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Roll motion is one of the key motions related to a vessel’s dynamic stability. It is essential for the dynamic stability of ships in the
realistic sea. For this research study, we have investigated the parameters involved in damping of the ship. In general, math-
ematical modelling of the rolling response of a ship can be formulated by the linear, nonlinear, and fractional di�erential equations
because the amplitude of oscillation is increased. An e�cient Genocchi polynomial approximation method (GPAM) is suc-
cessfully applied for the biased ship roll motion model. �e basic idea of the collocation method together with the operational
matrices of derivatives used for nonlinear di�erential equation and convert it into a system of algebraic equations. �e con-
vergence and error analysis of the proposed method are also discussed. A few numerical experiments are carried out for some
speci�c and important types of problems including the biased roll motion equations. �e results are compared to those produced
using the Legendre wavelet method (LWM) and the homotopy perturbation method (HPM). It is observed that the proposed
spectral algorithm is robust, accurate, and easy to apply.

1. Introduction

Several research papers have been studied on the ship roll
motion models because they are highly nonlinear dif-
ferential equations. It is an essential for the dynamic
stability of ships in realistic sea. For this research study,
GPAM has been applied to estimate the parameters in-
volved in damping of the ship. In general, mathematical

modelling of the rolling response of a ship can be for-
mulated by the nonlinear di�erential equations because
the amplitude of oscillation is increased. In ship roll
motion models, the nonlinear term occurs due to the
damping and restoring moments.

In pioneering work, Spyrou [1] established the ship roll
motion model for large regular waves. Several research
papers have been published related to ship dynamics models
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[2, 3]. Nonlinear mathematical formulation of the ship roll
model is discussed in [4]. In general, the linear differential
model of the motion has been violated by the nonlinear
features of the motion.

*e theoretical models of ship dynamics having non-
linear terms such as damping and restoring moments are
discussed in [2, 5]. A few mathematical methods had been
established to investigate the approximate solutions of
nonlinear models.

During the last decades, Appell polynomials are
employed in analytic number theory as well as asymptotic
approximation theory. *ey discovered differential equa-
tions of Bernoulli and Euler polynomials as a special case.
For Appell polynomials, a collection of finite-order differ-
ential equations were established by [6]. *e 2 D Bernoulli
and 2 D Euler polynomials were introduced for solving
differential, partial differential, and integrodifferential
equations. Hermite polynomials based Appell polynomial
were presented by [7] and some of the references related
with Appell polynomials are [6, 8–15]. Several analytical and
approximation schemes are proposed to solve a system of
differential equations in nonlinear and fractional order
[16, 17]. Hariharan et al. [18, 19] had developed the wavelet
method for solving reaction-diffusion problems and integral
equations.

Nonlinear problem research has advanced at a rapid
and intensive rate during the forecast period. For ex-
ample, approaches based on operational matrices for
integration of large numbers of polynomials and func-
tions can be mentioned. Over the last four decades,
numerical techniques based on operational matrices of
integration (especially for orthogonal polynomials and
functions) have gained a lot of attention for dealing with
variational problems.

*e authors of [20, 21] have recognised the significance
of using operational approaches in the study of special
functions and their applications. *e majority of the at-
tention is focused on operational identities related to or-
dinary and multivariable versions of Hermite and Laguerre
polynomials.

A few researcher developed Frobenius–Euler and
Genocchi polynomials and its application introduced to
solve nonlinear differential equations.*e novel identities of
umbral calculus application majorly using the Genocchi
numbers and polynomials which were derived by [8]. Re-
cently, Swaminathan et al. [22] established the Genocchi
polynomial approximation method for Bratu-type differ-
ential equations. Some of the researcher solved fractional-
order differential equations [23] and nonlinear reaction-
diffusion problems [24]. And also he derived some more
special polynomials and function arising in application of
fractional calculus [23, 25].

*is study provides a numerical analysis of ship roll
motion in terms of concentrated parameters within the time
domain using a Genocchi polynomial operational matrix
method.

*is study is summarized as follows. Ship roll motion in
biased type is discussed in Section 2. Genocchi polynomial
and its properties are given in Section 3. In Section 4, a few
illustrative examples are presented to show the efficiency and
accuracy of the proposed Genocchi polynomial method.
Conclusion is given in Section 5.

