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Performing comparative tests, some possibilities of constructing novel degree- and distance-based graph irregularity indices are
investigated. Evaluating the discrimination ability of di�erent irregularity indices, it is demonstrated (using examples) that in
certain cases two newly constructed irregularity indices, namely IRDEA and IRDEB, are more selective.

1. Introduction

Only connected graphs without loops and parallel edges are
considered in this study. For a graph G with n vertices andm
edges, V(G) and E(G) denote the sets of vertices and edges,
respectively. Let d(u) be the degree of vertex u ofG. Let uv be
an edge of G connecting the vertices u and v. Let Δ � Δ(G)
and δ � δ(G) be the maximum and the minimum degrees,
respectively, of G. In what follows, we use the standard
terminology in graph theory; for notations not de�ned here,
we refer the readers to the books [1, 2].

For a connected graph G, the set of numbers nj of
vertices with degree j is denoted by nj � nj(G): nj > 0, 1{
≤ j≤Δ}. For simplicity, the numbers nj(G) are called the
vertex-parameters of graph G. For two vertices u, v ∈ V(G),
the distance d(u, v) between u and v is the number of edges
in a shortest path connecting them.

Two connected graphs G1 and G2 are said to be vertex-
degree equivalent if they have an identical vertex-degree
sequence. Certainly, if G1 and G2 are vertex-degree equiv-
alent, then their vertex-parameters sets satisfy the equation
nj(G1) � nj(G2) for every j. A graph is called k-regular if all
its vertices have the same degree k. A graph which is not
regular is called a nonregular graph. A connected graph G is
said to be bidegreed if its degree set consists of only two

elements, where a degree set of G is the set of all distinct
elements of its degree sequence.

2. Preliminary Considerations

A topological indexTI of a graphG is any number associated
with G (in some way) provided that the equation TI(G) �
TI(G′) holds for every graph G′ isomorphic to G. A lot of
existing topological indices are degree- and distance-based
ones [3–5]. Graph irregularity indices form a notable sub-
class of the class of traditional topological indices; where a
topological index TI of a (connected) graph G is called a
graph irregularity index if TI(G)≥ 0, and TI(G) � 0 if and
only if graph G is a regular graph. Details about the existing
graph irregularity indices can be found in [6, 7]. �e readers
interested in the general concept of irregularity in graphs
may consult the book [8].

In several situations, it is crucial to know how much
irregular a given graph is; for example, see [9, 10] where
irregularity measures are used to predict physicochemical
properties of chemical compounds, and see [11–14] for some
applications of irregularity measures in network theory.

Most of the existing irregularity indices used in math-
ematical chemistry are degree-based irregularity indices.
�ere exist irregularity indices which form a particular
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subset Φ of the set of degree-based irregularity indices; we
say that an irregularity index ϕ belongs to the set Φ if for
every pair of vertex-degree equivalent graphs G1 and G2, the
equation ϕ(G1) � ϕ(G2) holds.

)e most popular topological indices that are used in
defining degree-based irregularity indices, are the first and
second Zagreb indices (see for example [15]), denoted by M1
and M2, respectively, and the so-called forgotten topological
index [15], denoted by F.)e first and second Zagreb indices
of a graph G are defined as

M1(G) � 􏽘
u∈V(G)

d
2
u,

M2(G) � 􏽘
uv∈E(G)

dudv,
(1)

and the forgotten topological index is defined as

F(G) � 􏽘
u∈V(G)

d
3
u. (2)

)ere exist numerous degree-based graph irregularity
indices in literature, some of them are listed below.

)e variance Var is a degree-based graph irregularity
index introduced by Bell [16]. )e variance Var of a graph G

of order n and size m is defined as

Var(G) �
1
n

􏽘
u∈V(G)

du −
2m

n
􏼒 􏼓

2
�

M1(G)

n
−
4m

2

n
2 . (3)

We also consider the following four irregularity indices:

IRV(G) � n
2Var(G) � nM1(G) − 4m

2
, (4)

IR1(G) �

������

M1(G)

n

􏽳

−
2m

n
, (5)

IR2(G) �

������

M2(G)

m

􏽳

−
2m

n
, (6)

IR3(G) � F(G) −
2m

n
M1(G). (7)

It is remarked here that, except IR2, all the irregularity
indices formulated above belong to the set Φ.

