􏽢b. )e simulative data 􏽢x(k) is not always
an exponential model. )erefore, the monotonicity of the
simulative value by FAGM(1, 1) is uncertain and data-
driven.

)e original sequence is

X � 347.839, 273.021, 289.014, 285.208, 288.818, 297.078{ }. (11)

)e simulative value of the traditional GM(1, 1) model is

􏽢X � 347.839, 277.152, 281.811, 286.540, 291.362, 296.263, 301.245, 306.307, 311.452{ }. (12)

r � 1.15, and the simulative value of the FAGM(1, 1)
model is

􏽢X � 347.839, 269.143, 296.533, 286.999, 290.318, 289.163, 286.810, 290.384, 289.140{ }. (13)

)us, the first value of original data by FAGM(1, 1) is
effective. )e first value of original data in traditional GM (1,
1) is not effective, i.e. the first value of original data in the
traditional GM(1, 1) does not affect the simulated value.

*eNew Information Priority of the FAGM(1, 1) model. It
is proved that the multivariable grey model can make use of
the new information to some extent [30]. According to
Lemma 1 in Reference [31], we can obtain the following
theorem.

Theorem 1. Assume that D ∈ Cn×n,Δ D ∈ Cn ×n, Y ∈
Cn,ΔY ∈ Cn, the vector norm ‖•‖ is compatible with the
matrix norm ‖•‖. If there is Cn×n for a matrix norm ‖•‖ on
‖D− 1‖‖Δ D‖< 1, then, the solutions of the nonhomogeneous
linear equations DX � Y and (D + Δ D)(x + Δx) � Y + ΔY
satisfy

‖Δx‖

‖x‖
≤

‖D‖ D
− 1����

����

1 − ‖D‖ D
− 1����

����‖ΔD‖/‖D‖

‖ΔD‖

‖D‖
+

‖ΔY‖

‖Y‖
􏼠 􏼡. (14)

Proof. When a disturbance 􏽥x(1) � x(1) + ε occurs,
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􏽥D � D + ΔD,

􏽥Y � Y + ΔY,

ΔD �

ε 0

0 0

⋮

0 0
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0

0

⋮

0
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‖Δx‖

‖x‖
≤

‖D‖ D
− 1����

����

1 − ‖D‖ D
− 1����

����‖ΔD‖/‖D‖

·
‖ΔD‖

‖D‖
+

‖ΔY‖

‖Y‖
􏼠 􏼡 �

‖D‖ D
− 1����

����|ε|
‖D‖ − ‖D‖ D

− 1����
����|ε|

.

(15)

In other words, the changing boundary of the solution is

L[x(1)] �
‖D‖ D

− 1����
����|ε|

‖D‖ − ‖D‖ D
− 1����

����|ε|
. (16)

When a disturbance 􏽥x(2) � x(2) + ε occurs,

􏽥D � D + ΔD,

􏽥Y � Y + ΔY,

ΔD �

rε 0

ε 0

⋮ ⋮

0 0
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,

‖Δx‖

‖x‖
≤

‖D‖ D
− 1����

����

1 − ‖D‖ D
− 1����

����
�����
r
2

+ 1
􏽰

|ε|/‖D‖

·

�����
r
2

+ 1
􏽰

|ε|
‖D‖

+
|ε|

‖Y‖
⎛⎝ ⎞⎠.

(17)

In other words, the changing boundary of the solution is

L[x(2)] �
‖D‖ D

− 1����
����

1 − ‖D‖ D
− 1����

����
�����
r
2

+ 1
􏽰

|ε|/‖D‖

�����
r
2

+ 1
􏽰

|ε|
‖D‖

+
|ε|

‖Y‖
⎛⎝ ⎞⎠.

(18)

When a disturbance 􏽥x(3) � x(3) + ε occurs,

ΔD �

r(r + 1)

2
ε 0

rε 0

ε 0

⋮ ⋮

0 0
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,

‖Δx‖

‖x‖
≤

‖D‖ D
− 1����

����

1 − ‖D‖ D
− 1����

����r
���������
r
2

+ 2r + 5
􏽰

|ε|/2‖D‖

r
���������
r
2

+ 2r + 5
􏽰

|ε|
2‖D‖

+

�����
r
2

+ 1
􏽰

|ε|
‖Y‖

⎛⎝ ⎞⎠.
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In other words, the changing boundary of the solution is

L[x(3)] �
‖D‖ D

− 1����
����

1 − ‖D‖ D
− 1����

����r
���������
r
2

+ 2r + 5
􏽰

|ε|/2‖D‖

r
���������
r
2

+ 2r + 5
􏽰

|ε|
2‖D‖

+

�����
r
2

+ 1
􏽰

|ε|
‖Y‖

⎛⎝ ⎞⎠.

(20)

)us, L[x(3)]>L[x(2)] >L[x(1)].

