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Al-Jarrah et al. defined a new topological operator, namely, δω-closure operator, and proved that it lies between the δ-closure
operator and the usual closure operator. Al-Ghour et al. defined θω-closure operator and discussed its properties. In this paper,
it is proved that the δω-closure operator lies between the θω-closure operator and the usual closure operator. Also, sufficient
conditions are given for the equivalence between the δω-closure operator and the θω-closure operator. Moreover, we define
three new types of continuity, namely, δω-continuity, ω-δ-continuity, and almost δω-continuity, and discuss their properties. It
is proved that the concepts of usual continuity and δω-continuity are independent of each other. In addition, the relationships
between different types of continuity have been investigated. Further, some examples and counter examples are given.

1. Introduction

Generating new topologies from old ones is a very interest-
ing and useful concept in topology. Let ðG, τÞ be a topolog-
ical space (abbreviated as ts) with no separation axioms
assumed. The closure of a subset E of G is denoted by the
symbol �E, and the interior of a subset E is denoted by the
symbol int E. A subset E is regular open (regular closed) if
int ð�EÞ = Eð �int E = EÞ. A point z in G is called a δ-cluster
point [1] of a subset E if for every open subset O containing
z, int ð�OÞ ∩ E ≠∅. The collection of all δ-cluster points of a
subset E is called δ-closure of E and is denoted by the sym-
bol ClδE. A subset E is called δ-closed [1] if ClδE = E and its
complement is δ-open. The topology on G of all δ-open sets
is denoted by the symbol τδ. The basis of τδ is the family of
all regular open sets. A ts is called semiregular if τδ = τ. The
δ-closure operator and its related concepts have been stud-
ied and generalized by many authors [2–6]. All regular open
sets, with the exception of the empty set, are included in the
class of somewhere dense sets. Somewhere dense sets have
been studied by many authors [7, 8]. In 1982, Hdeib [9] clas-
sified ω-closed sets as well as the complement of an ω-closed
set, i.e., an ω-open set. τω stands for the collection of all ω
-open sets. The collection τω forms a topology finer than
the usual topology τ. Further, the ω-open and ω-closed sets
and their properties have been studied by many authors

[10–12]. In paper [13], ω-regularity has been defined as a
generalization of regularity by Al-Ghour. In 2019, Al-
Jarrah et al. [14] defined δω-closure of a set by using ω-clo-
sure as follows: A point z in G is called δω-contact point of a
subset E if the interior of every ω-closed neighborhood
(abbreviated as nbhd) of z intersects E. The set of all δω
-contact points of E is called the δω-closure of E and is
denoted by the symbol ClδωE. The δω-closure operator is a
new topological operator which strictly lies between the
usual closure and the δ-closure operators. Al Ghour et al.
[13, 15] have defined new topological operators, namely,
θω-closure operator and θN -closure operator, and discussed
their properties.

This paper is organized as follows: After the introduc-
tion, definitions and results that have been already defined
and proved are included in preliminaries and will be utilized
to support various findings in the following sections. In the
next section, we have proved that δω-closure operator lies
between the usual closure operator and θω-closure operator.
Sufficient conditions are given for the equivalence of δω
-closure operator and θω-closure operator, and also of δω
-closure operator and the usual closure operator. In last sec-
tion, we define some new types of continuity, namely, δω
-continuity, ω-δ-continuity, and almost δω-continuity. We
observed that continuity and δω-continuity are independent
of each other. Moreover, we give some sufficient conditions
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for a δω-continuous function to be continuous. In addition,
we establish the relationships between different types of con-
tinuity and discuss some of their properties. Some examples
and counter-examples are also provided.

2. Preliminaries

Definition 1 (see [9]). Let ðG, τÞ be a ts and E ⊆ G, then, the
set of condensation points of E is denoted by the symbol
CondðEÞ and defined as CondðEÞ = fz ∈ G : O ∩ E is
uncountable,O ∈ τ and z ∈Og.

The set E is called ω-closed if CondðEÞ ⊆ E and its com-
plement is ω-open. τω represents the collection of all ω-open
sets.

Theorem 2 (see [9]). Let ðG, τÞ be a ts and E ⊆ G, then

(a) τω forms a topology on G

(b) τ ⊆ τω and τω ≠ τ in general

The closure of E in ðG, τωÞ is denoted by the symbol �Eω
:

Also, �Eω ⊆ �E and �Eω ≠ �E in general.

