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In this study, we focus on the formulation and analysis of an exponentially �tted numerical scheme by decomposing the domain
into subdomains to solve singularly perturbed di�erential equations with large negative shift.  e solution of problem exhibits
twin boundary layers due to the presence of the perturbation parameter and strong interior layer due to the large negative shift.
 e original domain is divided into six subdomains, such as two boundary layer regions, two interior (interfacing) layer regions,
and two regular regions. Constructing an exponentially �tted numerical scheme on each boundary and interior layer subdomains
and combining with the solutions on the regular subdomains, we obtain a second order ε-uniformly convergent numerical
scheme. To demonstrate the theoretical results, numerical examples are provided and analyzed.

1. Introduction

In science and engineering, many phenomena can be
modeled and described by observing the relation between
causes and e�ects. When the cause is small and its e�ect is
large, the relation has considerable physical system[1]. A
mathematical equation associated with di�erential equations
involving small parameter causing large e�ect in the
problem is said to be singularly perturbed di�erential
equation, whereas the simpli�ed di�erential equation (the
one that does not include the small parameter) is called the
unperturbed model.

Depending on the in�uence of the small parameter,
perturbation problems can be categorized as regular and
singular perturbation problems. A regular perturbation
problem is the one in which the perturbed problem for small
and nonzero values of the perturbation parameter (ε) is
qualitatively the same as the unperturbed problem for ε � 0.
A singular perturbation problem is a problem, which is

qualitatively di�erent from the unperturbed one. In this case,
we can obtain an asymptotic, but possibly divergent ex-
pansion of the solution, which depends singularly on the
perturbation parameter [2, 3]. A subclass of di�erential
equation in which the second-order derivative term is
multiplied by the perturbation parameter and involves at
least one delay parameter is said to be singularly perturbed
delay di�erential equation. Such types of equations are used
in the mathematical modeling of various physical phe-
nomena, for instance, for the modeling of human pupil-light
re�ex [4], in studying bi-stable devices [5], in neuronal
variability [6], and in variational problems in control
theory [7].

 e solution of a singularly perturbed problem varies
rapidly in some region and varies slowly in other parts of the
problem’s domain.  e region where the solution varies
rapidly is called the inner region and the region where the
solution varies slowly is known as the outer region. In
physical system, we observe several phenomena
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characterized by such rapid variations of quantities, for
instance, occurrence in shock waves in gas motions, in
boundary layer flow along the surface of a body, and in edge
effects in the deformation of elastic plates [1]. Due to the
rapid variation, one encounters difficulties to obtain satis-
factory solution to the problem.

For the response of the above difficulties, many research
articles are available in literature, which mostly cover dif-
ferential equations with small shift or without shifting pa-
rameter or convection-diffusion type problems. For
instance, Bansal and Sharma [8] proposed a parameter
uniform numerical method based on the nonstandard finite
difference method to capture the significant properties of
singularly perturbed parabolic partial differential equations
with general shift arguments and obtained parameter-uni-
formly convergent result. In [9], singularly perturbed
nondelayed reaction-diffusion problem was treated applying
Galerkin finite element technique on a piece-wise uniform
Shishkin mesh using linear basis functions. Arora and Kaur
[10] solved singularly perturbed differential equation with
small shift applying the collocation method with the
modified B-spline basis functions.

In [11], the authors treated singularly perturbed non-
linear differential-difference equations with negative shift.
To simplify the difficulties due to the presence of nonline-
arity, they obtained linear differential equation from the
nonlinear one using the quasi-linearization process. To
tackle the shift term, Taylor’s series expansion is used, and
the fitted mesh method is applied to resolve the problem due
to perturbation parameter. In [12], singularly perturbed
differential equation involving both positive and negative
shift arguments was treated using the fitted operator method
as well as the fitted mesh method and obtained ε-uniform
numerical results. In [13], a singularly perturbed differential-
difference equation with small negative and positive shifts
was solved by using modified Numerov’s method. In [14], a
singularly perturbed reaction-diffusion problem was treated
by developing a fourth-order exponentially fitted numerical
scheme on a uniform mesh. Kadalbajoo and Sharma [15]
treated singularly perturbed differential equation with small
shifts of mixed typed using numerical approach on a uni-
form mesh. In [16], the authors constructed a fitted operator
finite difference method using the nonstandard finite dif-
ference method to solve singularly perturbed differential
equation involving both small negative and positive shifts.
Gupta et al. [17] solved time-dependent singularly perturbed
differential-difference convection-diffusion equations by
proposing a numerical scheme using implicit Euler method
in time direction and hybrid finite difference scheme on
piece-wise uniform spatial mesh.

However, there are only few research works on singu-
larly perturbed differential equations with large delay. In
[18], the authors solved such problem by suggesting an
initial value technique and obtained almost second-order
convergence with respect to ε. +e same type of problem was
also studied in [19], where hp finite element method was
applied and obtained as a convergent result. In [20], the
problem is treated by constructing a numerical method on a
piece-wise uniform Shishkin mesh using classical finite

difference methods. By this method, it was indicated that the
boundary layers and interior layers were resolved and first-
order convergent result was obtained. In [21], an expo-
nentially fitted numerical method is constructed applying
the Numerov finite difference method. +e method resolves
the boundary and interior layers and converges uniformly
with respect to ε. By suggesting iterative techniques for the
boundary value problem, a convergent numerical result was
also reported by Selvi and Ramanujam [22]. In [23], a
numerical method was constructed by defining a fitting
comparison problem and replacing ε by a fitting factor, and
by such technique, a convergent result was reported.

Our aim in this study is to develop and analyze an
exponentially fitted numerical scheme to solve singularly
perturbed differential equations with large negative shift by
decomposing the domain into subdomains. Since the so-
lution of the considered problem involves two boundary
layers and interior layer, we decompose the original domain
into two boundary layer subdomains, two interior (inter-
facing) layer subdomains, and two regular subdomains.
+en, on each boundary and interior layer subdomains, we
formulate an exponentially fitted numerical scheme and on
each regular subdomains, and we solve the reduced problem
by setting ε to be zero. Combining and analyzing these
results give us a second-order ε-uniformly convergent
method.

+e study is organized as follows. In Section 2, the
considered model problem is presented. In Section 3,
properties of the analytic results are described briefly. De-
scription of the numerical methods and derivation of the
schemes are discussed in detail in Section 4. Demonstration
of the proposed method by numerical examples is presented
in Section 5, and our study is concluded in Section 6.

