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Since mass di�usivity and thermal conductivity cannot be considered constants in practical analysis, an existing heat and mass
transfer model of unsteady mixed convection �ow over a stretching sheet is modi�ed by incorporating the e�ects of nonlinear
mixed convection variable thermal conductivity and mass di�usivity and solved its dimensionless form by applying the �nite
element method which is the main novelty of this work. Nonlinear governing equations are created because of changing thermal
conductivity and mass di�usivity. Nonlinear solutions can be achieved by employing the Galerkin �nite element approach.
Temperature and concentration-based thermal conductivity and mass di�usivity are considered.�emodel is expressed as a set of
partial di�erential equations, and furthermore, it is reduced to a system of dimensionless ordinary di�erential equations. �ese
obtained equations are solved with the �nite element method with linear interpolating polynomials and numerical integration. In
addition, a Matlab solver bvp4c is also considered for comparison purposes or validation of the computed results. �e graphs
depict the e�ect of various parameters on the velocity, temperature, and concentration curves. �e results show that thermal and
di�usive wave propagation is signi�cantly a�ected by thermal conductivity and mass di�usivity changes. Results show that �ow
velocity escalates by rising values of thermal and solutal Grashof numbers.

1. Introduction

A study related to non-Newtonian �uids has gained ex-
quisite attraction due to its massive applications in food and
energy, speci�cally in the petroleum industry. �e roots of
plastic processing industries peculiarly relied on �uid dy-
namics in polymer melt and polymer solutions. Industrial
slurry multiphase mixers, pharmaceutical formulations,
cosmetics and toiletries, paints, bio�uids, and food items
have become more diverse because of the widespread usage
of non-Newtonian �uids. Such studies follow Ostwald-de
Waele’s power-law model and the boundary layer concept,
which was �rst proposed by Schowalter [1]. Acrivos [2]
formulated an extension for the boundary layer non-
Newtonian �uid �ow in 1960 and leveled the ground for

upcoming scholars. Several investigations on chemicals,
polymers, and molten plastics have been conducted since
then. Many previous investigations of natural convection
with transparent �uid media are considered Newtonian
�uids by the thermo �uid community. A theoretical analysis
of how the shear rate a�ects convective �ow patterns and
heat transfer rates in non-Newtonian �uids can be used in
papermaking, oil drilling, slurry transport, food processing,
and polymer engineering.

Ice formation damage of organs preserves cells and
tissues through freezing on the principle of mass and heat
transfer. Such studies are essential as non-Newtonian �uids
and have robust interference in industries such as petroleum
storage, ground-water hydrology, nuclear waste disposal,
geothermal energy formation, cooling, and design of solid
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matrix heat exchange and packed-bed chemical catalytic
reactors. Authors such as Smith et al. [3] were interested in
determining mass transfer in rat prostate tumor tissues. In
contrast, El-Hakiem and El-Amin [4] first researched the
same transfer in a porous material with nonuniform surface
heat flow through a vertical plate. An infinite insulated flat
plate near a laminar flow of viscoelastic incompressible fluid
of low electrical conductivity was solved by Eldabe and
Hassan [5]. Non-Newtonian elastic, viscous fluid flow past
an infinite flat plate with changing suction was studied by
Soundalgekar and Puri [6].

*e theory of non-Newtonian fluid presents the greatest
challenge to mathematicians and engineers in developing
analytical and numerical solutions for highly nonlinear gov-
erning equations. *e study for hearing transfer of boundary
layer flowover a stretching sheet has been given by Elbashbeshy
et al. [7]. A numerical Runge–Kutta method has been con-
sidered to handle boundary value problems by Elbashbeshy
et al. [7]. *e flow was studied with heat generation, chemical
reaction, and thermal radiation. *e radiation effect was also
considered in the boundary layer flow over the exponentially
stretching sheet by Nadeem et al. [8]. Two types of effects for
heat transfer have been studied: the prescribed exponential
order surface temperature and the prescribed exponential
order heat flux. An analytical method, namely homotopy
analysis, has been utilized to solve differential equations in the
radiative flow. It was concluded that the temperature profile
was escalated by the growth of the radiation parameter. Both
effects of prescribed surface temperature and prescribed heat
flux were also studied by Nadeem et al. [9] in the stagnation
point flow of third-order fluids.