3. Weighted Irregularity Indices Defined on the
Vertex Set of a Graph

In this section, we consider irregularity indices defined on
the set of vertices of a graph G. )e majority of these indices
are weighted degree- and distance-based topological indices.
Most of them may be considered as extended versions of the
Wiener index; for example, see [17]. Let us consider the
weighted vertex-based topological index of a graph G for-
mulated as

ZW(G) �
1
2

􏽘
u,v∈V(G)

Z(u, v)W(u, v), (8)

where Z(u, v) and W(u, v) are appropriately selected non-
negative 2-variable symmetric functions; both of them are
defined on the vertex set V(G) of G. For simplicity, we call
the function W(u, v) as the weight function of G. By taking

Z(u, v) � du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p
. (9)

in Equation (8), we get the following graph irregularity index

IRRp(G) �
1
2

􏽘
u,v∈V(G)

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p
W(u, v), (10)

where p is a positive real number. Depending on the choice
of the parameter p and the weight function W(u, v), various
types of irregularity indices can be deduced. For instance, the
choices p � 1 and W(u, v) � 1 lead to the so-called total
irregularity of a graph G defined by

Irrt1(G) �
1
2

􏽘
u,v∈V(G)

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (11)

It was introduced by Abdo et al. in [18]. Also, assuming
that p � 2 and W(u, v) � 1, we have the irregularity index
Irrt2(G), introduced in Ref. [19]:

Irrt2(G) �
1
2

􏽘
u,v∈V(G)

du − dv( 􏼁
2
. (12)

At this point, the following known proposition [19]
concerning Irrt2 needs to be stated.

Proposition 1. For every graph G with n vertices and m

edges, it holds that

Irrt2(G) �
1
2

􏽘
u,v∈V(G)

du − dv( 􏼁
2

� nM1(G) − 4m
2

� n
2Var(G) � IRV(G).

(13)

In Equation (9), by taking Z(u, v) � (du − dv)2 and
W(u, v) � d(u, v), we obtain the following irregularity index:

IR D(G) �
1
2

􏽘
u,v∈V(G)

du − dv( 􏼁
2
d(u, v). (14)

Note that IR D is a weighted degree- and distance-based
irregularity index. Although IR D is a new irregularity index
which is not known in the literature, but we prove in the next
proposition that this irregularity index can be written in the
linear combination of the following two topological indices

DG(G) � 􏽘
u∈V(G)

d
2
uDG(u), (15)

and

Gut(G) �
1
2

􏽘
u,v∈V(G)

dudv( 􏼁d(u, v), (16)

where DG(u) is identical to the transmission Tr(u) of the
vertex u ∈ V(G) and Gut(G) is the so-called Gutman index;
for example, see [20].
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Proposition 2. For a (connected) graph G, it holds that

IR D(G) �
1
2

􏽘
u,v∈V(G)

du − dv( 􏼁
2
d(u, v) � DG(G) − 2Gut(G).

(17)

Proof. Note that
1
2

􏽘
u,v∈V(G)

du − dv( 􏼁
2
d(u, v) �

1
2

􏽘
u,v∈V(G)

d
2
u + d

2
v􏼐 􏼑d(u, v) − 2Gut(G).

(18)

For the graph G, it holds [21] that
1
2

􏽘
u,v∈V(G)

(ω(u) + ω(v))d(u, v) � 􏽘
u∈V(G)

ω(u)DG(u), (19)

where ω(u) is any quantity associated with the vertex u of G.
By taking ω(u) � d2

u in (19) and using the obtained identity
in (18), we get
1
2

􏽘
u,v∈V(G)

du − dv( 􏼁
2
d(u, v) � 􏽘

u∈V(G)

d
2
uDG(u) − 2Gut(G)

� DG(G) − 2Gut(G).

(20)

□

Remark 1. From Proposition 2, it follows that the inequality

DG(G)≥ 2Gut(G) (21)

holds for every (connected) graph G, with equality if and
only if G is regular.

Remark 2. Because IR D is a weighted version of the ir-
regularity index Irrt2, it is expected that its discrimination
power is better than that of Irrt2.

Remark 3. Based on identity Equation (20), one can es-
tablish another irregularity index IRQ defined by

IRQ(G) �
DG(G) − 2Gut(G)

2Gut(G)
�

DG(G)

2Gut(G)
− 1. (22)

As Gut(G)> 1/2 for every (connected) graph of order at
least 3, one has

IRQ(G) �
DG(G)

2Gut(G)
− 1<DG(G) − 2Gut(G) � IR D(G).