1.1. Notations. +roughout this study, we used C as a ge-
neric constant, which is independent of the perturbation
parameter and the mesh elements. +e norm ‖ · ‖Ω is used to
represent a continuous maximum norm.

2. Statement of the Problem

Consider a second-order singularly perturbed delay differ-
ential equations of the form

Lu ≔ − ε
d2u
dx

2 + r(x)u(x) + s(x)u(x − 1) � w(x),

x ∈ (0, 2).

(1)

+e interval and boundary conditions are given as

u(x) � ψ(x), x ∈ [− 1, 0],

u(2) � c,
 (2)

where u ∈ Ω � C0[0, 2]∩C1(0, 2)∩C4 (0, 1)∪ (1, 2){ } and
the functions r(x), s(x), and w(x) are sufficiently smooth
on [0, 2] such that

r(x) + s(x)≥ 2α> 0, for r(x)> 0 and s(x)< 0. (3)
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Also, ψ(x) is a smooth function on [− 1, 0] and c is a
given constant, which is independent of ε. Problems (1)-(2)
can be rewritten as

L1u ≔ − ε
d2u
dx

2 + r(x)u(x)

� w(x) − s(x)ψ(x − 1), x ∈ (0, 1],

(4a)

L2u ≔ − ε
d2u
dx

2 + r(x)u(x) + s(x)u(x − 1)

� w(x), x ∈ (1, 2).

(4b)

With u(x) � ψ(x) on [− 1, 0], u(1− ) � u(1+),
u′(1− ) � u′(1+), and u(2) � c, where u− and u+ represent
the left and right side limit of u at x � 1, respectively. Due to
the influence of the perturbation parameter, the solution
u(x) of the boundary value problems (1)-(2) exhibits strong
boundary layers at x � 0 and x � 2, and due to the large
negative shift, strong interior layers occur on left and right
sides of x � 1 [24]. Moreover, such type of problem has a
unique solution [25].

3. Analytical Results

Lemma 1 (continuous maximum principle). For the smooth
functions r(x) and s(x) satisfying (3), let ϕ be in Ω such that
ϕ(0)≥ 0, ϕ(2)≥ 0, and Lϕ(x)≥ 0 on (0, 2). +en, ϕ(x)≥ 0 on
[0, 2].

Proof. Let y ∈ Ω be given such that ϕ(y) � minx∈[0,2]ϕ(x),
and for the contrary, suppose ϕ(y)< 0. By the given

conditions, y ∉ 0, 2{ }. It follows from calculus that
(dϕ/dy) � 0 and (d2ϕ/dy2)≥ 0. Consequently, we have

L1ϕ(y) � − ε
d2ϕ
dy

2 + r(y)ϕ(y) < 0, y ∈ (0, 1],

L2ϕ(y) � − ε
d2ϕ
dy

2 + r(y)ϕ(y) + s(y)ϕ(y − 1)

≤ − ε
d2ϕ
dy

2 +[r(y) + s(y)]ϕ(y) < 0, y ∈ (1, 2),

(5)

which is a contradiction to the hypothesis. +erefore, it
follows that ϕ(y)≥ 0 and ϕ(x)≥ 0, for all x ∈ [0, 2]. □

Lemma 2 (stability result). Let the conditions in (3) hold true
and u(x) be any function in Ω. +en, for all x ∈ [0, 2], we
have |u(x)|≤ (1/α)‖Lu‖ + max |u(0)|, |u(2)|{ }.

Proof. Let us define two barrier functions as
ϕ±(x) � (1/α)‖Lu‖ + max |u(0)|, |u(2)|{ } ± u(x). By these
functions, we have

ϕ±(0) � (1/α)‖Lu‖ + max |u(0)|, |u(2)|{ } ± u(0)≥ (1/α)‖Lu‖≥ 0,

ϕ±(2) � (1/α)‖Lu‖ + max |u(0)|, |u(2)|{ } ± u(2)≥ (1/α)‖Lu‖≥ 0.

(6)

And by (4a 4b), for all x ∈ (0, 2), we have

L1ϕ
±
(x) � − ε

d2ϕ±

dx
2 + r(x)ϕ±(x)

� ∓ε
d2u
dx

2 +
r(x)

α
L1u

����
���� + r(x)max [u(0)), |u(2)|{ } ± r(x)u(x)

� ±[w(x) − s(x)ψ(x − 1)] +
r(x)

α
‖w(x) − s(x)ψ(x − 1)‖ + r(x)max |u(0)|, |u(2)|{ }

≥ r(x)max |u(0)|, |u(2)|{ }≥ 0,

L2ϕ
±
(x) � − ε

d2ϕ±

dx
2 + r(x)ϕ±(x) + s(x)ϕ±(x − 1)

� ∓ε
d2u
dx

2 +
r(x)

α
L2u(x)

����
���� +

s(x)

α
L2u(x − 1)

����
���� +[r(x) + s(x)]max |u(0)|, |u(2)|{ }

± r(x)u(x) ± s(x)u(x − 1)

� ± w(x) +
r(x)

α
L2u(x)

����
���� +

s(x)

α
L2u(x − 1)

����
���� +[r(x) + s(x)]max |u(0)|, |u(2)|{ }

≥ [r(x) + s(x)]max |u(0)|, |u(2)|{ }≥ 2αmax |u(0)|, |u(2)|{ }≥ 0.

(7)
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Applying Lemma 1, it follows that ϕ±(x)≥ 0, for all
x ∈ [0, 2], and hence, |u(x)|≤ (1/α)‖Lu‖ + max |u(0)|,{

|u(2)|}, for all x ∈ [0, 2]. □

Lemma 3 (bBound for the derivatives of the solution). Let
the conditions in (3) hold true and u(x) be the solution of (1)-
(2). +en, we have

u
(k)

(x)


≤Cε− (k/2)
(‖u‖ +‖w‖), if k � 0, 1,

u
(k)

(x)


≤Cε− (k/2)
‖u‖ +‖w‖ + w

(k− 2)
�����

�����ε
(k− 2/2)

 , if k � 2, 3, 4.

(8)

Proof. +e case for k � 0 is the result of Lemma 2. To handle
the case for k � 1, let x ∈ (0, 1) and construct an associated
neighborhood Nx � (ι, ι +

�
ε

√
), such that x ∈ Nx and

Nx ⊂ [0, 1]. By the mean value theorem, for some a ∈ Nx,
we have

u′(a)


 �
u(ι +

�
ε

√
) − u(ι)

(ι +
�
ε

√
) − ι





� ε− (1/2)
|u(ι +

�
ε

√
) − u(ι)|≤ 2ε− (1/2)

‖u‖.