A shrinking sheet was deliberated with two problems:
two-dimensional stagnation point flow over a shrinking
sheet and axisymmetric stagnation point flow over axi-
symmetric shrinking. An analytical technique, homotopy
analysis, was adopted to solve the ordinary differential
equations. *e study of stagnation point flow for a viscous
fluid has been given by Nadeem et al. [10]. For the validity of
the computed solutions obtained by the homotopy analysis
method for solving the boundary layer equation, a com-
parison with the results obtained by another research was
made and found good agreement. Nadeem and Akbar [11]
also found an analytical solution for the peristaltic motion of
the non-Newtonian incompressible Johnson Segalman fluid.
*e perturbation and homotopy analysis methods were
adopted to tackle the differential equations arising in the
studied flow. Nadeem and Ali [12] also employed the
homotopy analysis method to solve flow phenomena of the
steady incompressible fourth-grade fluid down a vertical
cylinder. Variable viscosity and heat transport were also
taken into account in the study. Buongiorno [13] used
Brownian diffusion and thermophoresis slip mechanisms to
develop the nonhomogeneous equilibrium model.

A bounded domain with two-dimensional flows was
investigated. Global in-time solutions exist and are unique
according to Lukaszewicz [14] and their convergence to the
stationary solution for viscous flows. Shenoy [15] presented
many exciting applications of non-Newtonian power-law
fluids. Together with streamlines and turbulence,

mathematical models were studied by Astarita and Marrucci
[16] and Bohme [17]. *e non-Newtonian power-law fluid
with heat transfer over a continuously moving flat porous
plate has been analyzed by Kishan and Reddy [18]. *e
numerical solution was found by employing the implicit
finite difference method. *e solution was found to be
dependent on involved dimensionless parameters. *e ef-
fects of parameters on velocity and temperature profiles were
carried out. Kavitha and Kishan have investigated a radiative
boundary layer flow with heat transfer characteristics over a
vertical stretching sheet under the effect of viscous dissi-
pation [19]. Some obtained results were compared with
existing results and found good agreement.

Nanotechnology dealt withmaterials of a nanometer in size
and gravitated attention due to their unique physical and
chemical properties. Fluids comprising small-scaled unit
particles are called nanofluids, and heat transfer through such
fluids could enhance conductivity. It is the most relevant,
innovative technology dealing with the suspension of solid
nanoparticles ranging from 1 to 100nm in diameter within
common liquids such as water, oil, and ethylene glycol. A rise
in thermal conductivity by 40% can be obtained by decreasing
the number of solid nanoparticles in suspension by 1–5% by
volume. It depends on solid nanoparticles’ size, shape, and
thermal properties. *e composition of these nanoparticles
used in nanofluids is metals, oxides, carbides, and nanotubes.
Water, ethylene glycol, and oil are all examples of base liquids.
To reduce boiler flue gas temperatures and microelectronic
noise, nanofluid technology can be used in various heat transfer
applications, such as nuclear reactor coolants, pharmaceutical
processes, and boiler flue gas cooling. Such fluids raised the
convection and conductivity of heat transmission counter-
balance with base fluids. *e application of these fluids as heat
exchanger plants and automotive cooling systems has been
reported by Nadeem et al. [20].

*e term nanofluid was first proposed by Choi [21],
while its properties such as stability, pressure drop, and
passage through nanochannels were given by Zhou [22].
Xuan and Li [23] suggested a mechanism to reduce heat
transmission among nanofluids by increasing volume
fractions and resultant viscosity. *erefore, selecting a
particular nanoparticle regarding its fractional volume
substantially enhances conductivity. In addition, Buon-
giorno [13] introduced the term absolute velocity for
nanoparticles which he reckoned by the sum of base fluid
velocity and relative velocity (slip velocity). All seven
mechanisms he studied included inertia, Brownian diffu-
sion, thermophoresis, the Magnus effect, and fluid drainage
and gravitational settling.

