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In this paper, we investigate the notions of X⊥-projective, X-injective, and X-flat modules and give some characterizations
of these modules, where X is a class of left modules. We prove that the class of all X⊥-projective modules is Kaplansky.
Further, if the class of all X-injective R-modules is contained in the class of all pure projective modules, we show the
existence of X⊥-projective covers and X-injective envelopes over a X⊥-hereditary ring. Further, we show that a ring R
is Noetherian if and only if W -injective R-modules coincide with the injective R-modules. Finally, we prove that if W ⊆
S , every module has a W -injective precover over a coherent ring, where W is the class of all pure projective R-modules
and S is the class of all f p −Ω1-modules.

1. Introduction

Throughout this paper, R denotes an associative ring with
identity and all R-modules, if not specified otherwise, are
left R-modules. R-Mod denotes the category of left R
-modules.

The notion of f p-injective modules over arbitrary rings
was first introduced by Stenström in [1]. An R-module M
is called f p-injective (absolutely pure) if Ext1RðN ,MÞ = 0 for
all finitely presented R-modules N . Let X be a class of left
R-modules. Mao and Ding in [2] introduced the concept of
X-injective modules (see Definition 6). Selvaraj et al.
developed X-injective and X-flat R-modules and studied

covers and envelopes of modules with Goresntein proper-
ties in [3–5].

A pair ðA ,BÞ is a cotorsion theory (see Definition 4). In
our article, ðA ,BÞ is a cotorsion theory generated by the
class X [6], that is, A = ⊥ðX⊥Þ andB =X⊥: If R is a hered-
itary ring (that is, every ideal is projective), then A is closed
under submodules and containing all injective R-modules in
the cotorsion theory ðA ,BÞ. In this case, results are trivial.
For this reason, we introduced X-hereditary ring (see Defi-
nition 16), and we restrict the setting toX⊥-hereditary rings.

The notions of (pre)covers and (pre)envelopes of mod-
ules were introduced by Enochs in [7] and, independently,
by Auslander and Smalø in [8]. Since then, the existence
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and the properties of (pre)covers and (pre)envelopes relative
to certain submodule categories have been studied widely.
The theory of (pre)covers and (pre)envelopes, which play
an important role in homological algebra and representation
theory of algebras, is now one of the main research topics in
relative homological algebra.

Salce introduced the notion of a cotorsion theory in [9].
Enochs showed the important fact that closed and complete
cotorsion pairs provide minimal versions of covers and
envelopes. Eklof and Trlifaj [10] proved that a cotorsion pair
ðA ,BÞ is complete when it is cogenerated by a set. Conse-
quently, many classical cotorsion pairs are complete. In this
way, Bican et al. [11] showed that every module has a flat
cover over an arbitrary ring. These results motivate us to
define X-projective R-modules (see Definition 14) and ⊥ð
X⊥Þ-pure projective R-modules (see Definition 21), and we
prove the existence of X⊥-projective cover and X-injective
envelope. In particular, we denote PI by the class of all
pure injective R-modules, and we prove the following main
result.

Theorem 1. Let R be a X⊥ -hereditary ring and X⊥ ⊆PI .
Then, every R-module M has a X⊥-projective cover and an
X-injective envelope.

Self-injective rings were introduced by Johnson and
Wong in [12]. A ring R is said to be self injective if R over
itself is an injective R-module. In this paper, we introduce
self-X-injective ring (see Definition 27). Recall that an R
-module M is called reduced [13] if it has no nonzero injec-
tive submodules. An R-module M is said to be coreduced
[14] if it has no nonzero projective quotient modules. Mao
and Ding [15] proved that an FI-injective R-module decom-
poses into an injective and a reduced FI-injective R-module
over a coherent ring. Similarly, we prove the following result.