(9)

+en, for x ∈ Nx, we have

u′(x)


 � u′(a) + u′(x) − u′(a)


 � u′(a) + 
x

a
u″(t)dt





� u′(a) +
1
ε


x

a
[− w(t) + r(t)u(t) + s(t)ψ(t − 1)]dt




, t ∈ (a, x)

≤ u′(a)


 +
1
ε

[‖w‖ +‖ru‖ +‖sψ‖]
�
ε

√

≤Cε− (1/2)
(‖u‖ +‖w‖).

(10)

In a similar procedure, for x ∈ (1, 2), we construct
neighborhood Nx � (ι, ι +

�
ε

√
) ⊂ (1, 2). +en, by the mean

value theorem as above, we obtain |u′(x)|≤
Cε− (1/2)(‖u‖ + ‖w‖).

+e case, for k � 2, follows rearranging terms in (1) as

u″(x) � ε− 1
[r(x)u(x) + s(x)u(x − 1) − w(x)]. (11)

From this, we have |u″(x)|≤Cε− 1(‖u‖ + ‖w‖). Differ-
entiating both sides of (11) once and twice, we obtain

u′″(x)


 � ε− 1
r′(x)u(x) + r(x)u′(x) + s′(x)u(x − 1) + s(x)u′(x − 1) − w′(x)




≤ ε− 1
C + Cε− (1/2)

(‖u‖ +‖w‖) + w′
����

���� ≤Cε− (3/2)
‖u‖ +‖w‖ + w′

����
����ε1/2 ,

u
(4)

(x)


 � ε− 1
r′(x)u(x)( ′ + r(x)u′(x)( ′ + s′(x)u(x − 1)( ′ + s(x)u′(x − 1)( ′ − w″(x)





≤Cε− 2
‖u‖ +‖w‖ + w″

����
����ε .

(12)

For more sharp bound on the derivative of the solution
via Shishkin decomposition, we refer the approaches in
[20, 26]. □

4. Numerical Method

4.1. Description of the Numerical Method. Since the solution
of the problem in (1) exhibits two boundary layers and
interior layer, we divide the domain into six subdomains,
such as two boundary layer subdomains, two interior layer
(left and right side of x � 1) subdomains, and two outer
region subdomains. +e boundary and interior layer
problems can be transformed to regular problems by ap-
propriate transformations using stretching of variables.
Consider the asymptotic expansion solution of the problem
in (1)-(2) as

u(x, ε) � 
∞

i�0
ui1(x) + vi1 τ1(  + vi2 τ2( ( εi

, x ∈ (0, 1],

(13a)

u(x, ε) � 
∞

i�0
ui2(x) + vi3 τ3(  + vi4 τ4( ( εi

, x ∈ (1, 2),

(13b)

where τ1 � (x/
�
ε

√
), τ2 � ((1 − x)/

�
ε

√
), τ3 � ((x − 1)/

�
ε

√
),

and τ4 � ((2 − x)/
�
ε

√
). +en, the corresponding zero-order

asymptotic expansions of (13a)-(13b) are given by

u(x) � u01(x) + v01 τ1(  + v02 τ2( , x ∈ (0, 1], (14a)

u(x) � u02(x) + v03 τ3(  + v04 τ4( , x ∈ (1, 2), (14b)
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where u01(x) � (w(x) − s(x)ψ(x − 1))/r(x) and u02(x) �

(w(x) − s(x)u0(x − 1))/r(x) are the asymptotic solutions of
the reduced problem on (0, 1] and (1, 2) respectively, which
do not satisfy the conditions in (2). From the solution of the
reduced problem, the value of u(x � 1) � μ (say) can be
obtained. In (14a)-(14b), v01 is the left boundary layer
function, v02 is the left side of x � 1 interior layer function,
v03 is the right side of x � 1 interior layer function, and v04 is
the right boundary layer function.

+e functions v01, v02, v03, and v04 satisfy, respectively,
the following transformed homogeneous differential
equations:

−
d2v01 τ1( 

dτ21
+ r(0)v01 τ1(  � 0; τ1 ∈ (0 ·∞), (15a)

−
d2v02 τ2( 

dτ22
+ r(1)v02 τ2(  � 0; τ2 ∈ (0 ·∞), (15b)

−
d2v03 τ3( 

dτ23
+ r(1)v03 τ3(  � 0; τ3 ∈ (0 ·∞), (15c)

−
d2v04 τ4( 

dτ24
+ r(2)v04 τ4(  � 0; τ4 ∈ (0 ·∞). (15d)

Solving each subequations in (15a 15b 15c 15d) at
corresponding terminal points and by (14a)-(14b), we obtain
the zeros order solution of (1)-(2) as

u(x) � u01(x) + λ1e
−

����
r(0)/ε

√
x

+ λ2e
−

����
r(1)/ε

√
(1− x)

, x ∈ (0, 1],

(16a)

u(x) � u02(x) + λ3e
−

����
r(1)/ε

√
(x− 1)

+ λ4e
−

����
r(2)/ε

√
(2− x)

, x ∈ (1, 2),
(16b)

so that applying the interval and boundary conditions, we
can get λ1, λ2, λ3, and λ4 as

λ1 �
ψ(0) − u01(0)  − μ − u01(1) e

−
����
r(1)/ε

√

1 − e
− (

����
r(0)/ε

√
+

����
r(1)/ε

√
)

, (17a)

λ2 �
μ − u01(1)  − ψ(0) − u01(0) e

−
����
r(0)/ε

√

1 − e
− (

����
r(0)/ε

√
+

����
r(1)/ε

√
)

, (17b)

λ3 �
μ − u02(1)  − c − u02(2) e

−
����
r(2)/ε

√

1 − e
− (

����
r(1)/ε

√
+

����
r(2)/ε

√
)

, (17c)

λ4 �
c − u02(2)  − μ − u02(1) e

−
����
r(1)/ε

√

1 − e
− (

����
r(1)/ε

√
+

����
r(2)/ε

√
)

. (17d)

4.2. Derivation and Properties of the Numerical Scheme.
We divide the interval [0, 2] into N equal parts with uniform
mesh length h. Suppose 0 � x0, x1, x2, . . . , xN/2 � 1, x(N/2)+1,

x(N/2)+2, . . . , xN � 2 be the mesh points. +en, we have
xi � ih, i � 0, 1, 2, . . . , N. Let us choose the terminal
points as xn1 �

�
ε

√
, xn2 � 1 −

�
ε

√
, xn3 � 1 +

�
ε

√
, and xn4 � 2

−
�
ε

√
. +e left boundary layer is in the interval [0,

�
ε

√
], the

right boundary layer is in the interval [2 −
�
ε

√
, 2], the left

interior layer is in the interval [1 −
�
ε

√
, 1], the right interior

layer is in the interval [1, 1 +
�
ε

√
], the left outer region is in

the interval [
�
ε

√
, 1 −

�
ε

√
], and the right outer region is in the

interval [1 +
�
ε

√
, 2 −

�
ε

√
].

