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The objective of this study is to investigate the effects of immune responses on HIV replication by using a novel HIV model that
incorporates immune responses including cytotoxic T lymphocytes and antibodies. In this model, the cytotoxic lymphocyte cells
are stimulated by infected T cells, and the antibodies are received continuously through vectored immunoprophylaxis. In the first
step, we analyze the well-posedness of our proposed model. By obtaining the basic reproduction number, we also investigate the
existence of equilibrium in three cases, including infection-free equilibrium, immune-free infection equilibrium, and immune-
present infection equilibrium. As a result, we demonstrate our model can admit two immune-free infection equilibria, which
are dependent on the basic reproduction number. Additionally, we study their local stability and find sufficient conditions for
them. In particular, we show that immune-free infection equilibrium and immune-present infection equilibrium can become
unstable from stable, and then a simple Hopf bifurcation can occur. Theoretical results about backward bifurcation and
forward bifurcation are further derived. In addition, simulations reveal rich dynamic behaviors, such as backward bifurcation,
forward bifurcation, and Hopf bifurcation. The rich dynamics of the proposed model demonstrate the importance and
complexity of immune responses when fighting HIV replication.

1. Introduction and Model

As the human immunodeficiency virus (HIV) emerged in
the early 1980s, it quickly became a worldwide health issue,
due to its infectiousness, mortality, and incurability. Biolog-
ical studies have shown that HIV infects CD4+ T helper cells
and attacks the immune system, causing the body to lose
immunity. Humans are therefore susceptible to a variety of
diseases, as well as malignant tumors. Therefore, revealing
the HIV replication mechanism in vivo and predicting the
impacts of interventions can help humans improve survival
and reduce the therapy cost. Considering these two scenar-
ios, mathematical models are imperative to reduce the cost
and control virus replication. For example, the authors in
[1–3] study COVID-19 and estimate the impacts of inter-
vention strategies by mathematical models, which provides
significant theoretical guidance for the process of human
antiviral.

It is clear that many scholars also studied HIV replica-
tion mechanism by mathematical models. Nowak and
Bangham [4, 5] proposed a basic model to describe the
variation of the virus in vivo:

dT
dt

=Λ − δ1T − β1VT ,

dT∗

dt
= βVT − δ2T

∗,

dV
dt

=Nδ2T
∗ − δ3V ,

ð1Þ

where T denotes the concentration of helper T cells, T∗

denotes the concentration of infected helper T cells, and V
denotes the concentration of the virus. Λ is the production
rate of new target cells. δ1 and δ2 are the death rates of
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uninfected cells and infected cells, respectively. β1 is the
infection coefficient, and N is the burst coefficient of the
virus when infected cells die. δ3 is the clearance rate of virus.
The (1) model has been helpful in understanding HIV infec-
tion dynamics and developing specific treatment regimens
[6, 7]. Based on this model, many mathematicians studied
the dynamics of HIV infection in vivo [8–12].

Up until now, there has not been an effective way to cure
HIV in the world, which implies that controlling the spread
of the virus in vivo is very essential for us. It is well known
that antibodies, one main component of the immune
response, which are produced by B lymphocytes are used
to identify and neutralize free virus particles in the blood.
It then becomes a promising and effective therapy to reduce
the virus in the blood in clinic experiments. In 2011, Balazs
et al. [13] carried out a vectored immunoprophylaxis exper-
iment to bring new hope to eradicating HIV. The experi-
ment showed that the humanized mice receiving vectored
immunoprophylaxis appeared to be fully protected from
HIV infection. Based on this experiment, the authors in
[14] presented their new model which was different from
the previous one:

dT
dt

=Λ − δ1T − β1VT ,

dI
dt

= β1VT − δ2T
∗,

dV
dt

=Nδ2T
∗ − δ3V − γ2AV ,

dA
dt

= μ − δ5A − γVA:

ð2Þ

Here, A is the concentration of antibodies in vivo. μ rep-
resents the neutralizing antibodies produced at a constant
rate after the injection. δ5 denotes the clearance rate of anti-
bodies. γ2AV represents the loss rate of the virus under the
attack of antibodies. The term γAV depicts the loss of anti-
body from the effect of antibodies’ involvement with the
virus. Other parameters are the same with system (1).

