1. Introduction

In this paper, M is a finite and undirected simple graph. Let $V(M)$ and $E(M)$ be sets of vertices and edges of M, respectively. Then, we put $n = |V(M)|$ and $m = |E(G)|$. If $(a, b) \subseteq V(M)$, then the length of a shortest path connecting a and b in M is the distance between a and b in M and denoted by $d_M(a, b)$. Let x be a vertex of M, and let r be a positive integer. Then, the open r-neighborhood of x in M, $N_r(x)$, is the set of all vertices at distance r from x; that is, $N_r(x) = \{v \in V(M): d_M(v, x) = r\}$. The r-distance degree of a vertex x in M is the size of the open r-neighborhood of x in M, and it is denoted by $d_r(x/M)$ or simply $d_r(x)$ if no misunderstanding is possible; that is, $d_r(x/M) = d_r(x) = |N_r(x)|$. It is clear that $d_1(x/M)$ is the degree of vertex x in M, and we denoted it by $d_M(x)$ or simply $d(x)$. Also, the eccentricity of a vertex x in M, $e(x)$, is defined as $e(x) = \max\{d_M(v, u): v \in V(M)\}$, and the diameter and radius of graph M are defined as $\text{diam}(M) = \max\{e(v): v \in V(M)\}$ and $\text{rad}(M) = \min\{e(v): v \in V(M)\}$, respectively.

The subdivision graph $S(M)$ of a simple graph M is the graph obtained from M by inserting an additional vertex into each edge of M, or equivalently, by replacing each of its edges with a path of length 2 [1].

The wheel graph $W_{1,q}$ of order $q + 1$ is the join of K_1 and C_q in which K_1 is the complete graph with one vertex, and C_q is the q-vertex cycle graph. Clearly, $|V(W_{1,q})| = q + 1$ and $|E(W_{1,q})| = 2q$. The apex vertex of the wheel is the vertex corresponding to K_1, and the rim vertices of the wheel are the vertices corresponding to C_q [2]. Note that all notions and notations not defined here can be obtained from the book of Harary [2].

In chemical graph theory, a numerical parameter of a given graph that is applicable in some chemical problems is called a topological index. The Zagreb group indices are two degree-based topological indices that were defined by Gutman and Trinajstic [3] in 1972 and elaborated in [4]. These indices are defined as

$$
M_1(M) = \sum_{x \in V(M)} d_M(x)^2,
$$

$$
M_2(M) = \sum_{ab \in E(M)} d_M(a)d_M(b).
$$

For the main properties of these two indices, we refer the interested readers to [3–7].

In 2017, Naji et al. [8] introduced three topological indices depending on the second degree of vertices. These invariants are so-called leap Zagreb topological indices and can be defined as follows:
In [9], the first leap Zagreb topological index of some graph operations is computed, and in [10], some formulas for the leap Zagreb indices of generalized rts point line transformation graphs \(T^{rts}(M) \), when \(s = 1 \), are obtained. We refer to [8–14] for more details on the leap Zagreb indices of graphs. In [15], Sharma et al. introduced the eccentric connectivity index of the graph \(M \) as
\[
\xi_c(M) = \sum_{v \in V(M)} d(v)e(v).
\]
For mathematical properties, the interested readers can consult [15–17].

Recently, authors found in [18] introduced the leap eccentric connectivity index for the Cartesian product, composition, corona product, symmetric difference, and disjunctions. The eccentric connectivity index of subdivision graph of some well-known graphs is a \([C_3, C_4]\)-free graph. According to Theorem 1, for a \((C_3, C_4) \)-free graph \(M \), we have
\[
\sum_{v \in V(G)} d_2(v) = M_1 - 2m.
\]

2. Main Results

The aim of this paper is to present the exact values of leap eccentric connectivity index of subdivision graph of some standard graphs.