Now, at x � xi, (1) can be written as − ε(d2u/dx2
i ) +r(xi)

u(xi) + s(xi)u(xi − 1) � w(xi). Approximating the differ-
ential operator by the central finite difference as (d2u/dx2

i ) �

((ui− 1 − 2ui + ui+1)/h2) − (h2/12) u
(4)
i + R, where R � (− h4/

360)u
(6)
i (t), t ∈ [xi − h, xi + h], and introducing a fitting

factor σ to obtain an ε-independently convergent solution,
we obtain

Lu xi(  ≔ −
εσ
h
2 u xi− 1(  +

2εσ
h
2 + r xi(  u xi(  −

εσ
h
2 u xi+1(  +

εσh
2

12
u

(4)
xi( 

− εσR + s xi( u xi − 1(  � w xi( , ∀i � 1, 2, . . . , N − 1.

(18)

From this, we have

L1ui ≔ Aiui− 1 + Biui + Aiui+1

� Di + Ti, ∀i � 1, 2, . . . ,
N

2 − 1
,

(19a)

L2ui ≔ Aiui− 1 + Biui + Aiui+1

� Ei + Ti, ∀i �
N

2 + 1
,

N

2 + 1
, . . . , N − 1,

(19b)

where Ai � − (εσ/h2), Bi � (2εσ/h2) + ri, Di � wi − si

ψi− (N/2), Ei � wi − siui− (N/2), and Ti � − (εσh2/12)u(4) (t) +

εσO(h4) for t ∈ [xi − h, xi + h].

Case 1. Left boundary layer.
On the interval [0,

�
ε

√
], we introduce a fitting factor σ1

in (19a) as

− εσ1
ui− 1 − 2ui + ui+1

h
2  + riui � Di + Ti for i � 1, 2, . . . , N/8.

(20)
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To determine the fitting factor σ1 on the left boundary
layer, we use the left boundary layer asymptotic solution
with the left outer solution as

ui � u01 xi(  + λ1e
− (

����
r(0)/ε

√
)xi . (21)

We assume that the solution converges uniformly to the
solution of (1)-(2). From (20), we have − (σ1/ρ2)(ui− 1−

2ui + ui+1) � Di + Ti − riui, where ρ � (h/
�
ε

√
). Taking the

limit as h⟶ 0, it becomes

− lim
h⟶0

σ1
ρ2

ui− 1 − 2ui + ui+1(  � lim
h⟶0

Di + Ti − riui( . (22)

From (21), we have ui− 1 � u01(xi− 1) + λ1
e− (

���
r0)/ε

√
)xi e

���
r(0)

√
ρ and ui+1 � u01(xi+1) + λ1e− (

����
r(0)/ε

√
)xi

e−
���
r(0)

√
ρ. Inserting these in (22) and simplifying gives

σ1 �

����
r(0)


ρ/2

sinh(
����
r(0)


ρ/2)

 

2

, (23)

which is the fitting factor in the interval [0,
�
ε

√
]. Having this

fitting factor in (20), we obtain

−
εσ1
h
2 ui− 1 +

2εσ1
h
2 + ri ui −

εσ1
h
2 ui+1 � Di + Ti,

for i � 1, 2, . . .
N

8
.

(24)

Case 2. Left outer region.
On the interval [

�
ε

√
, 1 −

�
ε

√
], we have the left outer

region. Setting ε � 0, (19a) becomes

riui � Di, for i �
N

8 + 1
,

N

8 + 2
, . . . ,

3N

8
, (25)

which is the left outer region scheme.

Case 3. Left-side interior layer.
On the interval [1 −

�
ε

√
, 1], the interior layer will be on

the left-hand side of x � 1. Introducing a fitting factor σ2 in
(19a), we have

− εσ2
ui− 1 − 2ui + ui+1

h
2  + riui � Di + Ti, for i

�
3N

8 + 1
,
3N

8 + 2
, . . . ,

N

2
.

(26)

To determine the fitting factor σ2 on the left interior
layer, we use the corresponding interior layer asymptotic
solution with the left outer region solution as

ui � u01 xi(  + λ2e
− (

����
r(1)/ε

√
) 1− xi( ). (27)

Assuming that the solution converges uniformly to the
solution of (1)-(2), from (26), we have

− lim
h⟶0

σ2
ρ2

ui− 1 − 2ui + ui+1(  � lim
h⟶0

Di + Ti − riui( , (28)

where ρ � (h/
�
ε

√
). From (27), we have ui− 1 � u01(xi− 1) +

λ2e− (
����
r(1)/ε

√
)(1− xi)e−

���
r(1)

√
ρ and ui+1 � u01(xi+1)+

λ2e− (
����
r(1)/ε

√
)(1− xi)e

���
r(1)

√
ρ. Substituting these in (28) and

simplification gives a fitting factor in left side of x � 1 in-
terior layer as

σ2 �

����
r(0)


ρ/2

sinh(
����
r(1)


ρ/2)

 

2

. (29)

With this fitting factor, we have

−
εσ2
h
2 ui− 1 +

2εσ2
h
2 + ri ui −

εσ2
h
2 ui+1 � Di + Ti,

for i �
3N

8 + 1
,
3N

8 + 2
, . . .

N

2
.

(30)

Case 4. Right-side interior layer.
On the interval [1, 1 +

�
ε

√
], the interior layer will be on

the right side of x � 1. If we introduce a fitting factor σ3 in
(19b), then we obtain

− εσ3
ui− 1 − 2ui + ui+1

h
2  + riu xi � Ei + Ti( ,

for i �
N

2 + 1
,

N

2 + 2
, . . . ,

5N

8
.