Another main component of the immune response is
cytotoxic T lymphocytes (CTLs), which are the T cells that
are capable of recognizing and killing infected cells, and they
would not be infected by HIV. Some papers were devoted
to investigate the HIV models under the impacts of CTLs
[8, 15–17], which indicates the CTLs have a critical role
on the viral infection. Moreover, many researchers have
taken into account the effect of both CTLs’ response and
antibodies [18–22] and the references therein. Specifically,
in [20–22], the authors captured the main features of the
complex interactions of HIV and immune responses and
then formulated the impacts of immune responses as a
term in the models instead of introducing a new variable.
Their formulations make the mathematical analysis tracta-
ble. However, it cannot depict the dynamics of HIV under
CTLs and antibodies in vivo exactly.

Therefore, to study the dynamics of HIV replication
in vivo under CTLs and antibodies, we introduce two new

variables into (1) to propose our model, which incorporates
the CTLs into model (2):

dT
dt

=Λ − δ1T − β1VT ,

dT∗

dt
= β1VT − δ2T

∗ − γ1T
∗C,

dV
dt

=Nδ2T
∗ − δ3V − γ2AV − β1TV ,

dC
dt

= β2T
∗C − δ4C,

dA
dt

= μ − δ5A − γVA,

ð3Þ

where C denotes the concentration of CTL cells, γ1 repre-
sents the loss rate of infected cells under attack by CTLs,
and δ4 is the death rate of the CTL cells. The last term β1
VT in the third equation describes the loss rate of the virus
because of entry into target cells. The term β2T

∗C represents
the increment of CTL cells stimulated by infected T cells. All
the other parameters in (3) are the same as those in (2).

We consider CTLs and antibodies as two major compo-
nents of the immune response in our model (3), which
describes HIV replication in vivo under the protection of
the immune response. Compared to models that only con-
sider CTLs or antibodies, the results are more informative.
It can also be more accurate than those works in [20–22],
where formulate the impacts of CTLs and antibodies as a
term of the model. On the other hand, model (2) is proposed
to investigate the viral dynamics for the introduction of vec-
tored immunoprophylaxis antibodies in the experiment of
[13]. As we mentioned before, our model (3) incorporates
the CTLs into model (2), which can describe the dynamics
of HIV under the CTLs in the vectored immunoprophylaxis
experiment. It can provide the theoretical results for the
impacts of CTLs in this experiment, which can be further
extended to study the clinical possibilities of the experiment.
Clearly, this model and its results cannot be derived from
[18–22] and the references therein, where CTLs and anti-
bodies are also considered in their models.

The organization of this paper is as follows: In the next
section, we study the model (3). We study the well-
posedness of solutions in Section 2. In Section 3, we study
the existence of equilibria and then present the stability anal-
ysis of infection-free equilibrium in Section 4. We conduct
the numerical simulation of this model in Section 5. A brief
summary and discussion are shown in the last section.

2. Well-Posedness of Solutions

For the sake of brevity, we offer the following scaling:

�t = δ1t, �T = β1
δ1

T , �T∗ = β2
δ1

T∗, �V = β1
δ1

V , �C = γ1
δ1

C,

�A = γ2
δ1

A, �Λ = Λβ1
δ21

,
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�β = β2
β1

, �δ1 =
β2
δ1

, �N = Nδ2β1
δ1β2

, �δ2 =
δ3
δ1

, �δ3 =
δ4
δ1

,

�μ = μγ2
δ21

, �δ4 = δ5
δ1

, �γ = γ

β1
:

ð4Þ

Dropping the bars, model (3) becomes

dT
dt

=Λ − T − VT ,

dT∗

dt
= βVT − δ1T

∗ − T∗C,

dV
dt

=NT∗ − δ2V − AV −VT ,

dC
dt

= T∗C − δ3C,

dA
dt

= μ − δ4A − γAV :

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð5Þ

In this section, we show that all solutions of the sys-
tem (5), for any given nonnegative initial conditions, are
nonnegative.

Theorem 1. Any solution of system (5), ðTðtÞ, T∗ðtÞ, VðtÞ,
CðtÞ, AðtÞÞ, is nonnegative and ultimately bounded for t > 0
with any provided nonnegative initial conditions.

Proof. . Firstly, we show that TðtÞ is positive for t > 0.
Assume that t1 > 0 is the first time such that Tðt1Þ = 0. Then,
according to the first equation of system (5), we have
dT/dtjt=t1 =Λ > 0, which implies that TðtÞ ≥ 0 always holds
for t > 0 with Tð0Þ > 0. It is similar to show that CðtÞ ≥ 0
and AðtÞ > 0 always hold true for t > 0 for any given positive
initial conditions.