(23)

4. Discriminating Ability of Novel Weighted
Irregularity Indices

For comparing the discrimination ability of the irregularity
indices IR D and IRQ with the traditional degree-based
irregularity indices Var, IR1, IR2, and IR3, we use the 6-
vertex graphs Gi (i � 1, 2, 3, 4) depicted in Figure 1. It is
remarked here that the graphs shown in Figure 1 belong to

the family of connected threshold graphs, and graph G1 is
isomorphic to the connected 6-vertex antiregular graph (for
example, see [22, 23]).

For the four graphs depicted in Figure 1, computed
values of preselected topological indices M1, M2, F, and
corresponding irregularity indices are summarized in Ta-
bles 1 and 2.

Comparing irregularity indices listed in Tables 1 and 2,
the following conclusions can be drawn. Among the four
tested graphs, the index G1 achieves the maximum value
(that is, 249) of IR3. )e irregularity indices IR1 and IR2 are
maximum for the graph G2 (namely, IR1(G2) ≈ 0.375 and
IR2(G2) ≈ 0.5202). As it can be seen that Var(G1) ≈ 1.667,
while Var(G2) � Var(G3) � Var(G3) ≈ 1.889 and that all
the four graphs have the same value of Irrt1, which is 26.
Also, the relation Irrt2(G) � n2Var(G) is confirmed for the
considered graphs: Irrt2(G1) � 60 and Irrt2(G2) �

Irrt2(G3) � Irrt2(G4) � 68. Moreover, we have IR D(G1) �

IR D(G2) � IR D(G3) � 80 and IR D(G4) � 92, while the
computed values of the irregularity index IRQ are different
for all four graphs. From these observations, one can con-
clude that the degree variance Var, the total irregularity
index Irr1, together with the irregularity indices Irr2, and
IR D have a limited discrimination ability for the considered
four graphs.

5. Novel Irregularity Indices Constructed by
Using the External Weight Concept

)e weight function W(u, v) included in (9) can be con-
sidered as an “internal” weight function. Introducing the
external weight concept, one can construct novel irregularity
indices. By using them, the original sequence of previously
determined irregularity values can be appropriately modi-
fied for a given set of graphs considered.

By definition, an external weight EW(G) for a graph G is
a positive-valued topological index computed as a function
of one or more traditional topological indices. By means of
an external weight EW(G) a novel irregularity index
IRE(G) can be created as defined below:

IRE(G) � EW(G) × IR(G), (24)

where IR(G) is an arbitrary irregularity index. By appro-
priately selected external weights EW(G), one can establish
several different versions of irregularity indices IRE(G)

satisfying some restrictions or desired expectations. As an

G1 G4G2 G3

Figure 1: Four 6-vertex nonregular graphs selected for tests.
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example, consider the three external weights defined for a
graph G of order n and size m as follows:

EWA(G) �
m

2

100n
, (25)

EWB(G) �
M2(G) + F(G)

n
2 , (26)

EWC(G) �
1

2 × Gut(G)
. (27)

Using the three external weights listed above, the fol-
lowing irregularity indices of new type are obtained:

IR DEA(G) � EWA(G) × IR D(G), (28)

IR DEB(G) � EWB(G) × IR D(G), (29)

IR DEC(G) � EWC(G) × IR D(G). (30)
For graphs shown in Figure 1, the computed external
weights and the corresponding irregularity indices are
summarized in Table 3.

Comparing the computed irregularity indices men-
tioned in Table 3, one can conclude that the graph G1 has
the maximum irregularity indices IR DEA(G1) � 10.8 and
IR DEB(G1) � 795.6, while the maximum value of the ir-
regularity index IR DEC is attained by the graph G2 where
IR DEC(G2) � 0.4211 (it should be emphasized here that
the graph G1 is identical to the 6-vertex connected anti-
regular graph, and it is usually desired that the connected
antiregular graph attains the maximum value of an ir-
regularity index among all connected graphs of a fixed
order.)

It is remarked here that the irregularity indices IRQ and
IR DEC are identical to each other because

IRQ(G) �
DG(G)

2Gut(G)
− 1 �

DG(G) − 2Gut(G)

2Gut(G)

� EWC(G) × IR D(G) � IR DEC(G).

(31)

6. Additional Considerations

An interesting open problem can be formulated as follows:
find a deterministic relationship between the following
weighted bond-additive indices (see [24]).