Theorem 3. Suppose \(n \geq 3 \). Then,
\[
\xi_c(S(K_n)) = \begin{cases} 36, & \text{if } n = 3, \\ n(n-1)(4n-5), & \text{otherwise}. \end{cases}
\]

Proof. Let \(a_1, a_2, \ldots, a_n \) be the vertices of \(K_n \), and let \(b_1, b_2, \ldots, b_m \) be the new vertices added to \(K_n \) to obtain \(S(K_n) \), where \(m \) is the size of \(K_n \). Then, \(d_2(a_i) = n - 1 \), \(d_2(b_j) = 2n - 4 \), \(e(a_i) = 3 \), and \(e(b_j) = \begin{cases} 3, & \text{if } n = 3, \\ 4, & \text{otherwise}. \end{cases} \)

By definition, we have two following cases:

Case 1. If \(n = 3 \), then
\[
\xi_c(S(K_3)) = \sum_{i=1}^{6} (2)(3) = 6(6) = 36.
\]

Case 2. If \(n \geq 4 \), then
\[
\xi_c(S(K_4)) = \sum_{w \in V(S(K_n))} d_2(w)e(w)
\]
\[
= \sum_{i=1}^{n} d_2(a_i)e(a_i) + \sum_{j=1}^{m} d_2(b_j)e(b_j)
\]
\[
= \sum_{i=1}^{n} (n-1)(3) + m(2n-4)(4)
\]
\[
= 3n(n-1) + 8m(n-2).
\]

Since for the complete graph \(K_n \), \(m = n(n-1)/2 \), it follows that
Theorem 4. For \(r \geq s \geq 2 \), let \(K_{rs} \) be the complete bipartite graph. Then,

\[
L^c(S(K_{rs})) = rs(3r + 3s + 2).
\]

Proof. Suppose \(r \geq s \geq 2 \) and \((V_1, V_2)\) is a partition of the vertex set, where \(V_1 = \{v_1, v_2, v_3, \ldots, v_r\} \), \(V_2 = \{u_1, u_2, u_3, \ldots, u_s\} \) and let \(W = \{w_1, w_2, w_3, \ldots, w_s\} \) be the set of new vertices in \(S(K_{rs}) \). Then, \(d_2(v_i) = s \), \(d_2(u_i) = r \), \(d_2(w_k) = r + s - 2 \), \(e(v_i) = 4 \), \(e(u_i) = 4 \), and \(e(w_k) = 3 \). By definition,

\[
L^c(S(K_{rs})) = \sum_{v \in V_1} d_2(v) \cdot e(v) + \sum_{u \in V_2} d_2(u) \cdot e(u)
\]

\[
= \sum_{v \in V_1} \sum_{w \in W} d_2(w) \cdot e(w)
\]

\[
= \sum_{i=1}^{s} (s \cdot 4) + \sum_{j=1}^{r} (r \cdot 4) + \sum_{k=1}^{r \cdot s} (r + s - 2) \cdot 3
\]

\[
= 4rs + 4rs + 3rs(r + s - 2)
\]

\[
= rs(3r + 3s + 2).
\]

\[
\square
\]

Theorem 5. Let \(K_{1,n-1} \) be the star graph of order \(n \geq 3 \). Then,

\[
L^c(S(K_{1,n-1})) = 3n(n - 1).
\]

Proof. Let \(v_0 \in K_{1,n-1} \), with \(d(v_0) = n - 1 \), be the central vertex, \(v_1, v_2, \ldots, v_n-1 \) are the pendent vertices of \(K_{1,n-1} \), and \(u_1, u_2, \ldots, u_{n-1} \) are the new vertices added to \(K_{1,n-1} \) to obtain \(S(K_{1,n-1}) \). If \(i = 1, 2, \ldots, n-1 \), then \(d_2(v_i) = n - 1 \), \(d_2(u_i) = n - 2 \), \(e(v_0) = 2 \), \(e(v_i) = 4 \), and \(e(u_i) = 3 \). By definition,

\[
L^c(S(K_{1,n-1})) = d_2(v_0) \cdot e(v_0) + \sum_{i=1}^{n-1} d_2(v_i) \cdot e(v_i) + \sum_{j=1}^{n-1} d_2(u_j) \cdot e(u_j)
\]

\[
= (n - 1) \cdot 2 + \sum_{i=1}^{n-1} (1 \cdot 4) + \sum_{j=1}^{n-1} (n - 2) \cdot 3
\]

\[
= 3n(n - 1).
\]

\[
\square
\]