(31)

To determine σ3, we use the right-side interior layer
asymptotic solution with the right outer solution as

ui � u02 xi(  + λ3e
− (

����
r(1)/ε

√
) xi − 1( ). (32)

Again, assuming that the solution converges uniformly
to the solution of (1)-(2) from (31), we have

− lim
h⟶0

σ3
ρ2

ui− 1 − 2ui + ui+1(  � lim
h⟶0

Ei + Ti − riui( , (33)

where ρ � (h/
�
ε

√
). Using (32), we have ui− 1 � u02(xi− 1) +

λ3e− (
����
r(1)/ε

√
)(xi− 1)e

���
r(1)

√
ρ and ui+1 � u02(xi+1)+

λ3e− (
����
r(1)/ε

√
)(xi− 1)e−

���
r(1)

√
ρ. Putting these in (33) and sim-

plifying gives the fitting factor σ3 in the right side of x � 1
interior layer as

σ3 �

����
r(0)


ρ/2

sinh(
����
r(1)


ρ/2)

 

2

. (34)

Having this fitting factor, (31) becomes

−
εσ3
h
2 ui− 1 +

2εσ3
h
2 + ri ui −

εσ3
h
2 ui+1 � Ei + Ti,

for i �
N

2 + 1
,

N

2 + 2
, . . . ,

5N

8
.

(35)

Case 5. Right outer region.
On the interval [1 +

�
ε

√
, 2 −

�
ε

√
], we have the right

outer region. Setting ε � 0, (19b) is reduced to
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riui � Ei, for i �
5N

8 + 1
,
5N

8 + 2
, . . . ,

7N

8
, (36)

which is the right outer region scheme.

Case 6. Right boundary layer.
On the interval [2 −

�
ε

√
, 2], introducing a fitting factor

σ4 in (19b), we have

− εσ4
ui− 1 − 2ui + ui+1

h
2  + riui � Ei + Ti,

for i �
7N

8 + 1
,
7N

8 + 2
, . . . , N.

(37)

To determine σ4, use the right boundary layer asymptotic
solution with left outer solution as

ui � u02 xi(  + λ4e
− (

����
r(2)/ε

√
) 2− xi( ). (38)

Assuming that the solution converges uniformly to the
solution of (1)-(2), we have

− lim
h⟶0

σ4
ρ2

ui− 1 − 2ui + ui+1(  � lim
h⟶0

Ei + Ti − riui( , (39)

where ρ � (h/
�
ε

√
). Using (38), we have ui− 1 � u02(xi− 1) +

λ4e− (
����
r(2)/ε

√
)(2− xi)e

���
r(2)

√
ρ and ui+1 � u02(xi+1) + λ4

e− (
����
r(2)/ε

√
)(2− xi)e−

���
r(2)

√
ρ, and by putting these into (39) and

simplifying, we get the fitting factor:

σ4 �

����
r(0)


ρ/2

sinh(
����
r(2)


ρ/2)

 

2

. (40)

With this fitting factor, we have the right boundary layer
scheme as

−
εσ4
h
2 ui− 1 +

2εσ4
h
2 + ri ui −

εσ4
h
2 ui+1 � Ei + Ti,

for i �
7N

8 + 1
,
7N

8 + 2
, . . . , N.

(41)

+e solution of the considered singularly perturbed
differential equation with large negative shift can be ob-
tained by solving the three term recurrence relations (24),
(30), (35), and (42) together with the outer layer schemes
(25) and (26).

4.3. Discrete Stability Analysis. To establish the computa-
tional stability of the proposed numerical scheme, we follow
the approaches of [27, 28]. From (19a), consider the re-
currence relation:

Aiui− 1 + Biui + Aiui+1 � Di, i � 1, 2, . . . ,
N

2
, (42)

where Ai � − (εσ/h2) and Bi � (2εσ/h2) + ri with σ as in (23)
or (29) and subject to the boundary conditions u0 � ψ(0)

and uN/2 � u(xN/2). Now, we set

ui � Piui+1 + Qi, for i � N − 1, N − 2, . . . , 2, 1, (43)

where Pi � P(xi) and Qi � Q(xi) are determined as follows.
From (43), we have ui− 1 � Pi− 1ui + Qi− 1, and substituting in
(42), we obtain

ui �
− Ai

AiPi− 1 + Bi

ui+1 +
Di − AiQi− 1

AiPi− 1 + Bi

. (44)

From (43) and (44), we can obtain

Pi �
− Ai

AiPi− 1 + Bi

, (45a)

Qi �
Di − AiQi− 1

AiPi− 1 + Bi

. (45b)

Using the initial condition u0 � ψ(0) � P0u1 + Q0, we
can solve (45a) and (45b). If we choose P0 � 0, it follows that
Q0 � u0, and using these and uN/2 � u(xN/2), we can
compute Pi and Qi, for all i � 1, 2, . . . , N/2. Suppose that, in
computing Pi from (45a), a small error ei has been occurred.
+en, we have P∗i � Pi + ei and P∗i− 1 � Pi− 1 + ei− 1. However,
we are computing P∗i � − (Ai)/(AiP

∗
i− 1 + Bi). So, we have

ei � P
∗
i − Pi �

− Ai

AiP
∗
i− 1 + Bi

+
Ai

AiPi− 1 + Bi

�
AiPi

AiPi− 1 + Aiei− 1 + Bi

ei− 1.

(46)

From the assumption in (3), we have r(x)> 0, and since
Ai � − (εσ/h2) and Bi � (2εσ/h2) + ri, it follows that
|Bi|> |2Ai|, for i � 1, 2, . . . , N − 1.+en, from (45a), we have
P1 � − (A1)/(A1P0 + B1)< 1 and P2 � − (A2)/A2P1 + B2 < −

(A2)/A2 + B2 < 1 as P1 < 1 and successively; if we continue in
this manner, we get |Pi|< 1, for i � 0, 1, 2, . . . , N − 1. +us,
under the assumption that there is small initial error, we
have |ei| � |AiPi/(AiPi− 1 + Aiei− 1 + Bi)||ei− 1|, which implies
that |ei|< |ei− 1|. +is indicates that (45a) is stable. In a similar
procedure, we can show that (45b) is also stable, and fol-
lowing the same procedure for the numerical scheme from
(19b), we can obtain a similar result so that the stability
estimate of the proposed scheme is established.