BAp(G) � 􏽘
uv∈E(G)

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p
W(u, v) (32)

and weighted atoms-pair-additive indices

IRRp(G) �
1
2

􏽘
u,v∈V(G)

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p
W(u, v). (33)

Depending on the definitions of the above irregularity
indices, we observe that there exist graphs for which the
mentioned relationship is perfect. As an example, when p �

1 and W(u, v) � d(u, v) then for the wheel graph Wn of
order n with n≥ 5, one has
1
2

􏽘

u,v∈V Wn( )

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌d(u, v) � 􏽘

uv∈E Wn( )

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � AL Wn( 􏼁, (34)

where AL is the Albertson irregularity index [25].
)e sigma index σ(G) of a graph G is defined (for ex-

ample, see [26]) as

􏽘
uv∈E(G)

du − dv( 􏼁
2
. (35)

)is irregularity index is a natural generalization of the
Albertson irregularity index. For the wheel graph Wn of
order n with n≥ 5, the following identity holds:

IR D Wn( 􏼁 �
1
2

􏽘

u,v∈V Wn( )

du − dv( 􏼁
2
d(u, v)

� 􏽘

uv∈E Wn( )

du − dv( 􏼁
2

� σ Wn( 􏼁.

(36)

It is possible to construct a particular graph family for
which the concept outlined above can be extended. For two
graphs J1 and J2 with disjoint vertex sets, J1 ∪ J2 denotes the
disjoint union of J1 and J2.)e join J1 + J2 of J1 and J2 is the
graph obtained from J1 ∪ J2 by adding edges between every
vertex of J1 and every vertex of J2.

Proposition 3. Define the bidegreed graph Hn of order n as
follows:

H � H0 + ∪ j≥1Hj􏼐 􏼑, (37)

Table 3: Computed topological indices of the four graphs shown in
Figure 1.

Graph m EWA IR DEA EWB IR DEB EWC IR DEC

G1 9 0.1350 10.800 9.944 795.6 0.0032 0.2597
G2 7 0.0817 6.533 6.306 504.4 0.0053 0.4211
G3 8 0.1067 8.533 8.139 651.1 0.0041 0.3252
G4 8 0.1067 9.813 8.056 741.1 0.0042 0.3833

Table 1: Computed topological indices of the four graphs shown in
Figure 1.

Graph m M1 M2 F Var IR1 IR2 IR3

G1 9 64 106 252 5/3 0.266 0.4319 249.0
G2 7 44 57 170 17/9 0.375 0.5202 167.7
G3 8 54 79 214 17/9 0.333 0.4758 211.3
G4 8 54 82 208 17/9 0.333 0.5349 205.3

Table 2: Computed topological indices of the four graphs shown in
Figure 1.

Graph m Irrt1 Irrt2 DG Gut IR D IRQ

G1 9 26 60 388 154 80 0.2597
G2 7 26 68 270 95 80 0.4211
G3 8 26 68 326 123 80 0.3252
G4 8 26 68 332 120 92 0.3833

4 Journal of Mathematics



where H0 is an r-regular graph and each Hj is an r′-regular
graph. It holds that

BADp Hn( 􏼁 �
1
2

􏽘

u,v∈V Hn( )

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p
d(u, v)

� 􏽘

uv∈E Hn( )

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

� ALp Hn( 􏼁,

(38)

where ALpG is a modified version of the generalized Albertson
irregularity index (see [27]).

Proof. We note that

BADp Hn( 􏼁 � 􏽘

uv∈E Hn( )

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

+ 􏽘

uv ∉ E Hn( )

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p
d(u, v).

(39)

Observe that dx � dy for every pair of nonadjacent
vertices x, y ∈ V(Hn), which implies that

􏽘

uv ∉ E Hn( )

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p
d(u, v) � 0.

(40)

and hence Equation (39) yields the desired result.
As an example concerning Proposition 3, consider the

bidegreed graph H14 of order 14 and size 59 constructed as
follows:

H14 � C4 + K3,3 ∪K4􏼐 􏼑, (41)

where C4 is the (2-regular) cycle graph with 4 vertices, K3,3 is
the (3-regular) complete bipartite graph of order 6, and K4 is
the (3-regular) complete graph on 4 vertices (see Figure 2.
)e graph H14 contains ten vertices of degree 7 and four
vertices of degree 12. Note that if uv ∉ E(H14), then
u ∈ V(J) and v ∈ V(K), where J, K ∈ K3,3, K4􏽮 􏽯, and both
the vertices u, v have the degree 7 in H14. )us,

􏽘

uv ∉ E H14( )

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p
d(u, v) � 0

(42)

and the desired conclusion holds. □
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