To prove VðtÞ ≥ 0 for t > 0, we argue it by contradiction.
Let t2 > 0 be the first time to make Vðt2Þ = 0, then we have
dV/dtjt=t2 =NT∗ðt2Þ. Solving T∗ðtÞ from the second equa-
tion of system (5) yields

T∗ t2ð Þ = e−
Ð

0
t2 δ1+C εð Þð Þdε T∗ 0ð Þ +

ðt2
0
βT θð ÞV θð Þe

Ð
0
θ δ1+C εð Þð Þdεdθ

� �
,

ð6Þ

which means that T∗ðt2Þ > 0. Then we have dV/dtjt=t2 =
NT∗ðt2Þ > 0 and then VðtÞ ≥ 0 for t > 0. Furthermore, we
can also get

T∗ tð Þ = e−
Ð

0
t δ1+C εð Þð Þdε T∗ 0ð Þ +

ðt
0
βT θð ÞV θð Þe

Ð
0
θ δ1+C εð Þð Þdεdθ

� �
> 0:

ð7Þ

It shows that T∗ðtÞ is nonnegative for t > 0.
Now we show that solutions of system (5) are ultimately

uniformly bounded for t > 0. Firstly, from system (5), we
have

dT tð Þ
dt

≤Λ − T , dA tð Þ
dt

≤ μ − δ4A tð Þ, ð8Þ

which means that lim supt⟶∞TðtÞ ≤Λ and lim supt⟶∞AðtÞ
≤ μ/δ4. Adding the former two equations yields

d βT tð Þ + T∗ tð Þð Þ
dt

≤ βΛ − d1 βT tð Þ + T∗ tð Þð Þ, ð9Þ

where d1 = min fβ, δ1g, which means that lim supt⟶∞
ðβTðtÞ + T∗ðtÞÞ ≤ βΛ/d1. It follows that

dV tð Þ
dt

≤
NβΛ

d1
− δ2V tð Þ, ð10Þ

and then lim supt⟶∞VðtÞ ≤NβΛ/d1δ2. Therefore, we obtain
that

d T∗ tð Þ + C tð Þð Þ
dt

≤
Nβ2Λ2

d1δ2
− d2 T∗ tð Þ + C tð Þð Þ, ð11Þ

where d2 = min fδ1, δ3g, which means that lim supt⟶∞ðT∗

ðtÞ + CðtÞÞ ≤Nβ2Λ2/d1d2δ2.
Therefore, we get the following feasible region:

Γ = T , T∗,V , C, Að Þ ∈ℝ5
+ : 0 < T tð Þ ≤Λ, 0 < βT tð Þ + T∗ tð Þ ≤ βΛ

d1
, 0 ≤ V tð Þ ≤ NβΛ

d1δ2
, 0 ≤ T∗ tð Þ + C tð Þ ≤ Nβ2Λ2

d1d2δ2
, 0 < A tð Þ ≤ μ

δ4

( )
:

ð12Þ
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It can be verified that Γ is positively invariant with
respect to system (5).

3. The Existence of Equilibria

It is easy to obtain that the infection-free equilibrium (IFE)
is E0 = ðΛ, 0, 0, 0, μ/δ4Þ. In virus dynamics, the basic repro-
duction number is a basic concept, which denotes the
expected number of secondary cases produced, in a
completely susceptible population, by a typical infective
individual [23]. Obviously, whether the basic reproduction
number exceeds unit one is an important factor to determine
the spread or extinction of the infection, biologically. Hence,
it is necessary and reasonable for us to derive the basic
reproduction number of model (5). By the method intro-
duced in [23], we rewrite (5) as dx/dt =F −V , where x =
ðT , T∗, V , C, AÞΤ.

F =

Λ

βVT

NT∗

0
μ

0
BBBBBBBB@

1
CCCCCCCCA
,V =

T +VT

δ1T
∗ + T∗C

δ2V + AV +VT

−T∗C + δ3C

δ4A + γAV

0
BBBBBBBB@

1
CCCCCCCCA
: ð13Þ

By computing R0 = ρðFL−1Þ, where ρðBÞ denotes the
spectral radius of a matrix B

F=

0 0 0 0 0

0 0 βΛ 0 0

0 N 0 0 0

0 0 0 0 0

0 0 0 0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
,

L =

1 0 T 0 0

0 δ1 0 0 0

0 0 δ2 +Λ + μ

δ4
0 0

0 0 0 δ3 0

0 0 0 0 δ4

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
,

ð14Þ

we can obtain that the basic reproduction number of virus in
(5) is

R0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NβΛ

δ1 δ2 +Λ + μ/δ4ð Þ

s
: ð15Þ

3.1. The Existence of the Immune-Free Infection Equilibrium.
It is obvious that model (5) has an immune-free infection
equilibrium ~E = ð~T , ~T∗, ~V , 0, ~AÞ. It is clear that the existence
of this immune-free infection equilibrium is equivalent to