Definition 3 (see [1]). Let ðG, τÞ be a ts and E ⊆ G, then, the
set fz ∈G : �O ∩ E ≠∅,O ∈ τ and z ∈Og is called the θ-clo-
sure of E and denoted by the symbol ClθE.

The set E is called θ-closed if ClθE = E and its comple-
ment is θ-open. τθ represents the collection of all θ-open
sets.

Theorem 4 (see [1]). Let ðG, τÞ be a ts and E ⊆ G, then

(a) τθ forms a topology on G

(b) τθ ⊆ τ and τθ ≠ τ in general

Theorem 5 (see [1]). A ts is regular if τθ = τ.

Definition 6 (see [13]). Let ðG, τÞ be a ts and E ⊆ G, then, the
set fz ∈G : �Oω ∩ E ≠∅,O ∈ τ and z ∈Og is called the θω
-closure of E and denoted by the symbol ClθωE.

The set E is said to be θω-closed if ClθωE = E and its com-
plement is θω-open. τθω represents the collection of all θω
-open sets.

Theorem 7 (see [13]). Let ðG, τÞ be a ts and E ⊆G, then

(a) τθω forms a topology on G

(b) τθ ⊆ τθω ⊆ τ and τθω ≠ τ in general

Theorem 8 (see [13]). A ts is ω-regular if τθω = τ.

Definition 9 (see [14]). Let ðG, τÞ be a ts and E ⊆ G, then, the
set fz ∈G : int ð�OωÞ ∩ E ≠∅,O ∈ τ and z ∈Og is called the
δω-closure of E and denoted by the symbol ClδωE.

A set E is called δω-closed if ClδωE = E and its comple-
ment is δω-open. τδω represents the collection of all δω
-open sets.

Theorem 10 (see [14]). Let ðG, τÞ be a ts and let E ⊆G. Then

(a) �E ⊆ ClδωE ⊆ ClδE

(b) If E is δ-closed, then E is δω-closed

(c) If E is δω-closed, then E is closed

Definition 11. A ts ðG, τÞ is called

(a) [16] Locally countable if for each z ∈G, there exists
an open subset O such that z ∈O and O is countable

(b) [13] Antilocally countable if every nonempty open
subset is uncountable

(c) [17] Locally indiscrete if every open subset is closed

Lemma 12 (see [13]).

(a) If ðG, τÞ is an antilocally countable ts, then for all E
∈ τω, �E

ω = �E

(b) If ðG, τÞ is a locally countable ts, then τω is a discrete
topology

Definition 13 (see [13]). A ts is called ω-locally indiscrete if
every open subset is ω-closed.

Theorem 14 (see [13]).

(a) Every ts that is locally indiscrete is ω-locally indiscrete

(b) Every ts that is locally countable is ω-locally indiscrete

Theorem 15 (see [14]). Let ðG, τÞ be a ts and E ⊆G. Then,
E ∈ τδω if for each z ∈ E, and there is O ∈ τ such that z ∈O
⊆ int ð�OωÞ ⊆ E.

Theorem 16 (see[13]). Let ðG, τÞ be an ω-locally indiscrete ts
and let E ⊆ G. Then

(a) �E = ClθωðEÞ
(b) If E is closed in ðG, τÞ, then, E is θω-closed in ðG, τÞ

Theorem 17 (see [13]). For any ts ðG, τÞ, the following are
equivalent:

(a) ðG, τÞ is ω-regular
(b) For each subset E, �E = ClθωðEÞ
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Lemma 18 (see [1]). Let ðG, τÞ be a ts. Then, for each E ∈ τ,
�E = ClθðEÞ.

Theorem 19 (see [13]). Let ðG, τÞ be a ts. Then, for each E
∈ τω, �E = ClθωðEÞ.

Theorem 20 (see [13]).

(a) Every open ω-closed subset in a ts is θω-open

(b) Every countable open subset in a ts is θω-open

Definition 21 (see [18]). A function f : G⟶H is called δ
-continuous if for each z ∈G and each open nbhd P of f ðz
Þ, there is an open nbhd O of z such that f ðint ð�OÞÞ ⊆ int ð
�PÞ.

Definition 22 (see [13]). A ts ðG, τÞ is ω-regular if for each
open nbhd O of z there exists an open subset P such that z
∈ P ⊆ �Pω ⊆O.