Theorem 2. Let R be a self X-injective and X⊥-hereditary
ring and X⊥ ⊆PI . Then, an R -module M is X⊥-projec-
tive if and only if M is a direct sum of a projective R-mod-
ule and a coreduced X⊥-projective R-module.

Pinzon [16] proved that every module has an f p-injec-
tive cover over a coherent ring. We prove the following
result that provides the existence of W -injective cover,
where W is the class of all pure projective R-modules and
S the class of all small −Ω1-R-modules (see Definition 41).

Theorem 3. Let R be a coherent ring andW ⊆ S: Then, every
R-module has a W -injective cover.

This paper is organized as follows: In Section 2, we recall
some notions that are necessary for our proofs of the main
results of this paper.

In Section 3, we investigate the notions of X-injective
and X-flat modules and give some characterizations of these
classes of modules.

In Section 4, we introduce X⊥-hereditary ring. Further,
we investigate X⊥-projective module and give some charac-
terizations. Further, we prove Theorems 1 and 2.

In Section 5, we prove that if M is a submodule of an X

-injective R-module A, then, i : M⟶ A is a special X

-injective envelope of M if and only if A is an X⊥-projec-
tive essential extension of M:

In the last section, we assume that W is the class of all
pure projective R-modules and we prove that every R
-module has a W -injective preenvelope. Finally, we prove
the main theorem of this section Theorem 3.

2. Preliminaries

In this section, we recall some known definitions and some
terminology that will be used in the rest of the paper.

Given a class C of left R-modules, we write

C⊥ = N ∈ R −Mod Ext1R M,Nð Þ = 0 ∀ M ∈C
��� �

,
⊥C = N ∈ R −Mod Ext1R N ,Mð Þ = 0 ∀ M ∈C

��� �
:

ð1Þ

Following [7], we say that a map f ∈HomRðC,MÞ with
C ∈C is a C-precover of M, if the group homomorphism
HomRðC′, f Þ: HomRðC′, CÞ⟶HomRðC′,MÞ is surjective
for each C′∈C . A C-precover f ∈HomRðC,MÞ of M is
called a C-cover of M if f is right minimal, that is, if f g =
f implies that g is an automorphism for each g ∈ EndRðCÞ.
C ⊆ R −Mod is a precovering class (resp., covering class)
provided that each module has a C-precover (resp., C

-cover). Dually, we have the definition of C-preenvelope
(resp., C-envelope).

A C-precover f of M is said to be special [6] if f is an
epimorphism and ker f ∈C⊥.

A C-preenvelope f of M is said to be special [6] if f is a
monomorphism and coker f ∈ ⊥C .

A C-envelope ϕ : M⟶ C is said to have the unique
mapping property [17] if for any homomorphism f : M
⟶ C′ with C′ ∈C , there is a unique homomorphism g
: C⟶ C′ such that gϕ = f :

A module is said to be pure projective [18] if it is projec-
tive with respect to pure exact sequence.

An R-module M is called super finitely presented ([19])
if there exist a projective resolution with each projective R
-module is finitely generated.

Following [20, 21], an R-module M is called weak
injective if Ext1RðN ,MÞ = 0 for every super finitely pre-
sented R-module N . A right R-module M is called weak
flat if TorR1 ðM,NÞ = 0 for every super finitely presented R
-module N .

A class C of left R-modules is said to be injectively resolv-
ing [6] if C contains all injective modules and if given an
exact sequence of left R-modules

0⟶ A⟶ B⟶ C⟶ 0: ð2Þ

C ∈C whenever A, B ∈C :
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Definition 4. A pair C = ðA ,BÞ of classes of modules is
called a cotorsion theory [6] if A = ⊥B and B =A⊥:

(1) A cotorsion theory ðA ,BÞ is said to be perfect [22] if
every module has an A-cover and a B-envelope

Definition 5. A cotorsion theory ðA ,BÞ is said to have
enough injectives [13] if for every R-module M there is an
exact sequence 0⟶M⟶ B⟶ A⟶ 0 with B ∈B and
A ∈A :