(Pak and Cho [24], Wen and Ding [25], Ding et al. [26])
Utilizing nanofluids to promote forced convective heat
transfer has been suggested. Alternatively, the mechanism
behind this forced convective heat transfer and its charac-
teristics were not elaborated. Due to its efficient convection,
the topic of nanofluid has attracted a lot of attention in
recent years [27]. Recent research [28, 29] on nanofluids has
shown that the heat conductivity rises with decreasing grain
size. *is was proved through the use of measurements. In
Chengara et al. [30], they explore how the disjoining
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pressure exerted by nanoparticles in a liquid film affects its
spreading. Critical heat fluxes in boiling conditions increase
(You et al. [31]). Convection of heat over a permissible
elastic wall in a porous medium was investigated by Shei-
kholeslami et al. [32].

Extrusion, wire drawing, glass fiber manufacture, con-
tinuous casting, crystal growth, and paper formation are
among the engineering applications that have drawn re-
searchers’ attention to boundary layer flow and heat
transmission over a constantly stretched surface. Crane [33]
was the one who pioneered the study of boundary layer flow
over an elastic sheet with variable velocity. In contrast, the
convection aspect of the former problem was resolved by
Carragher and Crane [34]. Temperature differences on
surfaces and fluids were directly related to distances from
fixed points [34].

*e introduction of nanofluids to fluid dynamics, which
owned the property of effective thermal conductivity, cre-
ated a chance to study non-Newtonian fluids under the roof
of nanofluids for effective conductivity. Non-Newtonian
nanofluid transport in various geometries and boundary
conditions in porous and non-porous media has only been
studied by a few researchers. *e importance of non-
Newtonian nanofluids in physical and biological systems,
specifically in polymer melts and paints, is evident from
[35–37], which significantly lifted this area for research
purposes. *ese phenomena are found in physics, geo-
physics, astronomy, and chemical engineering applications,
including crystal magnetic damping control, hydromagnetic
chromatography, and conducting flow in trickle-bed reac-
tors [38].

Various authors studied the effect of dimensionless
parameters on the flows over plates. Asjad et al. [39] worked
on MHD nanofluid flow over an exponentially stretching
sheet by studying microorganisms and the effects of thermal
radiations, chemical reactions, and heat source dissipation.
*e differential equations obtained from the flow problems
were solved using the shooting method based on the
Runge–Kutta scheme. *e study of microorganisms for
mixed convection of Casson nanofluid flow in the stagnation
region of the rotating sphere was given in [40]. Gyrotactic
microorganisms have been considered to enhance heat
transportation, and nano-sized particles were brought into
the study to improve stability. *e dimensionless partial
differential equations were solved by the Galerkin finite
element method. *e study of microorganisms was also
presented for MHDWilliamson nanofluid flow [41] over the
sheet with irregular thickness. *e impacts of temperature-
dependent thermal conductivity and nonuniform viscosity
were also studied with the aforementioned flow phenome-
non. *e reduced set of ordinary differential equations was
solved by the shooting method. *e study of Reiner–Rivlin
fluid over a disk has been presented in [42] with Brownian
motion and thermophoresis effects.

For simulating MHD Casson flow over a linearly
shrinking/stretching sheet, the experimental relations for ap-
proximating the thermophysical properties of hybrid nano-
fluids have been explored in [43]. A fourth-order accurate
solution was found using Matlab. *e dual solution and