Definition 23 (see [19]). A function f : G⟶H is called θω
-continuous if for each z ∈G and each open nbhd P of f ðzÞ,
there is an open nbhd O of z such that f ð�OÞ ⊆ �Pω

Definition 24 (see [20]). A function f : G⟶H is called
almost open if for every regular open subset O of G, f ðOÞ
is open in H.

Definition 25 (see [20]). Let ðG, τÞ and ðH, σÞ be two topo-
logical spaces (abbreviated as ts′s), and a function f : G
⟶H is called almost continuous if for each z ∈G and for
each P ⊆H open nbhd of f ðzÞ, there exists an open nbhd
O of z such that f ðOÞ ⊆ int ð�PÞ.

3. Some Results on δω-Closure Operator

In this section, the relationships between usual closure oper-
ator, δω-closure operator, and θω-closure operator have been
discussed.

Theorem 26. Let ðG, τÞ be a ts and let E ⊆G. Then

(a) ClδωE ⊆ ClθωE

(b) If E is θω-closed, then E is δω-closed

Proof.

(a) To prove ClδωE ⊆ ClθωE, let z ∈ ClδωE and O ∈ τ
with z ∈O. Therefore, int ð�OωÞ ∩ E ≠∅. We know
int ð�OωÞ ⊆ �Oω, and then, �Oω ∩ E ≠∅. We have z ∈
ClθωE

(b) Let E be θω-closed, then, ClθωE = E. By using part (a)
and Theorem 10(a), ClδωE = E, and hence, E is δω
-closed.

The following results give the equivalence conditions for
the δω-closure operator with δ-closure and θω-closure oper-
ators.

Theorem 27. Let ðG, τÞ be a ts and E ⊆ G. If ðG, τÞ is ω
-locally indiscrete, then

(a) �E = ClδωðEÞ = ClθωðEÞ
(b) E is closed in ðG, τÞ if E is δω-closed in ðG, τÞ
(c) E is δω-closed in ðG, τÞ if E is θω-closed in ðG, τÞ

Proof.

(a) By Theorems 26, 10(a) and 16

(b) Suppose E is closed, then, E = �E. By part (a), E = C
lδωðEÞ, and therefore, E is δω-closed. The converse
follows from Theorem 10(c).

(c) Suppose E is δω-closed, then E = ClδωðEÞ. By part (a),
E = ClθωðEÞ, and therefore, E is θω-closed. The con-
verse follows from Theorem 26(b).

Corollary 28. Let ðG, τÞ be a ts and E ⊆G. If ðG, τÞ is ω
-regular, then

(a) �E = ClδωðEÞ = ClθωðEÞ
(b) E is closed in ðG, τÞ if E is δω-closed in ðG, τÞ
(c) E is δω-closed in ðG, τÞ if E is θω-closed in ðG, τÞ

Remark 29. The statements of Theorem 27 hold even if ðG
, τÞ is locally indiscrete or locally countable by using Theo-
rem 14.

Theorem 30. Let ðG, τÞ be a ts and E ⊆G. If ðG, τÞ is antilo-
cally countable, then

(a) ClδðEÞ = ClδωðEÞ
(b) E is δω-closed in ðG, τÞ if E is δ-closed in ðG, τÞ

Proof.

(a) By Theorem 10(a), we have ClδωðEÞ ⊆ ClδðEÞ. Now
to prove ClδðEÞ ⊆ ClδωðEÞ, let z ∈ ClδðEÞ and open
subset O such that z ∈O. By definition, int ð�OÞ ∩ E
≠∅. Given ðG, τÞ is antilocally countable, then by
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Lemma 12(a), �Oω = �O, and hence, int ð�OωÞ ∩ E ≠∅.
Therefore, we get z ∈ ClδωðEÞ

(b) Suppose E is δω-closed, then E = ClδωðEÞ. By part (a),
E = ClδðEÞ. Therefore, E is δ-closed. The converse
follows from Theorem 10(b).

The following result gives some properties of δω-closure
operator.

Theorem 31. Let ðG, τÞ be a ts and let E, F ⊆G. Then

(a) If E ⊆ F ⊆ G, then ClδωE ⊆ ClδωF

(b) For every E, F ⊆G, ClδωðE ∪ FÞ = ClδωðEÞ ∪ ClδωðFÞ
(c) For every E ⊆G, ClδωE is a closed subset in ðG, τÞ
(d) For every E ∈ τω, ClδωE = �E

(e) For every E ∈ τ, ClδE = ClδωE = ClθωE = �E

Proof.