study the existence of the infection equilibrium of the
following system:

dT
dt

=Λ − T −VT ,

dT∗

dt
= βVT − δ1T

∗,

dV
dt

=NT∗ − δ2V − AV − VT ,

dA
dt

= μ − δ4A − γAV :

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð16Þ

Then, we study the existence of infection equilibrium
of system (16). An infection equilibrium ~E = ð~T , ~T∗, ~V , ~AÞ
satisfies

Λ − ~T − ~V ~T = 0,
β~V ~T − δ1~T

∗ = 0,

N ~T
∗ − δ2 ~V − ~A~V − ~V ~T = 0,

μ − δ4~A − γ~A~V = 0:

8>>>>><
>>>>>:

ð17Þ

Obviously, we have

~T = Λ

1 + ~V
, ~T∗ = β~V

δ1
~T , ~A = μ

δ4 + γ~V
, ð18Þ

where ~V satisfies the equation

f ~V
À Á

=M1 ~V
2 +M2 ~V +M3 = 0, ð19Þ

in which

M1 = δ2δ4γ > 0,

M2 = δ4 δ2δ4 + μð Þ − δ4γ Λ + δ2ð Þ R2
0 − 1

À Á
− γμR2

0,

M3 = δ4 Λ + δ2ð Þδ4 + μð Þ 1 − R2
0

À Á
:

ð20Þ

From M3, we know that system (16) has a unique
infection equilibrium ~E2 = ðT2, T∗

2 , V2, A2Þ, when R0 > 1,
where

V2 =
−M2 +

ffiffiffiffi
Δ

p

2M1
, T2 =

Λ

1 +V2
, T∗

2 =
βV2
δ1

T2,

A2 =
μ

δ4 + γV2
, Δ =M2

2 − 4M1M3:

ð21Þ
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As in the case of R0 < 1, note that

m1 = γ2 δ2 +Λð Þδ4 + μð Þ2 > 0,
m2 = −2 δ2 +Λð Þδ4 + μð Þ δ2 +Λð Þγ + μ − δ2δ4ð Þδ4γ,
m3 = γ − δ4ð Þδ2 +Λγ − μð Þ2 + 4Λγμ

À Á
δ24 > 0,

Rc
0 =

−m2 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 − 4m1m3
p
2m1

:

ð22Þ

We define that

V1 =
−M2 −

ffiffiffiffi
Δ

p

2M1
, T1 =

Λ

1 + V1
, T∗

1 =
βV1
δ1

T1, A1 =
μ

δ4 + γV1
:

ð23Þ

Theorem 2. System (16) has an infection equilibria ~E2 =
ðT2, T∗

2 , V2, A2Þ if R0 > 1. Hence, system (5) admits an
immune-free equilibria E2 = ðT2, T∗

2 , V2, 0, A2Þ if R0 > 1.

Lemma 3. Let μ + δ2δ4 < μγ/δ4 and R0 < 1 hold. We have the
following conclusions:

(1) System (16) has two infection equilibria ~E1 = ðT1,
T∗
1 , V1, A1Þ and ~E2 = ðT2, T∗

2 , V2, A2Þ when
ffiffiffiffiffi
Rc
0

p
<

R0 < 1

(2) System (16) has a unique infection equilibrium ~E1 =
~E2 when R0 =

ffiffiffiffiffi
Rc
0

p
(3) System (16) has no infection equilibrium when R0 <ffiffiffiffiffi

Rc
0

p

Proof. Clearly, (19) has no positive root when M2 > 0, two
positive roots when M2 < 0 and Δ > 0, has a positive root
when M2 < 0 and Δ = 0, and no positive root when Δ < 0.
So, we study the case that M2 < 0.