For an R-module M, f dðMÞ denotes the flat dimension
of M and idðMÞ denotes the injective dimension of M:

The X⊥-coresolution dimension of M, denoted by
cores:dimX⊥ðMÞ, is defined to be the smallest nonnegative
integer n such that Extn+1R ðA,MÞ = 0 for all R-modules A ∈
X (if no such n exists, set cores:dimX⊥ðMÞ =∞), and
cores:dimX⊥ðRÞ is defined as sup fcores:dimX⊥ðMÞjM ∈ R
−Modg:

We denote by ℤ the ring of all integers and by ℚ
the field of all rational numbers. For a left R-module
M, we denote by M+ = HomℤðM,ℚ/ℤÞ the character
module of M:I 0 denotes the class of all injective left
R-modules.

For unexplained terminology, we refer to [23, 24].

3. X-Injective and X-Flat Modules

In this section, we assume that X is any class in R −Mod:
We begin with the following definition:

Definition 6 (see [2]). A left R-module M is called X-injec-
tive if Ext1RðX,MÞ = 0 for all left R-modules X ∈X: A right
R-module N is said to be X-flat if TorR1 ðN , XÞ = 0 for all left
R-modules X ∈X:

We denote by X⊥ the class of all X-injective modules
and ⊥ðX⊥Þ the class of all X⊥-projective R-modules and,
further, XΤ the class of all X-flat R-modules.

Example 7.

(1) If X = R −Mod, then, X⊥ is the class of all injective
R-modules and XΤ is the class of all flat right R
-modules.

(2) If X is the class of all finitely presented R-modules,
then, X⊥ is the class of all f p-injective R-modules.

(3) If X is the class of all left super finitely presented R
-module, then, X⊥ is the class of all weak injective
R-modules and XΤ is the class of all weak flat right
R-modules.

Proposition 8. Let M be an R-module. Then, the following
are true:

(1) Let I 0 ⊆X: Then,M is injective if and only ifM isX
-injective and idðMÞ ≤ 1:

(2) M is injective if and only if M is X⊥-injective and
cores:dimX⊥ðMÞ ≤ 1:

Proof.

(1) The direct implication is clear. Conversely, let M be
X-injective and idðMÞ ≤ 1. For any R-module N ,
consider an exact sequence 0⟶N ⟶ EðNÞ⟶
L⟶ 0 with EðNÞ an injective envelope of N . We
have an exact sequence

⋯⟶Ext1R E Nð Þ,Mð Þ⟶ Ext1R N ,Mð Þ⟶ Ext2R L,Mð Þ⟶⋯
ð3Þ

Since idðMÞ ≤ 1, Ext2RðL,MÞ = 0, and hence, M is
injective.

(2) The direct implication is clear by the definition of an
injective module. Conversely, let M be X⊥-injective
and cores:dimX⊥ðMÞ ≤ 1. Consider an exact
sequence 0⟶M⟶ EðMÞ⟶ L⟶ 0 with EðM
Þ an injective envelope of M: For any R-module X
∈X , we have an exact sequence ⋯⟶Ext1RðX, Eð
MÞÞ⟶ Ext1RðX, LÞ⟶ Ext2RðX,MÞ⟶⋯. Since
cores:dimX⊥ðMÞ ≤ 1, Ext2RðX,MÞ = 0, and hence, L
is X-injective. Therefore, Ext1RðL,MÞ = 0, so that
the exact sequence is split. It follows that M is a
direct summand of E, as desired.