(a) Let z ∈ ClδωE and O ∈ τ with z ∈O. Since z ∈ ClδωE,
then int ð�OωÞ ∩ E ≠∅. Since E ⊆ F, therefore, int ð
�OωÞ ∩ F ≠∅. Hence, z ∈ ClδωF

(b) By part (a), we get ClδωðE ∪ FÞ ⊇ ClδωðEÞ ∪ ClδωðFÞ.
Now to prove ClδωðE ∪ FÞ ⊆ ClδωðEÞ ∪ ClδωðFÞ. Let
z ∉ ClδωðEÞ ∪ ClδωðFÞ, and there are two open sets

O, P containing z such that int ð�OωÞ ∩ E =∅ and
int ð�PωÞ ∩ F =∅. Now, we have z ∈O ∩ P ∈ τ and

int �O ∩ Pω� �
∩ E ∪ Fð Þ

= int �O ∩ Pω� �
∩ E

� �
∪ int �O ∩ Pω� �

∩ F
� �

⊆ int �Oω� �
∩ E

� �
∪ int �Pω� �

∩ F
� �

=∅∪∅ =∅:

ð1Þ

Hence, we get z ∉ ClδωðE ∪ FÞ.

(c) To prove G − ClδωðEÞ ∈ τ. Let z ∈G − ClδωðEÞ, there
is an open set O containing z such that int ð�OωÞ ∩
E =∅. Therefore, O ∩ ClδωðEÞ =∅. Hence, we get G
− ClδωðEÞ ∈ τ

(d) By Theorems 19, 10, and 26

(e) Follows from part (d) and Lemma 18

Theorem 32 (see [14]). Let ðG, τÞ be a ts, then, τδ ⊆ τδω ⊆ τ.
The equality in Theorem 32 does not hold, as the follow-

ing examples show.

Example 1. Let ðR, τÞ be a ts where R is real line and τ = f
∅g ∪ fO ⊆ R : complement of O is countableg. The regular

open subsets of ts τ are f∅, Rg, and then, τδ = f∅,Rg. Also
ðR, τÞ is antilocally countable ts. Therefore, by Theorem
30, we have τδ = τδω . Then, τδω = f∅,Rg. Hence, we get τδω
≠ τ.

Example 2. Let ðZ, τÞ be a ts where Z is set of integer and
τ = f∅g ∪ fO ⊆ Z : complement of O is finiteg. The regular
open subsets of ts τ are f∅, Zg, and then, τδ = f∅,Zg. Also
ðZ, τÞ is locally countable ts. Therefore, by Remark 29, we
have τ = τδω . Hence, τδ ≠ τδω .

If ts ðG, τÞ is semiregular, then τδ = τδω = τ.

Theorem 33. Let ðG, τÞ be a ts, then, τθω ⊆ τδω ⊆ τ.

Proof. To prove τθω ⊆ τδω . Let E ∈ τθω , then, G − E is θω
-closed and by Theorem 26 ðbÞ, G − E is δω-closed. Hence,
E ∈ τδω .

The equality in Theorem 33 does not hold, as the follow-
ing example shows.

Example 3. Let ðR, τÞ be a ts where R is the real line and τ
= f∅,R,N ,Qc,N ∪Qcg. By Example 2.26 of [13], τθω = f∅,
R,Ng. Now, to prove Qc ∈ τδω by using Theorem 15, we have

to find O ∈ τ for each z ∈Qc such that z ∈O ⊆ int ð�OωÞ ⊆Qc.
Let O =Qc, then, �Qcω = R −N . Now, int ð �QcωÞ = int ðR −NÞ
=Qc. So, z ∈O ⊆ int ð�OωÞ ⊆Qc is true for O =Qc, and this
implies Qc ∈ τδω . But Q

c ∉ τθω . Hence, τδω ≠ τθω .
If ts ðG, τÞ is ω-regular (ω-locally indiscrete or locally

indiscrete or locally countable), then τθω = τδω = τ. If ts ðG,
τÞ is antilocally countable, then τδ = τδω . If ts ðG, τÞ is regu-
lar, then τθ = τδ = τθω = τδω = τ. If a ts is antilocally countable
and ω-regular, then τθ = τδ = τθω = τδω = τ. It can be easily
seen by Example 2 and Example 3 that τδ and τθω are
incomparable.