On the other hand, \(2(n - 2)(3n + 2) - 3n(n - 1) = n(3n - 5) - 8 > 0 \). Therefore, by (i) and (ii), \(3n(n - 1) \leq L^c(S(K_{rs})) \leq 1/4n^2(3n + 2) \). On the left hand side, equality occurs if and only if \(K_{rs} \equiv K_{1,n-1} \), and on the right hand side, equality occurs if and only if \(K_{rs} \equiv \tilde{K}_{n/2,n/2} \).

\[
\square
\]

Proposition 1. Let \(n \) be an integer. Then,

\[
L^c(S(C_n)) = 4n^2.
\]

Proof. Since \(S(C_n) = C_{2n} \), the proof follows from Theorem 2.

\[
\square
\]

Proposition 2. Let \(n \geq 2 \) be an integer. Then,

\[
L^c(S(P_n)) = 2(3n^2 - 8n + 6).
\]

Proof. Since \(S(P_n) = P_{2n-1} \), the proof follows from Theorem 1.

\[
\square
\]
Theorem 7. For $n \geq 6$, $L_5^c(S(W_{1,n})) = 2n(2n + 23)$.

Proof. Let v_0 be the central vertex of $W_{1,n}$, v_1, v_2, \ldots, v_n be the rim vertices of $W_{1,n}$, and let $S(W_{1,n})$ be the subdivision of $W_{1,n}$. If w_i subdivides v_0v_i, $1 \leq i \leq n$, u_i subdivides v_iv_{j+1}, $1 \leq j \leq n-1$ and u_n subdivides v_nv_1. One can easily verify

$$L_5^c(S(W_{1,n})) = \sum_{v \in V(S(W_{1,n}))} d_2(v)e(v)$$

$$= d_2(v_0)e(v_0) + \sum_{i=1}^{n} d_2(v_i)e(v_i) + \sum_{i=1}^{n} d_2(u_i)e(u_i) + \sum_{i=1}^{n} d_2(w_i)e(w_i)$$

$$= (n)(3) + \sum_{i=1}^{n} (3)(5) + \sum_{i=1}^{n} (4)(6) + \sum_{i=1}^{n} (n+1)(4) = 2n(2n + 23).$$

Theorem 8. For natural numbers r and s, let $D_{r,s}$ be a double star with $v_1, v_2, v_3, \ldots, v_r$ be the pendent vertices with support at v_0 and $u_1, u_2, u_3, \ldots, u_s$, be the pendent vertices with support at u_0. Then,

$$L_5^c(S(D_{r,s})) = 5(r^2 + s^2) + 13(r + s) + 8. \tag{16}$$

Proof. Let x_i subdivides v_0v_i, $1 \leq i \leq r$, y_j subdivides u_0u_j, $1 \leq j \leq s$, and w_0 subdivides v_0u_0. Then, $d_2(v_0) = r + 1$, $d_2(u_0) = s + 1$, $d_2(w_0) = r + s$, $d_2(v_i) = 1$, $d_2(u_j) = 1$, $d_2(x_i) = r$, $d_2(y_j) = s$, $e(v_0) = 4$, $e(u_0) = 4$, $e(v_i) = 3e(v_i) = 6$, $e(u_j) = 6$, $e(x_i) = 5$, and $e(y_j) = 5$. By definition, we have

$$L_5^c(S(D_{r,s})) = d_2(v_0)e(v_0) + \sum_{i=1}^{r} d_2(x_i)e(x_i) + \sum_{i=1}^{r} d_2(v_i)e(v_i) + d_2(w_0)e(w_0)$$

$$+ d_2(u_0)e(u_0) + \sum_{j=1}^{s} d_2(y_j)e(y_j) + \sum_{j=1}^{s} d_2(u_j)e(u_j)$$

$$= (r + 1)(4) + \sum_{i=1}^{r} (r)(5) + \sum_{i=1}^{r} (1)(6) + (r + s)(3) + (s + 1)(4)$$

$$+ \sum_{j=1}^{s} (s)(5) + \sum_{j=1}^{s} (1)(6)$$

$$= 5(r^2 + s^2) + 13(r + s) + 8. \tag{17}$$

Theorem 9. Let $n \geq 7$ be a natural number. Then,

$$L_5^c(S(D_{n-2,i})) > L_5^c(S(D_{n+3-3i})) \text{ for } i = 1, 2, \ldots, \lfloor \frac{n-2}{2} \rfloor - 1. \tag{18}$$