stability analysis were also given. *e results show that the
Casson fluid parameter range enhances with second nano-
particle mass, suction parameter, and radiation parameter. *e
study of MHD stagnation-point flow over a wavy circular
cylinder has been given in [44], considering aluminum-copper/
water hybrid nanofluid as the working fluid with temperature
jump and velocity slip boundary conditions. *e obtained
results revealed that a developed mass-based model can be
employed further to study heat transfer of hybrid nanofluid
flow in similar problems. A semianalytical study for two-di-
mensional boundary layer flow over a shrinking/stretching
wedge has been given in [45]. *e Tiwari–Das model with a
combination of mass-based hybrid nanofluid procedures was
applied to find governing equations of the considered flow
problem. It was observed that the boundary layer thickness for
the first solution was thinner than the second one. *e steady
laminar, incompressible, and two-dimensional hybrid nano-
fluid flow has been studied numerically in [46]. *e effects of
the convectively-warmed moving wedge with radiative tran-
sition have also been considered.*e three primary geometries
namely the flat plate, the wedge, and the vertical plate were
considered. *e mass-based method has been combined with
the entropy generation analysis for the first time in [46].

*e finite element method can adequately predict
boundary layer flow’s heat and mass transmission profiles. It
is the most effective methodology that provides a great
understanding of the time history of constitutive variables
and is an energetic tool in computational fluid dynamics. In
this work, a mathematical model of boundary layer flow is
modified using nonlinear mixed convection and studied
using the modified finite element method. A summary of
each section is given in the next paragraph.

*e problem is defined in section 2 with governing
equations and boundary conditions, and also in this section,
the partial differential equations are transformed into or-
dinary differential equations using transformations. *e
procedure for solving equations by the modified finite el-
ement method is given in section 3. *e validation of the
computed results is provided in section 4. *e discussion
related to graphs is given in section 5.

2. Problem Formulation

Consider incompressible, Newtonian, two-dimensional, and
mixed convective unsteady flow over the stretching sheet.
Let the sheet be placed horizontally.*e x-axis is taken along
the sheet, while the y-axis is taken perpendicular to the
sheet. *e flow is generated by the sudden movement of the
plate towards the positive x-axis. Let T be the temperature of
the fluid, C be the concentration, Tw&Cw are respectively
temperature and concentration at the wall, and T∞&C∞ are
respectively temperature and concentration at the free
stream. *e geometry of this problem is given in Figure 1,
which shows the direction of flow, coordinate axis and
momentum, and thermal and concentration boundary
layers. Considering thermal conductivity and mass diffu-
sivity as temperature and concentration-dependent quan-
tities, and following [47–49] the governing equations for this
phenomenon can be stated as
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Subject to the following boundary conditions:

u(t, y) � Uw, v(t, y) � vw, T(t, y) � Tw, C(T, y) � Cw wheny � 0, t> 0

u(t, y)⟶ 0, T(t, y)⟶ T∞, C(T, y)⟶ C∞ wheny⟶∞, t> 0
􏼩, (5)

where k(T) � k∞(1 + ε1(T − T∞/Tw − T∞)), D(C)

� D∞(1 + ε2(C − C∞/Cw − C∞)) temperatures, concen-
tration-dependent thermal conductivity, and mass dif-
fusivity have been considered in [50] and equations
(1)–(4), and terms having derivatives with respect to x

will be ignored, as it is assumed in [47]. Uw � ax denotes
the velocity of the stretching sheet, k(T) and D(C) are,
respectively, temperatures and concentration-dependent
thermal conductivity and mass diffusivity, ] is the ki-
nematic viscosity, g is the gravity, Λ1 and Λ2 are the
coefficients of linear and nonlinear thermal expansion,
respectively, Λ3 and Λ4 are coefficients of linear and
nonlinear solutal expansions, respectively, ρ is the density
of the fluid, Cp denotes the specific heat capacity, k1
represents the reaction rate, and qr denotes the radiative
flux. In this study, a Rosseland radiative flux [51] is
considered, which is expressed as
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Consider the following transformations [47].

η �
y

δ(t)
,

u � Uwf(η),

θ �
T − T∞

Tw − T∞
,

ϕ �
C − C∞

Cw − C∞
.