Theorem 34.

(a) Every open ω-closed subset in a ts is δω-open

(b) Every countable open subset in a ts is δω-open

Proof. Directly follow from Theorems 33 and 20.

4. δω-Continuity

In this section, we define some new types of continuity and
discuss their relationships.

Definition 35. A function f : G⟶H is called δω-continu-
ous if for each z ∈G and each open subset P of H containing
f ðzÞ, there is an open subset O of G containing z such that
f ðint ð�OÞÞ ⊆ int ð�PωÞ.

Theorem 36. Every δω-continuous function is δ-continuous.
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Proof. Let ðG, τÞ and ðH, σÞ be two ts′s and f : G⟶H be a
δω-continuous function. Let z be in G and let P ⊆H open
nbhd of f ðzÞ. By assumption, there exists O ⊆ G an open
nbhd of z such that f ðint ð�OÞÞ ⊆ int ð�PωÞ ⊆ int ð�PÞ. This
implies that f is δ-continuous.

The converse of the Theorem 36 does not hold, as the
following example shows.

Example 4. Let a function f : ðZ, τindÞ⟶ ðZ, τcof Þ (Z be the
set of integers) be defined as f ðzÞ = z, where τind is indiscrete
topology on Z and τcof is finite complement topology on Z.
Then, f is δ-continuous but not δω-continuous. Let z ∈ Z
and P ∈ τcof such that f ðzÞ = z ∈ P. Take O = Z such that z
∈O ∈ τcof and f ðint ð�OÞÞ = Z ⊆ int ð�PÞ = Z. Hence, f is δ

-continuous. Now to prove f is not δω-continuous, let z =
0 and P = Z − f1, 2g. Then, P ∈ τcof with f ð0Þ = 0 ∈ P. Sup-
pose there exists O ∈ τind such that 0 ∈O ∈ τind and f ðint ð
�OÞÞ ⊆ int ð�PωÞ, but open subset in τind containing 0 is Z.
Take O = Z, then f ðint ð�OÞÞ ⊆ int ð�PωÞ is not true because f
ðint ð�OÞÞ = Z and int ð�PωÞ = Z − f1, 2g. This implies that f
is not δω-continuous.

The following result gives sufficient criteria for a δ-con-
tinuous to be δω-continuous.

Theorem 37. Let ðG, τÞ and ðH, σÞ be two ts′s, and let f
: G⟶H be a δ-continuous function with ðH, σÞ antilocally
countable, then, f is δω-continuous.

Proof. Let z be in G and let P ⊆H be any open nbhd of f ðzÞ.
By assumption, f is δ-continuous, so there exists O ⊆G an
open nbhd of z such that f ðint ð�OÞÞ ⊆ int ð�PÞ. Given ðH, σÞ
is antilocally countable, then by Lemma 12, we have �P = �Pω

, and thus, f ðint ð�OÞÞ ⊆ int ð�PωÞ. This implies that f is δω
-continuous.

The independence of continuity and δ-continuity have
been observed by Noiri [18]. In the following Examples 5
and 6, it is shown that the concepts of continuity and δω
-continuity are independent of each other.

Example 5. Let G be the real line with the usual topology and
H the real line with the co-countable topology. Let f : G
⟶H be the function defined by f ðzÞ = z. The ts H is
antilocally countable and by Example 4.4 of [18], f is δ
-continuous but not continuous, and then, by Theorem 37,
f is δω-continuous.

Example 6. Let N be the set of natural number with topology
f∅,N , f1gg, and let a function f : N ⟶N be defined as f
ðzÞ = z. It can be easily seen that f is a continuous function.
To check that f is δω-continuous, take z = 1 and P = f1g,
and then, P is open and f ðzÞ = z ∈ P. Also N is locally count-
able, and then, �Pω = P. Now for an open subset O with 1 ∈O,
we have O = f1g or O =N . In both possibilities, �O =N and
f ðint ð�OÞÞ =N ⊆ int ð�PωÞ = f1g which is not possible. This
implies that f is not δω-continuous.

The following results from 38 to 41 give sufficient criteria
for a δω-continuous function to be continuous.

Theorem 38. Let ðG, τÞ and ðH, σÞ be two ts′s and let f : G
⟶H be a δω-continuous function with ðH, σÞ locally
countable, then, f is continuous.