4.4. Convergence Analysis. To provide the convergence
analysis of the proposed numerical scheme, we follow the
approaches in [29, 30]. From (19a), we have a system of
equations as

−
εσ
h
2ui− 1 +

2εσ
h
2 + ri ui −

εσ
h
2ui+1 + fi + Ti � 0,

∀i � 1, 2, . . . ,
N

2
,

(47)

where σ is as in (23) or (29), fi � − wi + siψi− (N/2), and
Ti � (εσh2/12)u

(4)
i (t), t ∈ [xi − h, xi + h]. Using the

boundary conditions u(0) � ψ(0) and u(1) � u(xN/2) in
(47), we can get a system of equations in the matrix form as
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(G + H)u + M + T(h) � 0, (48)

where G � (εσ/h2)

2 − 1 0 . . . 0
− 1 2 − 1 . . . 0
⋮ ⋮ ⋮ . . . ⋮
⋮ ⋮ ⋮ . . . − 1
0 0 . . . − 1 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is a tri-diagonal

matrix of order N/(2 − 1) and

H �

r1 0 0 . . . 0
0 r2 0 . . . 0
⋮ ⋮ ⋮ . . . ⋮
⋮ ⋮ ⋮ . . . 0
0 0 . . . 0 r1− (N/2)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is a diagonal matrix of

order N/(2 − 1).
And the associated vectors of (48) are

M � (f1 − εσψ(0)/h2, f2, . . . , fN/(2− 2), fN/(2− 1) − (εσ/h2)

μ)t, and T(h) � (T1, T2, . . . , TN/(2− 1))
t. Now, let us consider

U as the approximation of u satisfying the system of
equations.

(G + H)U + M � 0. (49)

Suppose that the ith truncation error be ei � Ui − ui,
i � 1, 2, . . . , N/(2 − 1), such that E � (e1, e2, . . . ,

eN/2)
t � U − u. Taking the difference between (48) and (49)

yields

(G + H)E � T(h). (50)

Let ri ≤K, ∀i � 1, 2, . . . , N/(2 − 1), for arbitrary con-
stant K, and let Pi,i be the (i, i)th entry of matrix P. +en,
since ri > 0 for a sufficiently small h, we have Pi,i ≠ 0 and
(2εσ/h2) + Pi,i ≠ 0, for i � 1, 2, . . . , N/2 − 1. +ese indicate
that (G + H) is an irreducible matrix.

In matrix (G + H), if Si is the sum of entries on the ith

row, then we have Si � (εσ/h2) + ri, i � 1, N/2 − 1, and
Si � ri, i � 2, 3, . . . , N/2 − 2. Let us define K1 �

min1≤i≤N/2− 1ri and K2 � max1≤i≤N/2− 1ri, which imply that
0<K1 ≤K≤K2. +us, for a sufficiently small value of h,
(G + H) is monotone so that it is nonsingular and
(G + H)− 1 ≥ 0. From (50), we have

‖E‖≤ (G + H)
− 1����

����‖T(h)‖. (51)

In each row of (G + H), we can see that
Si > h2((εσ/h2) + ri), for i � 1, N/2 − 1, and Si > h2ri, for

Table 1: eN
ε , eN, rN

ε , and rN of Example 1, for different values of ε and N.

↓ε|N⟶ 29 210 211 212 213

2− 00 1.8437e − 04 4.6688e − 05 1.1747e − 05 2.9463e − 06 7.3777e − 07
1.9815 1.9908 1.9953 1.9977

2− 02 1.3535e − 04 3.4390e − 05 8.6676e − 06 2.1757e − 06 5.4704e − 07
1.9766 1.9883 1.9942 1.9918

2− 04 4.3100e − 05 1.1071e − 05 2.8057e − 06 7.0623e − 07 1.8821e − 07
1.9609 1.9804 1.9902 1.9078

2− 06 1.1424e − 05 2.9831e − 06 7.6189e − 07 1.9250e − 07 4.8824e − 08
1.9372 1.9692 1.9847 1.9792

2− 08 4.8890e − 05 1.3402e − 05 3.5042e − 06 8.9565e − 07 2.2639e − 07
1.8671 1.9353 1.9681 1.9841

2− 10 1.6110e − 04 4.8891e − 05 1.3402e − 05 3.5042e − 06 8.9566e − 07
1.7203 1.8671 1.9353 1.9681

2− 12 4.2044e − 04 1.0110e − 04 4.8891e − 05 1.3402e − 05 3.5042e − 06
1.3839 1.7203 1.8671 1.9353

2− 14 6.0346e − 04 4.2044e − 04 1.6110e − 04 4.8891e − 05 1.3402e − 05
0.5214 1.3839 1.7203 1.8671

2− 16 5.9842e − 04 3.9522e − 04 1.7203e − 04 5.0582e − 05 1.3516e − 05
0.5985 1.2000 1.7660 1.9040

2− 18 5.9840e − 04 4.0946e − 04 1.7380e − 04 5.0619e − 05 1.3520e − 05
0.5474 1.2363 1.7797 1.9046

2− 20 5.9841e − 04 4.0943e − 04 1.7408e − 04 5.0620e − 05 1.3530e − 05
0.5475 1.2339 1.7820 1.9035

2− 22 5.9841e − 04 4.0941e − 04 1.7420e − 04 5.0632e − 05 1.3584e − 05
0.5476 1.2328 1.7826 1.8981

2− 24 5.9841e − 04 4.0940e − 04 1.7426e − 04 5.0644e − 05 1.3636e − 05
0.5476 1.2323 1.7828 1.8930

2− 26 5.9841e − 04 4.0940e − 04 1.7428e − 04 5.0646e − 05 1.3638e − 05
0.5476 1.2321 1.7829 1.8928

2− 28 5.9841e − 04 4.0940e − 04 1.7428e − 04 5.0648e − 05 1.3640e − 05
0.5476 1.2321 1.7828 1.8923