To determine the signs of Δ in terms of the basic repro-
duction number, we denote R2

0 by R1 so that

N = δ1 δ2δ4 + δ4Λ + μð Þ
βΛδ4

R1: ð24Þ

It is easy to obtain

Δ =m1R
2
1 +m2R1 +m3, ð25Þ

where miði = 1, 2, 3Þ are given in (22). Since M2 < 0, we get

R1 >
μ + δ2δ4 + δ2γ +Λγð Þδ4
γ δ2δ4 +Λδ4 + μð Þ ≔ R2: ð26Þ

Suppose

μ + δ2δ4 <
μγ

δ4
, ð27Þ

then R2 < 1. Let hðxÞ =m1x
2 +m2x +m3; then we have

h R2ð Þ =m2
1R

2
2 +m2R2 +m3 = 4δ2δ34 δ2δ4 + μ −

μγ

δ4

� �
< 0,

h 1ð Þ =m1 +m2 +m3 = γ − δ4ð Þμ − δ2δ
2
4

À Á2 > 0:
ð28Þ

If μ + δ2δ4 < μγ/δ4, we can get γ > δ4, and then

Δ1 =m2
2 − 4m1m3 = 16 γ − δ4ð Þ Λ + δ2ð Þδ4 + μð Þ2γ2δ2δ24μ > 0:

ð29Þ

It follows that hðxÞ = 0 admits a root Rc
0, which is defined

in (22), in interval (R2, 1). Clearly, we have Δ = 0 when
R0 =

ffiffiffiffiffi
Rc
0

p
; Δ > 0 when

ffiffiffiffiffi
Rc
0

p
< R0 and Δ < 0 when 0 < R0 <ffiffiffiffiffi

Rc
0

p
.
According to Lemma 3, we can conclude the following

theorem.

Theorem 4. Let μ + δ2δ4 < μγ/δ4 and R0 < 1 hold.

(1) System (5) has two immune-free equilibria E1 = ðT1,
T∗
1 , V1, 0, A1Þ and E2 = ðT2, T∗

2 , V2, 0, A2Þ whenffiffiffiffiffi
Rc
0

p
< R0 < 1

(2) System (5) has a unique immune-free equilibrium
when R0 =

ffiffiffiffiffi
Rc
0

p
(3) System (5) has no immune-free equilibrium when

R0 <
ffiffiffiffiffi
Rc
0

p
3.2. The Existence of the Immune-Present Infection
Equilibrium of System (5). An immune-present infection
equilibrium �E = ð�T , �T∗, �V , �C, �AÞ satisfies

Λ − �T − �V �T = 0,
β�V �T − δ1�T

∗ − �T∗�C = 0,
N �T∗ − δ2 �V − �A�V − �V �T = 0,
�T∗�C − δ3�C = 0,
μ − δ4�A − γ�A�V = 0:

8>>>>>>>><
>>>>>>>>:

ð30Þ

Direct computation leads to

�T = Λ

1 + �V
, �T∗ = δ3, �C = βΛ�V

δ3 1 + �V
À Á − δ1, �A = μ

δ4 + γ�V
,

ð31Þ

where �V satisfies the equation

g �V
À Á

= a1 �V
3 + a2 �V

2 + a3 �V + a4, ð32Þ
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in which

a1 = δ2γ > 0,

a2 = μ + δ2δ4 + δ2γ +Λγ −Nδ3γ

= δ2δ4γ 2 − R∗ð Þ + δ4γΛ 1 − R∗ð Þ + μγ 1 − R∗ð Þ + δ22δ
2
4 + δ2γ

2 +Λγ2 + μδ4
δ4 + γ

,

a3 = μ + δ2δ4 + δ4Λ −Nδ3γ −Nδ3δ4
= μ + δ2δ4 + δ4Λð Þ 1 − R∗ð Þ,

a4 = −Nδ3δ4 < 0,

R∗ = Nδ3 δ4 + γð Þ
δ2δ4 + μ +Λδ4

:

ð33Þ

To ensure the existence of a positive equilibrium, we let
βΛ − δ1δ3 > 0 and �C > 0, which is equivalent to

�V > δ1δ3
βΛ − δ1δ3

: ð34Þ

By the mathematical analysis, we know that gðxÞ =
a1x

3 + a2x
2 + a3x + a4 = 0 must have a unique positive solu-

tion when a3 < 0ðR∗ > 1Þ. When a3 ≥ 0ðR∗ ≤ 1Þ, it is easy to
get a2 > 0. Then gðxÞ = 0 has also a unique positive solution
when a3 ≥ 0. Therefore, we have the following theorem.