We now give some of the characterizations of X-injec-
tive module:

Proposition 9. Let I 0 ⊆X: The following are equivalent for
a left R-module M :

(1) M is X-injective

(2) For every exact sequence 0⟶M⟶ E⟶ L⟶ 0,
with E ∈X ,E⟶ L is an X-precover of L

(3) M is a kernel of an X-precover f : A⟶ B with A an
injective module

(4) M is injective with respect to every exact sequence 0
⟶ A⟶ B⟶ C⟶ 0, with C ∈X:

Proof. ð1Þ⇒ ð2Þ. Consider an exact sequence

0⟶M⟶ E⟶ L⟶ 0, ð4Þ

whereE ∈X: Then, by hypothesis, HomRðE′, EÞ⟶HomR

ðE′, LÞ is surjective for all left R-modules E′ ∈X , as desired.
ð2Þ⇒ ð3Þ. Let EðMÞ be an injective hull of M and con-

sider the exact sequence 0⟶M⟶ EðMÞ⟶f EðMÞ/M

3Journal of Mathematics



⟶ 0: Since EðMÞ is injective, it belongs to X: So assertions
ð3Þholds.

ð3Þ⇒ ð1Þ. Let M be a kernel of an X-precover f : A
⟶ B with A an injective module. Then, we have an exact
sequence 0⟶M⟶ A⟶ A/M⟶ 0. Therefore, for
any left R-module N ∈X , the sequence HomRðN ,AÞ⟶
HomRðN , A/MÞ⟶ Ext1RðN ,MÞ⟶ 0 is exact. By hypothe-
sis, HomRðN , AÞ⟶HomRðN , A/MÞ is surjective. Thus,
Ext1RðN ,MÞ = 0, and hence (1) follows

ð1Þ⇒ ð4Þ. Consider an exact sequence

0⟶ A⟶ B⟶ C⟶ 0, ð5Þ

where C ∈X: Then, HomRðB,MÞ⟶HomRðA,MÞ is sur-
jective, as desired.

ð4Þ⇒ ð1Þ. For each left R-module N ∈X , there exists a
short exact sequence 0⟶ K ⟶ P⟶N ⟶ 0 with P a
projective R-module, which induces an exact sequence
HomRðP,MÞ⟶HomRðK ,MÞ⟶ Ext1RðN ,MÞ⟶ 0. By
hypothesis, HomRðP,MÞ⟶HomRðK ,MÞ⟶ 0 is exact.
Thus, Ext1RðN ,MÞ = 0, and hence (1) follows.

The following note is useful for understanding the nota-
tions in Examples 11 and 15.

Note 10. From Introduction, B =X⊥: We get a new cotor-
sion theory ð ⊥ðB⊥Þ,B⊥Þ generated by the class B:

Example 11. Let ðR,mÞ be a commutative Noetherian and
complete local domain. Assume that the depthR ≥ 2 and
cores:dimBðRÞ ≤ 1. Then, R/m ⊕ EðRÞ is an B⊥-injective R
-module, where B is the class of all X-injective R-modules.

Proof. Consider the residue field k = R/m and an exact
sequence 0⟶ k⟶ EðkÞ⟶ϕ EðkÞ/k⟶ 0. If G is an R
-module, the sequence HomRðG, EðkÞÞ⟶HomRðG, EðkÞ/
kÞ⟶ Ext1RðG, kÞ⟶ 0 is exact. By ([25], p 43), ϕ is an
injective cover of EðkÞ/k: Since cores:dimBðRÞ ≤ 1, then,
the class of all injective R-modules and the class of all B
-injective R-modules are equal, that is, I 0 =B⊥. Clearly, ϕ
is an B-injective cover of EðkÞ/k. Thus, HomRðG′, EðkÞÞ
⟶HomRðG′, EðkÞ/kÞ is surjective for every B-injective R
-module G′. We get Ext1RðG′, kÞ = 0 for every B-injective
R-module G′, and hence, k is B⊥-injective. On the other
hand, EðRÞ is injective and so B⊥-injective. Therefore, k ⊕
EðRÞ is B⊥-injective.