Proof. By Theorem 8,

$$L_5^c(S(D_{n-2,i})) - L_5^c(S(D_{n+3-3i})) = 10(n - 2i - 3). \tag{19}$$

Now, if $2|n - 2$, then by (19),
\[
L^c \left(S \left(D_{i,n-2-i} \right) \right) - L^c \left(S \left(D_{i+1,n-3-i} \right) \right) \geq 10 \left(n - 2 \left(\frac{n-2}{2} - 1 \right) - 3 \right) = 10. \quad (20)
\]

And if \(2 \mid n - 2 \), then by (19),
\[
L^c \left(S \left(D_{i,n-2-i} \right) \right) - L^c \left(S \left(D_{i+1,n-3-i} \right) \right) \geq 10 \left(n - 2 \left(\frac{n-3}{2} - 1 \right) - 3 \right) = 20. \quad (21)
\]

Therefore, \(L^c \left(S \left(D_{i,n-2-i} \right) \right) > L^c \left(S \left(D_{i+1,n-3-i} \right) \right) \) for \(i = 1, 2, \ldots, \lfloor n/2 \rfloor - 1 \).

\[\Box\]

Corollary 1. Let \(r, s, \) and \(n \) be three natural numbers such that \(r + s + 2 = n \geq 7 \). Then,
\[
\frac{5}{2} n^2 + 3n - 8 \leq L^c \left(S \left(D_{r,s} \right) \right) \leq 5n^2 - 17n + 32, \quad 2 \mid n - 2,
\]
\[
\frac{1}{2} (2n + 1) (n - 3) \leq L^c \left(S \left(D_{r,s} \right) \right) \leq 5n^2 - 17n + 32, \quad 2 \mid n - 2. \quad (22)
\]

On the left hand side, equalities occur if and only if \(D_{r,s} \equiv D_{\lfloor n/2 \rfloor,n-\lfloor n/2 \rfloor} \). On the right hand side, equalities occur if and only if \(D_{r,s} \equiv D_{1,n-3} \).

\[\Box\]

Theorem 10. Let \(M \) be an \(n \)-vertex connected graph of size \(m \) such that \(n \geq 3 \). Then,
\[
L^c \left(M \right) \leq nM_1 \left(M \right) - 2nm - LM_3 \left(M \right). \quad (23)
\]

The bound is attained for \(P_4 \).

Proof. Since \(e \left(v \right) \leq n - d \left(v \right) \) for every \(v \in V \left(M \right) \),
\[
L^c \left(M \right) = \sum_{v \in V \left(M \right)} d_2 \left(v \right) e \left(v \right) \leq \sum_{v \in V \left(M \right)} d_2 \left(v \right) \left(n - d \left(v \right) \right)
\]
\[
= \sum_{v \in V \left(M \right)} n d_2 \left(v \right) - \sum_{v \in V \left(M \right)} d_1 \left(v \right) d_2 \left(v \right)
\]
\[
= n \sum_{v \in V \left(M \right)} d_2 \left(v \right) - \sum_{v \in V \left(M \right)} d_1 \left(v \right) d_2 \left(v \right). \quad (24)
\]

Using definition of \(LM_3 \left(M \right) \) and Lemma 3, we get
\[
L^c \left(M \right) \leq n \sum_{v \in V \left(M \right)} \left(\sum_{uv \in E \left(M \right)} d \left(u \right) - d \left(v \right) \right) - LM_3 \left(M \right)
\]
\[
= n \sum_{v \in V \left(M \right)} d \left(v \right)^2 - 2nm - LM_3 \left(M \right)
\]
\[
= nM_1 \left(M \right) - 2nm - LM_3 \left(M \right). \quad (25)
\]
\[\Box\]

Corollary 2. Let \(M \) be an \(n \)-vertex connected graph of size \(m \) such that \(n \geq 3 \). Then,
\[
L^c \left(S \left(M \right) \right) \leq \left(n + m - 3 \right) M_1 \left(M \right) + 4m. \quad (26)
\]