(7)

*e continuity equation (1) is solved, and its solution is
given by [47].

v � −
vo]
δ

, (8)

where vo � − (vwδ/]).
Under transformations (7), equations (2)–(5) are re-
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subject to the dimensionless boundary conditions

f(η) � 1, θ(η) � 1,ϕ(η) � 1when η � 0

f(η)⟶ 0, θ(η)⟶ 0,ϕ(η)⟶ 0when η⟶∞
􏼩,

(12)

where Gr0
� (gΛ1(Tw − T∞)δ2/Uw]), β1 � Λ2/Λ1(Tw

− T∞), Grm
� (gΛ3(Cw − C∞)δ2/Uw]), β2 � Λ4/Λ3(Cw −

C∞), Pr � ρcp]/k0, Rd � 4σ∗T3
∞/3k0k

∗, Sc � ]/D0, c �

k1δ
2/] are thermal Grashof number, nonlinear thermal

convection variables, solutal Grashof number, nonlinear solutal
convection variables, Prandtl number, radiation parameter,
Schmidt number, and dimensionless reaction rate parameter.

To make equations (9)–(11) dimensionless, the following
assumption is made [48]:

A �
δδ′
]

is a constant. (13)
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Under assumption (13), equations (9)–(11) can be
expressed as
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*e skin friction coefficient is defined as
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1
2
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where Re � Uwδ/] represents the Reynolds number.

3. Finite Element Method

*e problem is more complex because the governing
equations for the velocity field are nonlinear. Mathematical
equations describe generalized diffusion thermoelasticity
concerning changing mass diffusivity and thermal con-
ductivity, including dynamic and nonlinear variables. To
solve equations (14)–(16) using boundary conditions (12), a
finite element method is employed. *e entire domain is
partitioned into a finite number of subdomains for this

method’s implementation. *e solution is found at each
subdomain. Let N denote the number of subdomains. *e
first step of the method is to approximate the solution by
interpolation polynomials. For the present study, a linear
interpolation polynomial is employed. So, let the solution of
each equation (14)–(16) be approximated as

f � f0 + f1η,

θ � θ0 + θ1η,

ϕ � ϕ0 + ϕ1η,

(19)

where f0, f1, θ0, θ1, ϕ0, and ϕ1 are unknown to be found. Let
each subdomain be consisting of two nodes located at each
end. Let the ith subdomain be denoted by [ηi, ηi+1]. When
the three interpolated polynomials for each dependent
variable are evaluated at ith subdomain, then the resulting
solution evaluated at ith subdomain can be expressed as

f � ξ1(η)fi + ξ2(η)fi+1, (20)

θ � ξ1(η)θi + ξ2(η)θi+1, (21)

ϕ � ξ1(η)ϕi + ξ2(η)ϕi+1, (22)

where ξ1(η) � (ηi+1 − η/ηi+1 − ηi), ξ2(η) � (η − ηi/ηi+1 − ηi)

for ηi ≤ η≤ ηi+1.
*e defined functions ξ1(η) and ξ2(η) are called shape

functions, while the dependent variables f, θ, and ϕ are
called trial functions. By using the Galerkin approach,
weighted residuals for equations (14) to (16) can be
expressed as
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where [0, η∞] is the domain of equations (14)–(16). Equations
(23)–(25) are strong formulations and weak formulations. *e

second-order derivative terms are in equations (23)–(25) will be
integrated once. *is leads to the following weak formulations:
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*ese weak formulations (26)–(28) are constructed over
the whole domain [0, η∞], and since the finite element

method finds the solution on each subdomain, therefore
weak formulations on ith subdomain are constructed as
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−
1
Sc

dξ
dη

dϕ
dη

−
1
Sc

∈2ϕ
dξ
dη

dϕ
dη

+ ξ
1
Sc

∈2
dθ
dη

􏼠 􏼡
dϕ
dη

􏼠 􏼡 + ηA + v0( 􏼁
dϕ
dη

− cϕ􏼠 􏼡􏼢 􏼣 � − ξ
dϕ
dη

􏼠 􏼡

ηi+1

ηi

1
Sc

−
∈2ϕ􏼐 􏼑

Sc

ξ
dϕ
dη

􏼠 􏼡

ηi+1

ηi

. (31)