We now give some characterizations of X-flat module:

Proposition 12. The following are equivalent for a right R
-module M:

(1) M is X-flat

(2) For every exact sequence 0⟶ A⟶ B⟶ C⟶ 0
with C ∈X , the functor M ⊗ R − preserves the
exactness

(3) Ext1RðM,G+Þ = 0 for all G ∈X

(4) M+ is X-injective

Proof. ð1Þ⇒ ð2Þ. Consider an exact sequence 0⟶ A⟶

B⟶ C⟶ 0 with C ∈X: Since M is X-flat, TorR1 ðM, CÞ
= 0. Hence, the functor M ⊗ − preserves the exactness.

ð2Þ⇒ ð1Þ. Let G ∈X: Then, there exists a short sequence
0⟶ K ⟶ F ⟶G⟶ 0 with F a projective module,
which induces an exact sequence 0⟶ TorR1 ðM,GÞ⟶M
⊗ K ⟶M ⊗ F ⟶M ⊗G⟶ 0. By hypothesis, TorR1 ðM,
GÞ = 0. Thus, M is X-flat.

ð1Þ⇔ ð3Þ:It follows from the natural isomorphism ([26],
p 34) TorR1 ðM,GÞ+ ≅ Ext1RðM,G+Þ.

ð1Þ⇔ ð4Þ:It follows from the natural isomorphism ([27],
VI 5.1) Ext1RðG,M+Þ ≅ TorR1 ðM,GÞ+.

Proposition 13. Let R be a coherent ring. Then, a right R
-module N is flat if and only if N is X-flat and f dðNÞ ≤ 1.

Proof. The “only if” part is trivial. Conversely, suppose that
N is X-flat. By Proposition 12, N+ is X-injective. By ([28],
Theorem 2.1), f dðNÞ = idðN+Þ. Then cores:dimX⊥ðN+Þ ≤ 1
since cores:dimX⊥ðN+Þ ≤ idðN+Þ. By Proposition 8, N+ is
injective and hence N is flat.

4. X⊥-Projective Cover and X-Injective
Envelope

Now, we introduce X-projective modules.

Definition 14. An R-module M is called X-projective if
Ext1RðM, XÞ = 0 for all R-modules X ∈X .

Example 15. Let ðR,mÞ be a complete local ring and B be
the class of all X-injective R-modules. Assume that the
cores:dimBðRÞ ≤ 1. Then EðkÞ/k is B⊥-projective, where k
= R/m is the residue field and EðMÞ is an B-injective enve-
lope of k.

Proof. By Note 10, we get a cotorsion theory ð ⊥ðB⊥Þ,B⊥Þ
generated by the class B: Consider an exact sequence 0
⟶ k⟶ EðkÞ⟶ EðkÞ/k⟶ 0, where EðkÞ is an injective
envelope of k: Since cores:dimBðRÞ ≤ 1, then, the class of all
injective R-modules and the class of all B-injective R
-modules coincide, that is, I 0 =B⊥. It follows that EðkÞ is
an B-injective envelope of k: Since the class of all B⊥

-projective modules is closed under extensions, then by
Lemma 2.1.2 in [25], EðkÞ/k is B⊥-projective.

We now introduce Definition 16.

Definition 16. A ring R is called left X-hereditary if every left
ideal of R is X-projective.

Remark 17. If X is the class of injective left R-modules, then,
every ring is X-hereditary. It is also easy to see that a ring is
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left hereditary if and only if R is X-hereditary for every class
X of left R-modules.

Given a class X of left R-modules, we denote by X⊥2 the
class

N ∈ R −Mod Ext2R X,Nð Þ = 0, for everyX ∈X
��� �

: ð6Þ

Example 18. Let R be a commutative Noetherian ring. If X
= fR/p : p ∈ SpecRg, then R is a X⊥2-hereditary ring.