2− 30 5.9841e − 04 4.0940e − 04 1.7428e − 04 5.0648e − 05 1.3640e − 05
0.5476 1.2321 1.7828 1.8923

eN 6.0346e − 04 4.2044e − 04 1.7428e − 04 5.0648e − 05 1.3640e − 05
rN 0.5214 1.2705 1.7828 1.8927
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i � 2, 3, . . . , N/2 − 2. Suppose that (G + H)− 1
(i,j) be the (i, j)th

entry of (G + H)− 1, and let us define ‖(G + H)− 1‖ �

max1≤i≤N/2− 1 
N/2− 1
j�1 |(G + H)− 1

i,j | and ‖T(h)‖ � max1≤i≤N/2− 1

|T|i. Since 
N/2− 1
j�1 (G + H)− 1

i.j Sj � 1, i � 1, 2, . . . , N/2 − 1,
and (G + H)− 1 ≥ 0, it follows that (G + H)− 1

i,j ≤
(1/Sj)< (1/h2((εσ/h2) + r)i), j � 1, N/2 − 1, and 

N/2− 2
j�2

(G + H)− 1
i,j ≤ (1/min2≤j≤N/2− 2)≤ (1/h2ri), i � 1, 2, . . . , N/2−

2. From (51), using the ith row sum, we have

‖E‖≤ (G + H)
− 1����

����‖T(h)‖ � max
1≤i≤N/2− 1



N/2− 1

j�1
(G + H)

− 1
i,j





× max
1≤i≤N/2− 1

Ti




≤
1

εσ/h2
  + ri

+
1
ri

+
1

εσ/h2
  + ri




×
εσ u

(4)
i (t)





12
h
2 ≤Ch

2
.

(52)

+us, for sufficiently chosen large value of C, this result
shows the second-order convergence of the proposed

scheme on (0, 1], and by a similar analysis, the convergence
of the numerical scheme can be provided on (1, 2).

5. Numerical Examples and Discussion

To show the validity and applicability of the proposed nu-
merical scheme, we solve examples of singularly perturbed
delay differential equations of the type in (1)-(2). For a
problem whose exact solution is known or can be deter-
mined, we compute the maximum point-wise error as
eN
ε � max0≤i≤N|u(xi) − UN(xi)|, and if the exact solution of
a problem is not known, we apply the double mesh principle
[31] as eN

ε � max0≤i≤N|UN(xi) − U2N(xi)| and maximum
absolute error is eN � max eN

ε , where u(xi) is the exact
solution and UN(xi) and U2N(xi) are numerical solutions
computed at common mesh points. +e point-wise rate of
convergence is calculated as rN

ε � ((log eN
ε − log e2N

ε )/log 2)

and the parameter uniform rate of convergence is
rN � ((log eN − log e2N)/log 2).

Example 1 (see [22]). Consider a constant coefficient
boundary value problem − εu″(x) + 5u(x) − u(x − 1) � 1, u

(x) � 1, for − 1≤x≤ 0, and u(2) � 2.

Table 2: eN
ε , eN, rN

ε , and rN of Example 2, for different values of ε and N.

↓ε|N⟶ 29 210 211 212 213

2− 00 1.8665e − 04 4.7283e − 05 1.1900e − 05 2.9948e − 06 7.4744e − 07
1.9809 1.9904 1.9953 1.9976

2− 02 1.2319e − 04 3.1343e − 05 7.9051e − 06 1.9850e − 06 4.9735e − 07
1.9747 1.9873 1.9936 1.9968

2− 04 2.7505e − 05 7.0856e − 06 1.7983e − 06 4.5299e − 07 1.1368e − 07
1.9567 1.9783 1.9891 1.9945

2− 06 1.0979e − 05 2.9195e − 06 7.5245e − 07 1.9099e − 07 4.8108e − 08
1.9110 1.9561 1.9781 1.9891

2− 08 4.1803e − 05 1.1706e − 05 3.1648e − 06 7.9473e − 07 2.0141e − 07
1.8364 1.8871 1.9936 1.9803

2− 10 1.3501e − 04 4.2281e − 05 1.2033e − 05 3.0998e − 06 7.9521e − 07
1.6750 1.8130 1.9567 1.9628

2− 12 3.3699e − 04 1.3657e − 04 4.3426e − 05 1.1798e − 05 3.1031e − 06
1.3031 1.6530 1.8800 1.9268

2− 14 4.3315e − 04 1.3802e − 04 5.7230e − 05 2.1108e − 05 6.9812e − 06
1.6500 1.2700 1.4390 1.5962

2− 16 4.3226e − 04 1.4013e − 04 5.6930e − 05 1.9876e − 05 6.8120e − 06
1.6251 1.2995 1.5182 1.5449

2− 18 4.3218e − 04 1.4109e − 04 5.7004e − 05 2.0812e − 05 6.8120e − 06
1.6115 1.3075 1.4536 1.6113

2− 20 4.3221e − 04 1.4113e − 04 5.6816e − 05 2.1200e − 05 6.8091e − 06
1.6147 1.3127 1.4222 1.6385

2− 22 4.3221e − 04 1.4112e − 04 5.6819e − 05 2.1108e − 05 6.8112e − 06
1.6148 1.3125 1.4286 1.6318

2− 24 4.3221e − 04 1.4112e − 04 5.6820e − 05 2.1112e − 05 6.8106e − 06
1.6148 1.3125 1.4283 1.6322

2− 26 4.3221e − 04 1.4112e − 04 5.6820e − 05 2.1110e − 05 6.8109e − 06
1.6148 1.3125 1.4285 1.6320

2− 28 4.3221e − 04 1.4112e − 04 5.6820e − 05 2.1110e − 05 6.8109e − 06
1.6148 1.3125 1.4285 1.6320

2− 30 4.3221e − 04 1.4112e − 04 5.6820e − 05 2.1110e − 05 6.8109e − 06
1.6148 1.3125 1.4285 1.6320

eN 4.3315e − 04 1.4113e − 04 5.7230e − 05 2.1200e − 05 6.9812e − 05
rN 1.6178 1.3022 1.4327 1.6025
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Table 3: eN
ε , eN, rN

ε , and rN of Example 3, for different values of ε and N.