Proof. Let z be in G and let P ⊆H be an open nbhd of f ðzÞ.
By assumption, f is δω-continuous, so there exists O ⊆G
open nbhd of z such that f ðint ð�OÞÞ ⊆ int ð�PωÞ. Since ðH, σ
Þ is locally countable, then by Lemma 12(b), we have τω is
the discrete topology. Therefore, P = �Pω, and thus, f ðOÞ ⊆ f
ðint ð�OÞÞ ⊆ int ð�PωÞ ⊆ P. This implies that f is continuous.

Theorem 39. Let ðG, τÞ and ðH, σÞ be two ts’s and let f : G
⟶H be a δω-continuous function with ðH, σÞω-locally
indiscrete, then f is continuous.

Proof. Let z be in G and let P ⊆H be an open nbhd of f ðzÞ.
By assumption, f is δω-continuous, so there exists O ⊆ G an
open nbhd of z such that f ðint ð�OÞÞ ⊆ int ð�PωÞ. Since ðH, σÞ
is ω-locally indiscrete, then P is ω-closed and �Pω = P. Thus
f ðOÞ ⊆ f ðint ð�OÞÞ ⊆ int ð�PωÞ ⊆ P. Hence f is continuous.

Corollary 40. Let ðG, τÞ and ðH, σÞ be two ts’s and let f
: G⟶H be a δω-continuous function with ðH, σÞ locally
indiscrete, then, f is continuous.

Theorem 41. Let ðG, τÞ and ðH, σÞ be two ts’s and let f : G
⟶H be a δω-continuous function with ðH, σÞω-regular,
then f is continuous.

Proof. Let z be in G and let P ⊆H be an open nbhd of f ðzÞ.
By assumption, ðH, σÞ is an ω-regular ts, then by Definition
22, there exists N of H open subset such that f ðzÞ ∈N ⊆
�Nω ⊆ P. Given f is δω-continuous, there exists O ⊆ G an
open subset containing z such that f ðint ð�OÞÞ ⊆ int ð�NωÞ.
Thus, we have f ðOÞ ⊆ f ðint ð�OÞÞ ⊆ int ð�NωÞ ⊆ P. This
implies that f is continuous.

The next result gives sufficient criteria for a θω-contin-
uous function to be δω-continuous.

Theorem 42. If f : ðG, τÞ⟶ ðH, σÞ is a θω-continuous
function and almost-open, then f is δω-continuous.

Proof. Let z be in G and let P ⊆H be an open nbhd of f ðzÞ.
By assumption, f is θω-continuous, so there exists O ⊆G an
open nbhd of z such that f ð�OÞ ⊆ �Pω. Therefore, f ðint ð�OÞÞ
⊆ f ð�OÞ ⊆ �Pω. Since f is almost-open, then int ð f ðint ð�OÞÞÞ
= f ðint ð�OÞÞ and thus f ðint ð�OÞÞ ⊆ int ð�PωÞ. Hence, f is δω
-continuous.

Corollary 43. If f : ðG, τÞ⟶ ðH, σÞ is a θω-continuous
function and open, then f is δω-continuous.
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Definition 44. Let ðG, τÞ and ðH, σÞ be two ts’s and a func-
tion f : G⟶H is called ω - δ-continuous function if for
each z ∈G and for each P ⊆H open nbhd of f ðzÞ, there is
an open subset O of G containing z such that f ðint ð�OωÞÞ
⊆ int ð�PÞ.

Theorem 45. Every ω - δ-continuous function is almost
continuous.

Proof. Let ðG, τÞ and ðH, σÞ be two ts’s and let f : G⟶H
be an ω-δ-continuous function. Let z be in G and let P ⊆H
be an open nbhd of f ðzÞ. By assumption, f is ω-δ-continu-
ous, so there is an open nbhd O in G containing z such that
f ðOÞ ⊆ f ðint ð�OωÞÞ ⊆ int ð�PÞ. Hence, f is almost continuous.

The following results give sufficient criteria for the
almost continuous function to be ω-δ-continuous.

Theorem 46. Let ðG, τÞ and ðH, σÞ be two ts’s and let f : G
⟶H be almost continuous with ðG, τÞω-locally indiscrete,
then f is ω - δ-continuous.