Theorem 5. System (5) has a unique immune-present infec-
tion equilibrium E3 = ðT3, T∗

3 , V3, C3, A3Þ when V3 > δ1δ3/
ðβΛ − δ1δ3Þ, where V3 is the positive solution of gð�VÞ = 0.
Otherwise, system (5) has no immune-present infection
equilibrium.

4. The Stability of Equilibra

The Jacobian matrix of (5) at an equilibrium E = ðT , T∗,
V , C,AÞ is

J Eð Þ =

−V − 1 0 −T 0 0
Vβ −C − δ1 βT −T∗ 0
−V N −A − T − δ2 0 −V

0 C 0 T∗ − δ3 0
0 0 −γA 0 −Vγ − δ4

2
666666664

3
777777775
:

ð35Þ

Theorem 6. The infection-free equilibrium E0 is asymptoti-
cally stable if R0 < 1 and is unstable if R0 > 1. The immune-
free equilibrium E1 is unstable when it exists.

Proof. The characteristic equation of the Jacobian matrix of
(5) at E0, JðE0Þ, in λ is

λ + 1ð Þ λ + δ3ð Þ λ + δ4ð Þ λ2 + δ1 + δ2 +
μ

δ4
+Λ

� �
λ

�

+ δ1 δ2 +Λ + μ

δ4

� �
1 − R2

0
À Á�

= 0:
ð36Þ

It follows that all the characteristic roots have negative
real parts when R0 < 1, and one characteristic root is positive
when R0 > 1. Thus, we know that E0 is asymptotically stable
when R0 < 1 and is unstable when R0 > 1.

The characteristic polynomial of JðE1Þ in λ is then

F1 λð Þ = λ + δ3 − T∗
1ð Þ λ4 + c3λ

3 + c2λ
2 + c1λ + c0

À Á
, ð37Þ

where

c3 = δ1 + 1 + γð ÞV1 + δ2 + A1 + T1 + δ4 + 1 > 0,

c2 = γV2
1 + 1 + γð Þ δ1 + δ2ð Þ + γ 1 + T1ð Þ + A1 + δ4ð ÞV1

+ δ1 + δ2 + A1 + T1ð Þ 1 + δ4ð Þ + δ4 > 0,

c1 = δ1 δ2 + δ4 + A1ð Þ + δ1 + δ2ð Þγ + δ2 + A1ð Þδ4 − δ1γA1,

c0 = δ1V1 δ4 − γð ÞA1 + δ2 δ4 + γV1ð Þð Þ:
ð38Þ

We note that

c0 =
δ1V1

δ4 + γV1
2M1V1 +M2 −

γ

δ4
M2V1 + 2M3ð Þ

� �

= −
ffiffiffiffi
Δ

p γ

δ4
V1 + 1

� �
< 0:

ð39Þ

It then implies that JðE1Þ has at least a positive real
eigenvalue, which means that E1 is unstable.

As for the stability of E2, we can also obtain that the
characteristic polynomial of JðE2Þ in λ is then

F2 λð Þ = λ + δ3 − T∗
2ð Þ λ4 + ĉ3λ

3 + ĉ2λ
2 + ĉ1λ + ĉ0

À Á
, ð40Þ

where

ĉ3 = δ1 + 1 + γð ÞV2 + δ2 + A2 + T2 + δ4 + 1 > 0,

ĉ2 = γV2
2 + 1 + γð Þ δ1 + δ2ð Þ + γ 1 + T2ð Þ + A2 + δ4ð ÞV2

+ δ1 + δ2 + A2 + T2ð Þ 1 + δ4ð Þ + δ4 > 0,

ĉ1 = δ1 δ2 + δ4 + A2ð Þ + δ1 + δ2ð Þγ + δ2 + A2ð Þδ4 − δ1γA2,

ĉ0 = δ1V2 δ4 − γð ÞA2 + δ2 δ4 + γV2ð Þð Þ:
ð41Þ

Hence, according to Routh-Hurwitz criterion, we obtain
the following theorem.