↓ε|N⟶ 29 210 211 212 213

2− 00 8.5338e − 05 2.1595e − 05 5.4317e − 06 1.3621e − 06 3.4114e − 07
1.9985 1.9912 1.9956 1.9974

2− 02 7.4882e − 05 1.8975e − 05 4.7761e − 06 1.1981e − 06 3.0003e − 07
1.9805 1.9902 1.9951 1.9976

2− 04 5.0149e − 05 1.2755e − 05 3.2163e − 06 8.0754e − 07 2.0261e − 07
1.9752 1.9876 1.9938 1.9948

2− 06 3.7180e − 05 9.4821e − 06 2.3941e − 06 6.0149e − 07 1.5058e − 07
1.9712 1.9857 1.9929 1.9980

2− 08 1.1403e − 04 2.9523e − 05 7.5077e − 06 1.8928e − 06 4.7517e − 07
1.9495 1.9754 1.9878 1.9940

2− 10 4.2339e − 04 1.1395e − 04 2.9504e − 05 7.5028e − 06 1.8915e − 06
1.8936 1.9494 1.9754 1.9879

2− 12 1.4397e − 03 4.2339e − 04 1.1395e − 04 2.9504e − 05 7.5028e − 06
1.7657 1.8936 1.9494 1.9754

2− 14 3.9298e − 03 1.4397e − 03 4.2339e − 04 1.1395e − 04 2.9504e − 05
1.4487 1.7657 1.8936 1.9494

2− 16 5.9127e − 03 3.9298e − 03 1.4397e − 03 4.2339e − 04 1.1395e.04
0.5894 1.4486 1.7657 1.8936

2− 18 5.6718e − 03 3.4217e − 03 1.2628e − 03 4.0845e − 04 1.2004e.04
0.7291 1.4381 1.6284 1.7666

2− 20 5.6293e − 03 3.4020e − 03 1.2708e − 03 4.1240e − 04 1.1820e.04
0.7266 1.4206 1.6236 1.8028

2− 22 5.9272e − 03 3.4112e − 03 1.2684e − 03 4.1826e − 04 1.1660e.04
0.7221 1.4273 1.6005 1.8428

2− 24 5.6268e − 03 3.4120e − 03 1.2713e − 03 4.1724e − 04 1.1689e.04
0.7217 1.4243 1.6074 1.8357

2− 26 5.6268e − 03 3.4118 − 03 1.2720 − 03 4.1720e − 04 1.1676e.04
0.7218 1.4234 1.6083 1.8372

2− 28 5.6268 − 03 3.4118 − 03 1.2716 − 03 4.1722 − 04 1.1670.04
0.7218 1.4239 1.6078 1.8380

2− 30 5.6268 − 03 3.4118 − 03 1.2717 − 03 4.1722 − 04 1.1668.04
0.7218 1.4238 1.6079 1.8383

eN 5.9127e − 03 3.9298e − 03 1.4397e − 03 4.2339e − 04 1.2004e − 04
rN 0.5894 1.4487 1.7657 1.8185

Table 4: Comparison of the proposed scheme with some other published works in literature.

N⟶ 210 211 212 213

Example 1 for ε � 2− 15

Proposed scheme
eN 4.2044e − 04 1.6110e − 04 4.8891e − 05 1.3402e − 05
rN 1.3839 1.7203 1.8671

Results in [22]
eN 4.7371e − 04 1.6440e − 04 5.5672e − 05
rN 1.5268 1.5622

Example 2 for ε � 2− 15

Proposed scheme
eN 2.2629e − 04 7.9546e − 05 2.2635e − 05 6.0860e − 06
rN 1.5083 1.8132 1.8950

Results in [21]
eN 9.7137e − 04 4.0988e − 04 1.8682e − 04 8.8062e − 05
rN 1.0430 1.0217 1.0109 1.0056

Example 3 for ε � 2− 12

N⟶ 27 28 29 210
Proposed scheme

eN 3.9298e − 03 1.4397e − 03 4.2339e − 04 1.1395e − 04
rN 1.4486 1.7657 1.8936 1.8936

Results in [20]
eN 0.5770e − 02 0.3410e − 02 0.2010e − 02 0.1140e − 03
rN 0.6100 0.7320 0.7920 0.8170
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Figure 1: Numerical solutions of Example 1 for N � 210 and different values of ε. (a) ε� 2− 4, (b) ε� 2− 9, and (c) ε� 2− 14.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

N
um

er
ic

al
 so

lu
tio

n

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

N
um

er
ic

al
 so

lu
tio

n

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

N
um

er
ic

al
 so

lu
tio

n

(c)

Figure 2: Numerical solutions of Example 2 for N � 210 and different values of ε. (a) ε� 2− 4, (b) ε� 2− 8, and (c) ε� 2− 13.
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Figure 3: Numerical solutions of Example 3 for N � 210 and different values of ε. (a) ε� 2− 5, (b) ε� 2− 10, and (c) ε� 2− 16.
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Figure 4: Log-Log scale plots of N vs. Max. pointwise errors for (a) Example 1, (b) Example 2, and (c) Example 3.
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Example 2 (see [21]). Consider a variable coefficient
boundary value problem − εu″(x) + (x + 5)u(x) − u(x −

1) � 1, u(x) � 1, for − 1≤ x≤ 0, and u(2) � 2.

Example 3 (see [20]). Consider a constant coefficient and
zero source function boundary value problem − εu″(x) +

2u(x) − u(x − 1) � 0, u (x) � 1for − 1≤x≤0, and u(2) � 1.
Since the exact solutions are not given for the considered

examples, we used the double mesh principle to show the
maximum absolute error by the proposed method. In
Tables 1–3, the maximum point-wise errors and conver-
gence rates of Examples 1–3 are given, respectively. From
these tables, we observe that the maximum point-wise
convergence is of second order and increases when mesh
elements increase, which confirm the theoretical results. In
Table 4, results obtained by the proposed method are
compared with some published results in the literature.
From this table, we can see that the numerical results are
improved by the present method. +e solutions of the three
examples are given in Figures 1–3, respectively. In each
figure, we observe that minimizing the perturbation pa-
rameter decreases the width of the boundary layers and the
interior layer, which is the desired result. In Figure 4, we
observe the Log-Log plot of the maximum absolute error
verses the number of mesh points. In this figure, we observe
that the rate of convergence of the scheme is two, which is in
right agreement with the theoretical finding.

6. Conclusion

In this study, a second-order singularly perturbed differ-
ential equation with large negative shift is considered. +e
differential equation is transformed to difference equations
via decomposing the domain into its boundary, interior, and
outer regions. In each boundary and interior layer sub-
domains, the problem is discretized and exponentially fitted
numerical schemes are formulated. And in each outer layer
regions, reduced problems are obtained by setting ε � 0.
Combining these schemes, we obtained a second-order
ε-uniformly convergent numerical scheme. To validate the
theoretical results, three model examples are considered and
solved. +e numerical results of the examples confirm the
theoretical analysis of the proposed numerical scheme, and
hence, the proposed numerical scheme is convergent, in-
dependent of the perturbation parameter.
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