Proof. For \(uv \in E \left(M \right) \), let \(v_{uv} \) be the new vertex of degree 2 on \(uv \) in \(S \left(M \right) \). By definition of \(S \left(M \right) \), \(d \left(v_{uv} / S \left(M \right) \right) = d \left(v \right) \) for \(v \in V \left(M \right) \),
\[
d_2 \left(v_{uv} / S \left(M \right) \right) = d \left(v \right) + d \left(M \right) - 2
\]
for \(uv \in E \left(M \right) \). Therefore, \(M_1 \left(S \left(M \right) \right) = M_1 \left(M \right) + 4m \) and \(LM_3 \left(S \left(M \right) \right) = M_1 \left(M \right) + 2M_1 \left(M \right) - 4m = 3M_1 \left(M \right) - 4m \). So, by Theorem 10, \(L^c \left(S \left(M \right) \right) \leq \left(n + m - 3 \right) M_1 \left(M \right) + 4m. \quad (27)
\]
\[\Box\]

Theorem 11. Let \(M \) be an \(n \)-vertex connected graph of size \(m \geq 2 \). Then, \(L^c \left(S \left(G \right) \right) \geq 2 \left(n + m \right) \).

Proof. Let \(V_0 = \{ v \in V \left(M \right) : d \left(v \right) = n - 1 \} \) and \(n_0 = \left| V_0 \right| \). Then, \(d_2 \left(v \right) = 0 \) for every \(v \in V_0 \) and for every \(u \in V \left(M \right) \), we have \(e \left(u \right) \geq 2 \) and \(d_2 \left(u \right) \geq 1 \). Hence,
\[
L^c \left(M \right) = \sum_{v \in V \left(M \right)} d_2 \left(v \right) e \left(v \right) + \sum_{v \in V \left(M \right)} d_2 \left(v \right) e \left(v \right)
\]
\[
= \sum_{v \in V \left(M \right)} \left(0 \right) \left(1 \right) + \sum_{v \in V \left(M \right)} \left(1 \right) \left(2 \right) \quad (27)
\]
\[
= 2 \left| V \left(M \right) \right|
\]
\[
= 2 \left(n + n_0 \right). \quad (27)
\]

Now, it is easy to see that the number of vertices of \(S \left(M \right) \) is \(n + m \), and the number of vertices of degree \(n - 1 \) in \(S \left(M \right) \) is zero. Therefore, by (27), we have \(L^c \left(S \left(M \right) \right) \geq 2 \left(n \left(S \left(M \right) \right) - n_0 \left(S \left(M \right) \right) \right) = 2 \left(n + m \right). \quad (28)
\]
\[\Box\]

Theorem 12. Let \(M \) be an \(n \)-vertex graph of size \(m \). Then,
\[
L^c \left(M \right) \leq diam \left(M \right) \left(M_1 \left(M \right) + 2m \right). \quad (28)
\]

The equality occurs if and only if \(M \) is a self-centered and \(C_3, C_4 \)-free graph.

Proof. By definition, for all \(v \in V \left(M \right) \), \(e \left(v \right) \leq diam \left(M \right) \), the equality holds if and only if \(M \) is a self-centered. Also, by
Lemma 3. \(\sum_{v \in V(M)} d_2(v) \leq M_1(M) - 2m \), and the equality occurs if and only if \(M \) is a \(\{C_3, C_4\} \)-free graph. Therefore,

\[
L^C(M) = \sum_{v \in V(M)} d_2(v) e(v) \leq \sum_{v \in V(M)} d_2(v) \text{diam}(M) \leq \text{diam}(M)(M_1(M) - 2m).
\]

The equalities hold if and only if \(M \) is a self-centered and \(\{C_3, C_4\} \)-free graph. \(\square \)

Corollary 3. Let \(M \) be an \(n \)-vertex graph of size \(m \). Then,

\[
L^C(S(M)) \leq \text{diam}(S(M)) M_1(M).
\]

The equality occurs if and only if \(M \equiv K_n \).

Data Availability
No data were used to support the study.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Acknowledgments
SP and NDS are supported by the UGC-SAP-DRS-II, under no. F.510/12/DRS-11/2018(SAP-I), dated April 9, 2018.

References