2. Ship Roll Motion in Biased Type

*e biased roll motion is described theoretically in [26]:

θ″ + βθ′ + θ(1 − θ)(1 + aθ) � F sin(ωt), (1)

where a is a measure of the amount of bias, and its parameter
lies between 0 and 1. Due to large angles of roll, the hull may
affected by waves, winds, or cargo shifting. *e perspective
of biased roll motion is to approximate the ship. *ere is no
bias in the Falzarano model [27]. If a � 1, then the restoring
moment is a cubic polynomial of symmetric type. If a � 0,
then the restoring moment becomes the second-order
polynomial. Here, we consider the mathematical model in
extreme case of bias.*e ship can only capsize from one side.
*en, it is called Helmholtz–*ompson equation, and
Spyrou et al. [26] pointed out the value of a is closer to 1 in
realistic situation. *erefore, (1 − a) is a small number.
Equation (1) becomes

θ″ + θ − θ3 + βθ′ � (1 − a) θ2 − θ3􏼐 􏼑 + F sin(ωt). (2)

3. Genocchi Polynomial and Its Properties

Genocchi polynomials have been used in various fields of
mathematics. *e classical Genocchi polynomials is denoted
by Gm(x), and it is defined as [8, 28]
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where Gm(x) is the mth degree Genocchi polynomial and is
given by

Gm(x) � 􏽘

m

p�0

m

p
􏼠 􏼡Gm−px

p
. (4)

Gp is called the Genocchi number. Differentiate (4), with
respect to x; then,

dGm(x)

dx
� mGm−1(x), m≥ 1,

Gm(1) + Gm(0) � 0, m> 1.

(5)

*e above equality (6) is an important property. Let
G(x) � [G1(x), G2(x), G3(x), . . . , GN(x)] be the Gennochi
vectors, then its derivative (G′(x)), by the reference of
equation (5), can be expressed by

G′(x)
T

� SG
T
(x), (6)

where
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where S operational matrix of derivative of order R × R.
Based on that procedure, the pth derivative of G(x) can be
expressed as

G
(p)

(x) � G(x) E
T

􏼐 􏼑
p
. (8)

3.1. Function Approximation. Let M � L2[0, 1] [23] (section
2.4, page 3039) and G1(x), G2(x), . . . , GR(x)􏼈 􏼉 ⊂M be the
set of all Genocchi polynomials, and the Span G1(x),􏼈

G2(x), . . . , GR(x)} � X. Consider g be an arbitrary element
of M, since X is a finite dimensional vector space, and g∗ be
an unique better approximation in R such that

g − g
∗����
����2 ≤ ‖g − x‖2 ∀x ∈ X. (9)

Since g∗ ∈ N, then there exist an unique coefficients
c1, c2, . . . , cR such that

g ≈ g
∗

� 􏽘
R

r�1
crGr(x) � CG(x), (10)

where

C � c1, c2, . . . , cR􏼂 􏼃
T
,

G(x) � G1(x), G2(x), . . . , GR(x)􏼂 􏼃.
(11)

*e coefficients cn can be derived using the following
lemma.

Lemma 1. Let g ∈M � L2[0, 1] be an arbitrary function
approximated by the truncated Genocchi series 􏽐

N
r�1 crGr(x);

then, the coefficients cr, for r � 1, 2, . . . , N, can be calculated
from the following relation:

cr �
1
2r!

g
(r− 1)

(1) + g
(r− 1)

(0)􏼐 􏼑, (12)

where g(r− 1)(x) denotes the (r − 1)th derivative of g.

Proof. See Lemma 4.1, page 2125 in [29]. □

Theorem 1. Consider g(x) ∈ C∞[0, 1] and g∗(x) be the
approximated value of g(x) by using Genocchi polynomials;
then, the error bound can be expressed as

‖error(g(x))‖∞ ≤
1
R!

GRFR, (13)

where GR and FR denote the maximum value of GR(x) and
g(r− 1)(x) for all x ∈ [0, 1], respectively.

Proof. *e proof is obvious by using the above lemma. See
[29] (*eorem 2, page 2125). □

4. Illustrative Examples

Example 1. Consider the equations with initial conditions:

θ″ + 1.888267θ − 0.081886 cos(0.527t) � 0, t ∈ (0, 1],

θ(0) � 1,

θ(0) � 0.