*e stiffness matrix for this problem can be expressed as

P
i

�

P
11

􏽨 􏽩 P
12

􏽨 􏽩 P
13

􏽨 􏽩

P
21

􏽨 􏽩 P
22

􏽨 􏽩 P
23

􏽨 􏽩

P
31

􏽨 􏽩 P
32

􏽨 􏽩 P
33

􏽨 􏽩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (32)

where

T∞, C∞

TW, CW UW

x-axis

y-axis

Concentration boundary layer
Thermal boundary layer
Momentum boundary layer

Figure 1: *e geometry of the problem.
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P
11
ij � 􏽚

ηi+1

ηi

−
dξi

dη
dfj

dη
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dfj

dη
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P
12
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P
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dθj

dη
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ηi+1
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−
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dη
dϕj

dη
−
1
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∈2ϕ
dξi

dη
dϕj

dη
+ ξi
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dθ
dη
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− cϕj􏼠 􏼡􏼢 􏼣dη.

(33)

and the remaining Pmn
ij , 1≤m, n≤ 3 are zero. *e terms in

bar ″ − ″ notation are kept fixed to linearize the equations.

4. Validation

An iterative procedure is also considered for the conver-
gence of the solution obtained by employing the finite el-
ement method. *e iterative solver is employed due to the
nonlinearity of the differential equations. *is iterative
technique begins, finds the solution using the finite element
method, and stops if the specified stopping criteria are
satisfied. *e stopping criteria for the solver are

F
c
i,j − F

p
i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< tol, (34)

where Fc
i,j denotes the solution for one of three dependent

variables f, θ, ϕ where j � 1, 2, 3 and each grid point i. Sup-
pose the solution obtained at current and previous iterations is
not close enough. In that case, the iterative procedure will
continue, and it will continue until the obtained values at two
consecutive iterations and each grid point are small enough. So,
if the iterative method stops, a converged solution may expect.

Also, the results computed by the finite elementmethod are
compared with those obtained by Matlab solver bvp4c. *is
Matlab solver is used to find the solution of linear and non-
linear ordinary differential equations. Using a collocation
formula and collocation polynomial, the solver generates a

fourth-order accurate continuous solution C1 using the three-
stage Lobatto-IIIa formula. *e results for − f′(0) are given in
Table 1 using different values of involved parameters. *e
comparison between results can be seen in Table 1. *e nu-
merical values for − f′(0) are calculated by employing two
different numerical methods. Also, the comparison of con-
sumed time calculated by employing two different approaches
is made in Table 1. *e Matlab solver bvp4c consumed less
time than the considered finite element method.

5. Results and Discussions

*e finite element method is employed for solving equations
(14)–(16) using boundary conditions (12). *e Galerkin finite
element method is applied in which weighted residuals of a
specific type are constructed, and linear interpolation poly-
nomials are used. Interpolated polynomials are evaluated at
two nodes of the subdomain, and shape functions are found.
*e weak formulations have an advantage over strong for-
mulations, for the approach uses linear interpolating poly-
nomials. For the standard finite element method, the
numerical derivatives of solutions are not high-order accurate
when interpolation is performed using linear polynomials.
However, in the modified approach proposed in [41], nu-
merical derivatives are found using finite difference formulas.
So, in this study, a standard approach of the finite element

Table 1: Comparison of the finite element method and Matlab solver bvp4c in finding numerical values of − f′(0) using
Grm � 1, β1 � 0.1, A � 1, v0 � 1, ε1 � 0.1, ε2 � 0.1, c � 0.1.

Gr0 β2 Rd Pr Sc

− f′(0) Time (s)
F.E.M bvp4c F.E.M bvp4c

1 0.5 0.1 0.7 0.7 0.1821 0.2076 0.469 0.324
10 − 5.4696 − 5.3456 0.451 0.333
0.1 5 − 0.7610 − 0.7058 0.475 0.343

0.1 5 0.8283 0.8396 0.432 0.315
0.1 4 0.9230 0.9345 0.436 0.329

0.1 4 1.2146 1.2200 0.441 0.348
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method is employed for finding the solutions of equations
(14)–(16) using boundary conditions (12), and the numerical
values of − f′(0) are found using the modified approach.