Theorem 7. When system (5) admits the immune-free equi-
librium E2, it is locally stable when T∗

2 < δ3, ĉ1 > 0, ĉ0 > 0,
ĉ3ĉ2 > ĉ1, and ĉ1ĉ2ĉ3 > ĉ21 + ĉ23ĉ0.
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Obviously, the characteristic polynomial of JðE3Þ in λ is
then

F3 λð Þ = λ5 +�c4λ4 +�c3λ3 +�c2λ2 +�c1λ +�c0, ð42Þ

where

�c4 = δ1 + 1 + γð ÞV3 + δ2 + A3 + T3 + δ4 + 1 + C3 > 0,

�c3 = 1 + γð ÞV3 + 1 + δ3 + δ4ð ÞC3 + γV2
3

+ δ1 + δ2 + δ4 + A3 + γ 1 + δ1 + δ2 + T3ð Þð ÞV3

+ δ1 + δ2 + A3 + T3ð Þ 1 + δ4ð Þ + δ4 > 0,

�c2 = δ1 + δ2 + C3ð ÞγV2
3 + δ2 + δ3 + δ4 + γ + δ3γ + A3ð ÞV3C3

+ 1 + δ3ð Þδ4 + 1 + δ2 + A3 + T3ð Þδ3ð ÞC3

+ δ2 + A3ð Þδ4 + δ2 + δ4 + γ + A3 − γA3ð Þδ1ð
+ δ2 + T3 − A3C3ð ÞγÞV3 + δ1 + δ2 + A3 + T3ð Þδ4,

�c1 = δ1δ2 + δ2 + δ3ð ÞC3ð ÞγV2
3 + δ1 + C3ð Þ δ2 + A3ð Þδ4ð

+ δ2 + δ3A3 + δ4 + γ 1 + δ2 + T3ð Þð Þδ3C3ÞV3

+ δ4 + 1 + δ4ð Þ δ2 + A3 + T3ð Þð Þδ3C3 > 0,

�c0 = δ3C3 δ2γV
2
3 + δ2 + A3ð Þδ4 + δ2 + T3ð Þγð ÞV3

À
+ δ1 + A3 + T3ð Þδ4Þ > 0:

ð43Þ

According to Routh-Hurwitz criterion, we can also
obtain the following theorem.

Theorem 8. When system (5) admits the immune-present
equilibrium E3, it is locally stable when �c2 > 0, �c3�c4 −�c2 > 0,
�c2�c3�c4 +�c0�c4 −�c22 −�c1�c24 > 0, and �c1ð�c4ð�c2�c3 −�c1�c4Þ −�c22Þ +
�c0ð2�c1�c4 +�c2�c3 −�c23�c4 −�c0Þ > 0.

5. Bifurcations and Numerical Simulation

In this section, we study bifurcations of model (3) on the
basis of Section 3 and Section 4. When R0 crosses unit one,
the IFE E0 loses stability, which results in a bifurcation
where a curve of endemic equilibria emerges. The bifurca-
tion is forward if the endemic curve occurs when R0 is
slightly larger than one, and there is no positive equilibrium
near the E0 for R0 < 1. In contrast, the bifurcation is back-
ward if a positive equilibrium occurs when R0 < 1. Now,
we derive the condition for the backward bifurcation from
E0 of model (3). Notice that Theorem 4 implies that (24) is
the existent condition of the backward bifurcation of model
(5). By (4), we get an equivalent equation of (27):

B1 ≔
μγγ2
δ25

−
δ3β1
δ1

−
μβ1γ2
δ1δ5

> 0: ð44Þ

Thus, we show the proposition below.
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Figure 1: Two immune-free infection equilibria and an immune-present infection equilibrium coexist. The dashed (solid) curve represents
an unstable (stable) equilibrium. LP is a limit point, H represents a Hopf point, and BP represents a branch point.
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Figure 2: (a) A numerical solution of model (3) from ð4000,30,10000,20,50Þ tends to an infection-free equilibrium as time tends to infinity
when R0 = 0:8. (b) A numerical solution of model (3) from ð6140,635,16572,538,1Þ tends to an immune-free infection equilibrium as time
tends to infinity when R0 = 0:8.
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Figure 3: (a) A numerical solution of model (3) from ð6140,635,16572,538,1Þ tends to an immune-present infection equilibrium as time
tends to infinity when R0 = 1:25. (b) Numerical solutions of model (3) tend to the infection-free equilibrium as time tends to infinity
with the different initial values when R0 = 0:7.
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Proposition 9. System (3) admits a backward bifurcation as
R0 crosses unity if B1 > 0 and admits a forward bifurcation if
B1 < 0:

In this section, we implement numerical simulations on
the basis of the MatCont package [24, 25] to testify the the-
oretical results above and explore more patterns of dynami-
cal behaviors of model (3). We select Λ = 100, δ1 = 0:008,
δ2 = 0:08, δ3 = 3, δ4 = 0:05, δ5 = 0:02, β1 = 5 × 10−7, β2 =
5 × 10−5, γ1 = 0:0005, γ2 = 0:005, and μ = 100 from [8, 14].