(14)

By using the procedure of Section 3 for R � 12. *e
general collocation points of Gennochi polynomial is
ti � i/(R − 2), i � 1, 2, . . . , R − 2. We find the approxi-
mated values of θ″(t), θ′(t), and θ(t) was substituted in
(15); we obtain

G(t) E
T

􏼐 􏼑
2
C + 1.888267[G(t)C] − 0.081886 cos(0.527t) � 0,

(15)

with the initial conditions,

G(0)C � 1,

G(0) E
T

􏼐 􏼑C � 0.
(16)

Apply the collocation point (16) at ti � i/10; we get ten
different algebraic equations. *e obtained equations are
solved together with (17) for the values of
cj, j � 1, 2, . . . , 12, and we obtain

c1 � 0.6340705,

c2 � −0.3659295,

c3 � −0.2439530,

c4 � c5 � c6 � c7 � c8 � c9 � c10 � c11 � c12 � 0.

(17)

Hence,
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θ(t) � 1 − 0.731859t2. (18)

�e Genocchi polynomial results are compared with
HPM and LWM in Table 1. �e approximate solution has
been illustrated in Figure 1.

Example 2. Consider the equation with initial conditions:

θ″ + 1.888267θ − 0.044582 cos(0.527t)θ � 0, t ∈ (0, 1],

θ(0) � 1,

θ′(0) � 0.

(19)

By Section 3 procedure, this example have been done
with N � 12.

After simpli�cation, we obtain

θ(t) � 1 − 0.0701082t2. (20)

�e Genocchi polynomial results are compared with
HPM and LWM in Table 1. �e approximate solution has
been illustrated in Figure 2.

Example 3. Consider the equation with initial conditions:
θ″ + 0.034480θ′ + 0.185761θ − 0.044582 cos(0.527t)θ � 0, t ∈ (0, 1],

θ(0) � 1,

θ′(0) � 0.

(21)

By Section 3 procedure, this example has been done with
N � 12.

After simpli�cation, we obtain

Table 1: Comparative Study of Genocchi polynomial, LWM, and HPM for roll angle with respect to the time t (in sec).

Time Ex:1 Ex:2 Ex:3

t
Genocchi
polynomial LWM HPM Genocchi

polynomial LWM HPM Genocchi
polynomial LWM HPM

0.0 1 1 1 1 1 1 1 1 1
0.1 0.9926814 0.9926814 0.9930814 0.9992989 0.9992989 0.9993359 0.9993105 0.9993105 0.9993365
0.2 0.9707256 0.9707256 0.9723256 0.9971956 0.9971956 0.9973436 0.9972423 0.9972423 0.9973463
0.3 0.9341326 0.9341326 0.9377326 0.9936902 0.9936902 0.9940232 0.9937953 0.9937953 0.9940293
0.4 0.8829025 0.8829024 0.8893024 0.9887826 0.9887826 0.9893746 0.9889695 0.9889695 0.9893855
0.5 0.8170352 0.8170350 0.8270350 0.9824729 0.9824729 0.9833979 0.9827648 0.9827648 0.9834148
0.6 0.7365307 0.7365304 0.7509304 0.9747610 0.9747610 0.9760930 0.9751813 0.9751814 0.9761173
0.7 0.6413890 0.6413886 0.6609886 0.9656469 0.9656469 0.9674599 0.9662191 0.9662191 0.9674931
0.8 0.5316102 0.5316096 0.5572096 0.9551307 0.9551307 0.9574987 0.9558780 0.9558780 0.9575420
0.9 0.4071942 0.4071934 0.4395934 0.9432123 0.9432123 0.9462093 0.9441581 0.9441581 0.9462641
1.0 0.2681410 0.2681404 0.3081402 0.9298918 0.9298918 0.9335918 0.9310594 0.9310595 0.9336594
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Figure 1: Comparative study of Genocchi polynomial, LWM, and
HPM for roll angle with respect to the time t (in sec) for Ex.1.
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Figure 2: Comparative study of Genocchi polynomial, LWM, and
HPM for roll angle with respect to the time t (in sec) for Ex.2.
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θ(t) � 1 − 0.0689406t
2
. (22)

*e Genocchi polynomial results are compared with
LWM and HPM in Table 1. *e approximate solution has
been illustrated in Figure 3.