Proof. Let z be in G and let P ⊆H be an open nbhd of f ðzÞ.
By assumption, f is almost continuous, so there is an open
nbhd O ⊆ G of z such that f ðOÞ ⊆ int ð�PÞ. Since ðG, τÞ is ω
-locally indiscrete, then O is ω-closed and �Oω =O. Thus, f ð
int ð�OωÞÞ = f ðOÞ ⊆ int ð�PÞ. Hence, f is ω-δ-continuous.

The following corollaries can be easily proved by Theo-
rems 14 and 46.

Corollary 47. Let ðG, τÞ and ðH, σÞ be two ts’s and let f
: G⟶H be almost continuous with ðG, τÞ locally indiscrete,
then f is ω - δ-continuous.

Corollary 48. Let ðG, τÞ and ðH, σÞ be two ts’s and let f
: G⟶H be almost continuous with ðG, τÞ locally countable,
then f is ω - δ-continuous.

Theorem 49. Let ðG, τÞ and ðH, σÞ be two ts’s and let f : G
⟶H be almost continuous with ðG, τÞω-regular, then f is
ω - δ-continuous.

Proof. Let z be in G and let P ⊆H be an open nbhd of f ðzÞ.
By assumption, f is almost continuous, so there is an open
nbhd N ⊆ G of z such that f ðNÞ ⊆ int ð�PÞ. Since ðG, τÞ is ω
-regular, then there is an open subset O in G containing z
such that int ð�OωÞ ⊆ �Oω ⊆N . Therefore, f ðint ð�OωÞÞ ⊆ f ðNÞ
⊆ int ð�PÞ. Hence, f is ω-δ-continuous.

Theorem 50. Every δ-continuous function is ω - δ
-continuous.

Proof. Let z be in G and let P ⊆H be an open nbhd of f ðzÞ.
By assumption, f is δ-continuous, so there is an open nbhd
O ⊆ G of z such that f ðint ð�OÞÞ ⊆ int ð�PÞ. Thus, f ðint ð�OωÞÞ
⊆ f ðint ð�OÞÞ ⊆ int ð�PÞ. Hence, f is ω-δ-continuous.

The converse of the Theorem 50 does not hold, as the
following example shows.

Example 7. The function f defined in Example 4.5 of [18],
shows that f is continuous but not δ-continuous, and then,
f is almost continuous by definition. Also, G is locally count-
able, so by Corollary 48, f is ω - δ-continuous.

The following result gives sufficient criteria for a ω-δ
-continuous function to be δ-continuous.

Theorem 51. Let ðG, τÞ and ðH, σÞ be two ts’s and let f : G
⟶H be ω - δ-continuous with ðG, τÞ antilocally countable,
then f is δ-continuous.

Proof. Let z be in G and let P ⊆H be an open nbhd of f ðzÞ.
By assumption, f is ω-δ-continuous, so there is an open
nbhd O of z such that f ðint ð�OωÞÞ ⊆ int ð�PÞ. Since ðG, τÞ is
antilocally countable, then by Lemma 12, �Oω = �O. Therefore,
f ðint ð�OÞÞ = f ðint ð�OωÞÞ ⊆ int ð�PÞ. Hence, f is δ-continuous.

Definition 52. A function f : G⟶H is called almost δω
-continuous if for each z ∈G and each open subset P of H
containing f ðzÞ, there is an open subset O of G containing
z such that f ðOÞ ⊆ int ð�PωÞ.

Theorem 53. Every almost δω-continuous function is almost
continuous.

Proof. Let z be in G and let P ⊆H be an open nbhd of f ðzÞ.
By assumption, f is almost δω-continuous, so there is an
open nbhd O of z such that f ðOÞ ⊆ int ð�PωÞ. By Theorem
2, �Pω ⊆ �P, and therefore, f ðOÞ ⊆ int ð�PωÞ ⊆ int ð�PÞ. Hence, f
is almost continuous.

The converse of the Theorem 53 does not hold, as the
following example shows.

Example 8. Consider a function f : ðN , τÞ⟶ ðN , τcof Þ
defined by f ðzÞ = z, where τ is indiscrete topology and τcof
is finite complement topology on N . To check f is almost
continuous, let z ∈N and P ∈ τcof such that f ðzÞ = z ∈ P.
Then, for every P ∈ τcof , �P =N . Choose O =N , then z ∈O
∈ τ and f ðOÞ = f ðNÞ =N ⊆ int ð�PÞ = int ðNÞ =N . Now, to
check f is not almost δω-continuous, let z = 1 and P =N −
f2g. Since τcof is locally countable, then, �Pω = P. So O ∈ τ
containing z is N , then, f ðOÞ = f ðNÞ =N ⊆ int ð�PωÞ = int ðP
Þ = int ðN − f2gÞ =N − f2g which is not true. Hence, f is
not almost δω-continuous.