Figure 2 shows the velocity profile by varying thermal
Grashof number Gr0. *e velocity profile escalates by
enhancing the thermal Grashof number. *is increase is
the increment in the buoyancy force that augments the
velocity profile. Figure 3 shows the impact of the solutal
Grashof number on the velocity profile. *e velocity
profile increases by rising solutal (modified) Grashof
number values. Mathematically, the rise in the solutal
Grashof number increases the flow’s acceleration, and
consequently, the velocity profile escalates. Figure 4 shows
the velocity profile by increasing the parameter ε1. *e
velocity profile escalates by the rising values of the pa-
rameter ε1. *e increase in the parameter ε1 escalates the
coefficient of dimensionless temperature and yields an
increase in thermal conductivity. For mixed convective
flows, the temperature is one of the applied forces to
initiate or escalate the flow’s velocity; therefore, velocity
increases. Figure 5 deliberates the velocity profile with the
variation of nonlinear thermal convection parameters.
*e velocity profile increases with the escalation of the

nonlinear thermal convection parameter. *is is due to an
increase in the temperature of the flow by enhancing the
thermal convection parameter that leads to augments in
the velocity profile. *e temperature profile with the
variation of the radiation parameter is deliberated in
Figure 6.*e temperature profile grows with the rise in the
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Figure 2: Impact of the thermal Grashof number on the velocity
profile using A � 1, v0 � 0.1, Grm � 5, ε1 � 0.1, β1 � 0.4, Gr0 � 5,

Pr � 4, Rd � 0.1, Sc � 1.5, c1 � 0.4.
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Figure 3: Impact of the solutal Grashof number on the velocity
profile using A � 1, v0 � 0.1, ε1 � 0.1, ε2 � 0.1, β1 � 0.4, β2
� 0.4, Gr0 � 5, Pr � 4, Rd � 0.1, Sc � 1.5, c1 � 0.4.
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Figure 5: Impact of the nonlinear solutal convection parameter on
the velocity profile using A � 1, v0 � 0.1, Gr0 � 5, ε1 � 0.1, ε2
� 0.1, β1 � 0.4, β2 � 0.4, Grm � 5, Pr � 4, Rd � 0.1, Sc � 1.5,

c1 � 0.4.
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Figure 4: Impact of the parameter in variable thermal conductivity
on the velocity profile using A � 1, v0 � 0.1, Gr0 � 5, ε2 � 0.1, Grm

� 5, β1 � 0.4, β2 � 0.4, Pr � 4Rd � 0.1, Sc � 1.5, c1 � 0.4.
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Figure 6: Impact of the radiation parameter on the temperature
profile using A � 1, v0 � 0.1, Gr0 � 5, ε1 � 0.1, ε2 � 0.1, β1 � 0.4,

β2 � 0.4, Grm � 5, Pr � 4, Rd � 0.1, Sc � 1.5, c1 � 0.4.
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radiation parameter. *is is the consequence of incoming
radiations, which escalates in surface heat flux, and
therefore, the temperature of the flow rises. Figure 7
deliberates the temperature profile by the change in the
Prandtl number. *e temperature profile decays by raising
the Prandtl number.*e growth in the temperature profile
is the consequence of thermal conductivity that enhances

by the escalation in thermal diffusivity due to increasing
values of the Prandtl number. Figure 8 illustrates the effect
of the Schmidt number on the concentration distribution.
By increasing the Schmidt number, the concentration
profile decreases. *is increase is the growth of mass
diffusivity by escalating the Schmidt number, leading to
deescalation in the concentration profile. Figure 9 shows