If γ = 10−5, we have B1 = 0:01075 > 0 and a backward
bifurcation exists from Proposition 9. We derive a bifurca-
tion figure shown in Figure 1. To further address the results
of Figure 1 at length, we get evolutionary results, as pre-
sented by Figures 2 and 3.

From Figure 1, we find a Hopf bifurcation point (H) at
R0 = 0:724, a fold bifurcation point (LP) at R0 = 0:6404,
and a branch point (BP) at R0 = 0:819. It illustrates that
two unstable immune-free infection equilibria coexist with
a stable infection-free equilibrium when 0:6404 < R0 <
0:724; a stable immune-free infection equilibrium, an
unstable immune-free infection equilibrium, and a stable
infection-free equilibrium coexist when 0:724 < R0 < 0:819
(see Figure 2); and an unstable immune-free infection equi-
librium coexists with a stable immune-present infection

equilibrium when R0 > 0:819 (see Figure 3(a)). Further
numerical simulations indicate that any solution tends
to an infection-free equilibrium when R0 < 0:724 (see
Figure 3(b)), which means that the subthreshold 0:724
of R0 is required to eliminate the infection. It is different
to the classical backward bifurcation that needs R0 <
0:6404 to eliminate the infection.

When γ = 10−7, we have B1 = −0:001625 < 0, and a for-
ward bifurcation exists from Proposition 9. When we get a
bifurcation figure shown in Figure 4, the detailed evolution-
ary processes are, correspondingly, illustrated in Figure 5.

From Figure 4, a branch point (BP) is observed at R0 =
1:979166. It demonstrates a stable infection-free equilibrium
exists when R0 < 1; a stable immune-free infection equilib-
rium, and an unstable infection-free equilibrium coexist
when 1 < R0 < 1:979166 (see Figure 5(a)), and an unstable
immune-free infection equilibrium coexists with a stable
immune-present infection equilibrium when R0 > 1:979166
(see Figure 5(b)).

Note that the qualitative difference between Figures 1
and 4 results from the fact that the value of γ in Figure 1 is
higher than it is in Figure 4. This indicates that a stronger
loss of antibodies’ involvement with a virus can lead to a
backward bifurcation, which supports the result of Proposi-
tion 9.
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Figure 4: A immune-free infection equilibrium and an immune-present infection equilibrium coexist when R0 > 1: The dashed (solid) curve
represents an unstable (stable) equilibrium. BP represents a branch point.
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6. Conclusion and Discussion

In this paper, we focused on the modeling analysis of HIV
epidemics, which incorporated immune systems based on
CTLs and vectored immunoprophylaxis for controlling

HIV replication. To address this role of immune response
in detail, we integrated the immune response as a term into
the model (3).

Specifically, we gave the analytical condition of the exis-
tence of equilibria. We further studied the local stability of
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Figure 5: For two cases, R0 = 1:4 and R0 = 2:5, a numerical solution of model (3) from ð4000,30,10000,20,50Þ tends to an immune-free
infection equilibria and the immune-present infection equilibrium as time tends to infinity, respectively.
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the existing equilibria. According to these theoretical results,
we described the bifurcation figures of the given model. We
noted that there exists a backward bifurcation at the
infection-free equilibrium, thereby, demonstrating that driv-
ing the basic reproduction number (R0) below 1 is not
enough to eliminate HIV. More significantly, we observed
a Hopf point at R0 = 0:724, which indicates the classical
strategy to drive R0 below a certain value (limit point)
0:6404 maybe unnecessary. Due to these findings, we noted
that it is feasible to extinguish the infection even when R0
is below 0:724. Meanwhile, a forward bifurcation and an
immune-present infection equilibrium exist in this model.
Therefore, any strategy to drive R0 below 1 is adequate to
clear the infection away, according to our results.

Using numerical simulations and mathematical analyses
of the proposed model, we can gain insights into the mech-
anisms of viral infection under the conditions of vectored
immunoprophylaxis and immune response. With the intro-
duction of the immune response, the model exhibits rich
dynamical characteristics. As a result of the above findings,
vectored immunoprophylaxis may be an effective therapy
for HIV, and immune responses have a great influence on
viral infection in vivo, which is overlooked in [14].
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