The following result gives sufficient criteria for the
almost continuous function to be almost δω-continuous:

Theorem 54. Let ðG, τÞ and ðH, σÞ be two ts’s and let f : G
⟶H be almost continuous with ðH, σÞ antilocally count-
able, then f is almost δω-continuous.

Proof. Let z be in G and let P ⊆H be an open nbhd of f ðzÞ.
By assumption, f is almost continuous, so there is an open
nbhd O of z such that f ðOÞ ⊆ int ð�PÞ. Since ðH, σÞ is
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antilocally countable, then �Pω = �P. Therefore, f ðOÞ ⊆ int ð�P
Þ = int ð�PωÞ. Hence, f is almost δω-continuous.

Theorem 55. Every continuous function is almost δω
-continuous.

Proof. Let z be in G and let P ⊆H be an open nbhd of f ðzÞ.
By assumption, f is continuous, so there is an open nbhd O
of z such that f ðOÞ ⊆ P. Thus, f ðOÞ ⊆ P ⊆ int ð�PωÞ. Hence, f
is almost δω-continuous.

The converse of the Theorem 55 does not hold, as the
following example shows.

Example 9. Consider a function f : ðR, τÞ⟶ ðR, τcocÞ
defined by f ðzÞ = z, where τ is the usual topology and τcoc
is the countable complement topology on R. It is easy to
check that f is discontinuous. To check, f is almost δω
-continuous. Let z ∈ R and P ∈ τcoc such that f ðzÞ = z ∈ P.
Since ðR, τcocÞ is antilocally countable, then, �Pω = �P. There-
fore, for any open subset, P ∈ τcoc such that �Pω = �P = R. Take
O = R such that z ∈O ∈ τ and f ðOÞ = R ⊆ int ð�PωÞ = int ðRÞ
= R. Hence, f is almost δω-continuous.

The following result gives sufficient criteria for the
almost δω-continuous function to be continuous.

Theorem 56. Let ðG, τÞ and ðH, σÞ be two ts’s and let f : G
⟶H be almost δω-continuous with ðH, σÞω-locally indis-
crete, then f is continuous.

Proof. Let z be in G and let P ⊆H be an open nbhd of f ðzÞ.
By assumption, f is almost δω-continuous, so there is an
open nbhd O of z such that f ðOÞ ⊆ int ð�PωÞ. Since ðH, σÞ is
ω-locally indiscrete, then �Pω = P. Therefore, f ðOÞ ⊆ int ð�PωÞ
= P. Hence, f is continuous.

The following corollaries can be easily proved by Theo-
rems 14 and 56.

Corollary 57. Let ðG, τÞ and ðH, σÞ be two ts’s and let f
: G⟶H be almost δω-continuous with ðH, σÞ locally indis-
crete, then f is continuous.

Corollary 58. Let ðG, τÞ and ðH, σÞ be two ts’s and let f
: G⟶H be almost δω-continuous with ðH, σÞ locally count-
able, then f is continuous.

Theorem 59. Every δω-continuous function is almost δω
-continuous.

Proof. Let z be in G and let P ⊆H be an open nbhd of f ðzÞ.
By assumption, f is δω-continuous, so there is an open nbhd
O in G containing z such that f ðint ð�OÞÞ ⊆ int ð�PωÞ. Thus,
f ðOÞ ⊆ f ðint ð�OÞÞ ⊆ int ð�PωÞ. Hence, f is almost δω
-continuous.

The converse of the Theorem 59 does not hold, as the
following example shows the same.

Example 10. In Example 6, f is continuous but not δω-con-
tinuous. Also, by Theorem 55, every continuous function is
almost δω-continuous.

5. Conclusion

In this work, we continue the research on δω-closure opera-
tor, and some properties of δω-closure operator are dis-
cussed. Also, we give some sufficient conditions for the
equivalence of δω-closure and θω-closure operators. Further,
we define some new types of continuity, namely, δω-conti-
nuity, ω-δ-continuity, and almost δω-continuity. Also, some
examples and counter examples are given.
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