1
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Figure 8: Impact of the Schmidt number on the concentration profile using A � 1, v0 � 0.1, Gr0 � 5, ε1 � 0.1, ε2 � 0.1, β1 � 0.4, β2
� 0.4, Grm � 5, Rd � 0.1, Pr � 4, c1 � 0.4.
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Figure 9: Impact of the reaction rate parameter on the concentration profile using A � 1, v0 � 0.1, Gr0 � 5, ε1 � 0.1, ε2 � 0.1, β1 � 0.4, β2
� 0.4, Grm � 5, Rd � 0.1, Sc � 1.5, Pr � 4.
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Figure 7: Impact of the Prandtl number on the temperature profile using A � 1, v0 � 0.1, Gr0 � 5, ε1 � 0.1, ε2 � 0.1, β1 � 0.4, β2 � 0.4,

Grm � 5, Rd � 0.1, Sc � 1.5, c1 � 0.4.
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the effect of a chemical reaction parameter on the con-
centration profile. *e concentration profile deescalates
by the growth of the reaction rate parameter. *is decay in
the concentration profile is the consequence of either
increasing the level of impurity or escalation of creating
substances in the flow.

Figures 10–12 are drawn using the partial differential
equations as governing heat transfer equations in mixed
convection flow under the effect of radiations. *e

software uses the specified geometry and finds the solu-
tion using the finite element method. *e considered flow
problem’s geometry is a rectangle with one inlet and one
outlet. *e plate is considered to be the lower boundary of
the rectangular region. *e bottom wall of the rectangular
region has a fixed temperature. *e water is used as the
base fluid. Instead of using the fixed velocity of the sheet,
different velocities of the sheet are chosen, and corre-
sponding to each velocity of the sheet, one of the
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Figure 11: (a) Surface plot for velocity, (b) streamlines, (c) surface plot temperature, and (d) isothermal contours using
Gr0 � 100, β1 � 0.7, Grm � 0, Uw � 0.005.

10 ×1
0-39876543210

(a) (b)

1
0.

9
0.

8
0.

7
0.

6
0.

5
0.

4
0.

3
0.

2
0.

10

(c)

0.
93

0.
82

0.
72

0.
63

0.
53

0.
42

0.
23

0.
13

0.
03

0.
33

(d)

Figure 12: (a) Surface plot for velocity, (b) streamlines, (c) surface plot temperature, and (d) isothermal contours using
Gr0 � 100, β1 � 0.7, Grm � 0, Uw � 0.01.
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Figure 10: (a) Surface plot for velocity, (b) streamlines, (c) surface plot for temperature, and (d) isothermal contours using
Gr0 � 100, β1 � 0.7, Gtm � 0, Uw � 0.001.
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Figures 10–12 is obtained. *e variation in temperature
surface plots can be seen in these Figures 10–12 with
growing values of the velocity of the wall.

6. Conclusion

Many experimental and theoretical studies show that
thermal conductivity and mass diffusivity are not constants.
Inspired by these findings, an existing mathematical model
for heat and mass transfer flow has been modified. A nu-
merical approach has been employed for solving ordinary
differential equations. *e nonlinear equations have been
linearized, and an iterative procedure has been considered to
handle nonlinearities in the equations. Numerical integra-
tion of three point formula has been carried out using the
Legendre polynomial. *e variations of thermal and solutal
Grashof numbers, a nonlinear solutal convection parameter,
a small parameter in variable thermal conductivity, the
Prandtl number, a radiation parameter, the Schmidt num-
ber, and a reaction rate parameter on velocity, temperature,
and concentration profiles have been presented in the form
of graphs. *e concluded points can be expressed as

(i) Velocity profile escalated by enhancing thermal and
solutal Grashof numbers

(ii) Velocity profile has grown by rising values of
nonlinear solutal convection parameters

(iii) Temperature profile escalated by growing values of
radiation parameters

(iv) Concentration profile deescalated by augmenting
the reaction rate parameter

Furthermore, the modified finite element method con-
sidered in this work can be employed to solve nonlinear
problems of a similar type that arise in computational fluid
dynamics with some extra effects. Following the completion
of this work, it will be possible to propose other applications
for the currently employed methodology, if desired [52–56].
In addition, the developed method is easy to use and can
solve a broader range of differential equations in both
practice and theory.
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