Similarly, when a disturbance 􏽥x(i) � x(i) +ε(i � 4, 5,

· · · , n − 1) occurs, we can obtain. L[x (n − 1)]>
· · · > L[x(5)]> L[x(4)].

)us, we have L[x(n − 1)]> · · · >L[x(5)]

>L[x(4)]> L[x(3)]> L[x(2)]> L[x(1)].

According to the calculation above, L[x(i)] is an in-
creasing function of i, i.e., the weight of new information
in the FAGM(1, 1) is larger than the old information. Also,
the FAGM(1, 1) model can give more weight to the new
data.

As i increases, L[x(i)] also increases. In other words, the
sensitivity of x(i) to the results will increase with the number
of the sample.)is means that the FAGM(1, 1) is more stable
when the sample data are small.
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Table 1: )e review of previous studies.

Reference Model form Sequence accumulation Parameter optimize
Reference [8] Self-adaptive intelligence grey model Fractional order Particle swarm optimization
Reference [9] Grey Bernoulli model Fractional order Particle swarm optimization

Reference [10] Riccati equation 1-accumulating generation
operator Simulated annealing algorithm

Reference [11] Verhulst-GM(1,N) model 1-accumulating generation
operator Least squares estimate

Reference [12] Traditional grey model 1-accumulating generation
operator Artificial intelligence

Reference [13] Grey model envelopment learning
procedure

1-accumulating generation
operator Least squares estimate

Reference [14] Traditional grey model Fractional order Least squares estimate
Reference [15] Grey model with fourier series Fractional order Least squares estimate
Reference
[16, 17] Nonlinear grey Bernoulli model Fractional order Genetic algorithm

Reference [18] Grey Lotka-volterra system Fractional order Least squares estimate
Reference [19] Grey multivariable model Fractional order Lingo software
Reference [20] Grey Bernoulli model Fractional order Particle swarm optimization algorithm

Reference [21] Traditional grey model Conformable fractional order Quantum inspired evolutionary
algorithm

Table 3: )e results of three models: Case 2.

Time Actual value FAGM(1, 1) Even GM(1, 1) Discrete GM(1, 1)
1 862.17 862.17 862.17 862.17
2 1140.84 1144.29 1113.60 1124.13
3 1541.38 1538.34 1517.36 1535.53
4 2088.53 2088.73 2067.52 2097.51
5 2855.94 2857.47 2817.15 2865.15
6 3930.31 3931.21 3838.58 3913.74
MAPE 0.12 1.73 0.60
RMSE 2.01 44.12 11.21
7 5524.43 5430.93 5230.35 5346.08
8 7590.21 7525.65 7126.75 7302.64
9 10678.29 10451.43 9710.73 9975.26
10 14635.61 14537.96 13231.59 13625.99
MAPE 1.33 7.52 5.12
RMSE 137.93 895.65 637.98

Table 2: )e results of three models: Case 1.

Year Actual value FAGM(1, 1) Even GM(1, 1) Discrete GM(1, 1)
2007 14.1 14.1 14.1 14.1
2008 15.5 14.9 13.9 13.9
2009 15.9 16.8 15.7 15.7
2010 16.7 17.3 17.7 17.7
2011 19.5 18.4 20.0 20.0
2012 22.0 22.1 22.6 22.6
2013 25.3 25.5 25.5 25.6
2014 30 30.0 28.8 28.9
MAPE 2.92 4.01 4.04
RMSE 0.59 0.84 0.83
2015 38.6 36.3 32.6 32.7
2016 48.3 44.7 36.8 36.9
2017 56.1 56.2 41.6 41.7
2018 66.6 71.6 47.0 47.1
MAPE 5.26 23.60 23.49
RMSE 3.29 13.81 13.71
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Table 4: )e criteria for MAPE.

MAPE (%) Forecasting ability
<10 Excellent
10–20 Good
20–50 Reasonable
>50 Weak

Table 6: )e employment data from Nanjing University of Aeronautics and Astronautics in the aerospace and other defense-related
industry.

Year Graduate student Undergraduate student
2015 672 633
2016 742 640
2017 740 649
2018 787 580
2019 875 531

Table 5: )e forecasting results of two models: Case 3.

Year Actual data FAGM(1, 1) GDGM(1, 1) [33]
2007 137.86 132.15 129.81
2008 157.81 148.96 142.76
2009 171.75 168.39 155.09
2010 191.09 190.83 165.77
2011 218.09 216.77 173.62
2012 245.65 246.75 250.89
2013 269.55 281.38 176.46
MAPE 2.47 17.29
RMSE 6.15 41.20

Table 7: )e forecasting employment data from Nanjing University of Aeronautics and Astronautics in the aerospace and other defense-
related industry.