Example 4. Consider the equation with initial conditions:

θ″ + 0.01θ′ + θ − 0.025θ2 − 0.975θ3 − 0.0195 sin(0.527t) � 0, t ∈ (0, 1],

θ(0) � 1,

θ′(0) � 0.

(23)

By Section 3 procedure, this example has been carried
out with N � 12.

After simplification, we obtain

θ(t) � 1 + 0.00316317t
2
. (24)

*e Genocchi polynomial results are compared with
LWM and HPM in Table 1. *e approximate solution has
been illustrated in Figure 4.

Example 5. Consider the equation with initial conditions:

θ″ + 0.01θ′ + θ − 0.05θ2 − 0.95θ3 − 0.0195 sin(0.527t) � 0, t ∈ (0, 1],

θ(0) � 1,

θ′(0) � 0.

(25)

By using Section 3 procedure, this example have been
carried out with N � 12.

After simplification, we obtain

θ(t) � 1 + 0.00315087t
2
. (26)

*e Genocchi polynomial results are compared with
LWM and HPM in Table 2. *e approximate solution has
been illustrated in Figure 5.

Example 6. Consider the equation with initial conditions:
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Figure 3: Comparative study of Genocchi polynomial, LWM, and
HPM for roll angle with respect to the time t values (in sec) for Ex.3.
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θ″ + 0.05θ′ + θ − 0.025θ2 − 0.975θ3

− 0.0195 sin(0.527t] � 0, t ∈ (0, 1],
(27)

and with initial conditions,

θ(0) � 1,

θ′(0) � 0.
(28)

By using Section 3 procedure, this example have been
carried out with N � 12.

After simpli�cation, we obtain

θ(t) � 1 + 0.00326487t2. (29)

�e Genocchi polynomial results are compared with
LWM and HPM in Table 2. �e approximate solution has
been illustrated in Figure 6.

Example 7. Consider the equation with initial conditions:
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Figure 5: Comparative Study of Genocchi polynomial, LWM, and HPM for roll angle with respect to the time t (in sec) for Ex.5.
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Figure 6: Comparative Study of Genocchi polynomial, LWM, and
HPM for roll angle with respect to the time t (in sec) for Ex.6.
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Figure 7: Comparative Study of Genocchi polynomial, LWM, and
HPM for roll angle with respect to the time t (in sec) for Ex.7.
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θ″ + 0.05θ′ + θ − 0.05θ2 − 0.95θ3

− 0.0195 sin(0.527t) � 0, t ∈ (0, 1],
(30)

which subject to

θ(0) � 1,

θ′(0) � 0.
(31)

By using Section 3 procedure, this example have been
carried out with N � 12.

After simplification, we obtain

θ(t) � 1 + 0.00325179t
2
. (32)

*e Genocchi polynomial results are compared with
LWM and HPM in Table 2. *e approximate solution has
been illustrated in Figure 7.

In the tables, we have introduced the Genocchi poly-
nomial-based spectral methods for the estimation of the
parameters in an equivalent ship roll motion model using
only the roll motion response (roll angle and roll velocity),
which can be easily identified for a ship sailing at sea. *ere
are several advantages of the proposed Genocchi polynomial
approach method by comparison to other existing methods
in the literature. *e absolute error has been calculated for
all the above examples, and it was listed in Table 3.

5. Conclusion

In this study, the nonlinear equations in the roll motion of
ships are solved by the Genocchi polynomial operational
matrix approach with respect to the suitable collocation
points. We successfully applied the proposed Genocchi
polynomial operational matrix approach for estimating the
ship roll angle. It has been observed that the proposed
method is reliable to solve the biased ship roll motion
equations approximately. Also, the obtained results have
been validated with the results of HPM and LWM. It can also
be concluded that the Genocchi polynomial operational
matrix approach will be powerful for finding the approxi-
mation solutions for a large class of nonlinear differential
equations. To avoid the computation complexity, we impose
the collocation points to form algebraic equations. Satis-
factory agreement with the results and this method is
computationally attractive and effective while comparing

with other methods. *e advantage of this method is that
highly accurate approximate solutions are achieved using a
few numbers of terms of the approximate expansion.
Comparative study of Genocchi polynomial, LWM, and
HPM for roll angle and its figure give the accuracy by in-
creasing the value of R. *e proposed method can also be
extended to solve other types of ODEs and PDEs arising in
science and engineering.
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