Year Graduate student Undergraduate student Actual value of graduate employment Actual value of undergraduate employment
2020 936 480 985 504
2021 1001 414 1032 443
2022 1071 331 - -
2023 1147 224 - -
2024 1228 88 - -
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Figure 1: )e employment trend in the aerospace and other defense-related industry.
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)e grey system theory claims that the traditional grey
forecasting model can address the small sample, but this
claim lacks the theorem proof. )e FAGM(1, 1) is more
stable when the sample data is small in theory. )is is
a difference between the FAGM(1, 1) and the traditional grey
forecasting model. □

3. Verification of FAGM(1, 1) Model

)e adaptability of the FAGM(1, 1) model is proved in three
cases in this section.

Case 1. Take the nuclear energy consumption in China as an
example [32], the data from 2007 to 2014 is the in-sample
data, and the data from 2015 to 2018 is the out-of-sample
data. )e results of three models are given in Table 2.

In Table 2, both theMAPE (RMSE) of the in-sample data
and theMAPE (RMSE) of the out-of-sample data are smaller
than those of Even GM(1, 1) and Discrete GM(1, 1). )us,
the proposed model can enhance the traditional grey
forecasting models.

Case 2. )e data are from Reference [33].)e data from 1 to
6 are the in-sample data, and the data from 7 to 10 are the

out-of-sample data. )e results of three models are given in
Table 3.

In Table 3, both theMAPE (RMSE) of the in-sample data
and theMAPE (RMSE) of the out-of-sample data are smaller
than that of Even GM(1, 1) and Discrete GM(1, 1). )us, the
proposed model is an excellent model according to the
Lewis’s scale of MAPE values in Table 4 [7, 8].

Case 3. )e data of the disposable income per capita of
urban households in China is the same as in Reference [34].
)e data from 1997 to 2006 are used to forecast the data for
the next seven years. )e forecasting results are listed in
Table 5. In Table 5, the MAPE (RMSE) of FAGM(1, 1) is
much smaller than that of the traditional GM(1, 1) in the
out-of-sample data. )e forecasting results show that the
FAGM(1, 1) model has a better prediction performance.

In other words in this paper, Firstly, the monotonicity of
the FAGM(1, 1) value are data-driven. Secondly, the
FAGM(1, 1) can make full use of original data (including the
initial value). )irdly, the FAGM(1, 1) can pay more at-
tention to the recent data. Fourthly, FAGM(1, 1) can
overcome the limitation of the development coefficient in
grey forecast model.)us, the prediction results of FAGM(1,
1) are more accurate.

Table 8: )e employment data from Harbin Engineering University in the aerospace and other defense-related industry.

Year Graduate student Undergraduate student
2016 851 512
2017 816 431
2018 999 397
2019 1073 365
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Figure 2: )e employment trend of Harbin Engineering University in the aerospace and other defense-related industry.

Table 9: )e forecasting employment data from Harbin Engineering University in the aerospace and other defense-related industry.

Year Graduate student Undergraduate student Actual value of graduate employment Actual value of undergraduate employment
2020 1311 338 1238 322
2021 1453 316 1350 301
2022 1612 298 — —
2023 1792 282 — —
2024 1995 269 — —
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4. Application

To test the proposed forecasting model, the employment
data of graduate students and undergraduate students are
respectively predicted. )ese data are from the Student
Affairs Office of Nanjing University of Aeronautics and
Astronautics in China.We select the employment data in the
aerospace and other defense-related industry. )e data from
2015 to 2019 are the samples and are listed in Table 6. )e
forecasting results of the FAGM(1, 1) model are listed in
Table 7 and plotted in Figure 1.

As can be seen in Figure 1, more and more graduate
students will work in the aerospace and other defense-re-
lated industry. However, fewer and fewer undergraduate
students will work in this industry. )is result is consistent
with the actual situation.

Like the employment situation at Nanjing University of
Aeronautics and Astronautics, the employment data of
Harbin Engineering University are listed in Table 8. )ese
data are from the Student Affairs Office of Harbin Engi-
neering University in China. We cannot obtain the data of
2015. )e data from 2016 to 2019 are the samples. )e
forecasting results of the FAGM(1, 1) model are listed in
Table 9 and plotted in Figure 2.

As can be seen in Figure 2, the forecasting trends are the
same as Figure 1. Because the aerospace and other defense-
related industry is usually more knowledge- and technology-
intensive, it needs more andmore high-level talented people.
)e high-level talented people are the base of the aerospace
and other defense-related industry. )e students who have
a master’s degree can find a job in this field after graduation.
)erefore, the departments in two universities must enhance
the knowledge- and technology-intensive in the process of
teaching and learning.

5. Conclusion

)e fractional error accumulation grey model is proposed
and its properties are analyzed. )e real cases demonstrated
that the proposed model can obtain accurate forecasting
results. )e forecasting results indicate that the un-
dergraduate students must pursue a master’s degree if they
want to enroll in the aerospace and other defense-related
industry. )is model can also predict the employment data
in the aerospace and other defense-related industry in the
other universities. It can be applied to the employment
forecasting in the other regions and the other industries in
order to test the model performance.
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