Proof. Let I be an ideal of R. We claim that I is X⊥2-pro-
jective. By hypothesis, Ext2RðR/p,GÞ = 0 for all p ∈ SpecR
and for all G ∈X⊥2 : It follows that idðGÞ ≤ 1: Thus, Ext2RðR
/I,GÞ = 0 for all ideals I of R and for all G ∈X⊥2 : Consider
an exact sequence 0⟶ I ⟶ R⟶ R/I ⟶ 0: So Ext1RðI,
GÞ = 0 for all G ∈X⊥2 : Hence, I isX⊥2-projective, as desired.

Note that an R-module M is X⊥-projective if Ext1RðM,
UÞ = 0 for all R-modules U ∈X⊥. Clearly, ð ⊥ðX⊥Þ,X⊥Þ is
a cotorsion theory.

Proposition 19. A ring R is left X⊥-hereditary if and only if
every submodule of a X⊥ -projective left R-module is X⊥

-projective.

Proof. Let R be left X⊥-hereditary and I be a left ideal of R.
Then, there is an exact sequence 0⟶ I ⟶ R⟶ R/I
⟶ 0: By hypothesis, Ext2RðR/I,UÞ = 0 for any X-injective
left R-module U : Thus, idðUÞ ≤ 1: Let G be a submodule
of an X⊥-projective left R-module H: Then, for any X

-injective left R-module U , the sequence

⋯⟶Ext1R H,Uð Þ⟶ Ext1R G,Uð Þ⟶ Ext2R
H
G
,U

� �
⟶⋯

ð7Þ

is exact. Thus, Ext1RðG,UÞ = 0 since H is X⊥-projective and
idðUÞ ≤ 1: The reverse implication is clear.

In general, ⊥ðX⊥Þ is not closed under pure submodules;
for example, if F is the class of flat modules, then ⊥ðF⊥Þ
=F and this class is not closed under pure submodules in
general. As an easy consequence of Proposition 19, we have
that the class ⊥ðX⊥Þ is closed under pure submodules over a
X⊥-hereditary ring.

Definition 20 (see [22]). Let K be a class of R-modules.
Then, K is said to be Kaplansky class if there exists a cardi-
nal ℵ such that for every M ∈K and for each x ∈M, there
exists a submodule K of M such that x ∈ K ⊆M and K ,M/
K ∈K , and CardðKÞ ≤ℵ:

Definition 21. An R-module G is called ⊥ðX⊥Þ-pure injective
if f : A′⟶G extends to a homomorphism g : A⟶G for
all A′, A ∈ ⊥ðX⊥Þ, where A′ ⊆ ⋆A (that is, A′ is a pure sub-
module of A). We denote by B′ the class of all ⊥ðX⊥Þ
-pure projective modules.

Remark 22. The class of all pure injective R-modules is con-
tained in the class of all ⊥ðX⊥Þ-pure injective R-modules.

Example 23.

(1) Clearly, ðR −Mod,I 0Þ is a cotorsion theory. Then,
the class of all R −Mod-pure injective R-modules is
the class of all pure injective R-modules.

(2) If F is the class of all flat R-modules and C is the
class of all cotorsion R-modules, then, ðF ,CÞ is a
cotorsion theory. Then, the class of all F-pure injec-
tive R-modules is the class of all cotorsion R
-modules.

If R is Noetherian and R ∈I 0, then, the class of all I 0
-pure injective R-modules is I ⊥

0 :

Proof.

(1) Straightforward

(2) Let C be a F-pure injective R-module. We show that
C is a cotorsion R-module. For any flat R-module F,
there is a pure exact sequence 0⟶ K ⟶ P⟶ F
⟶ 0, where P is a projective R-module. Then, we
get the following exact sequence:

HomR P, Cð Þ⟶HomR K , Cð Þ⟶ Ext1R F, Cð Þ⟶ 0 ð8Þ

It follows that Ext1RðF, CÞ = 0 because HomRðP, CÞ⟶
HomRðK , CÞ is surjective. Hence, C is cotorsion. Conversely,
let C be a cotorsion R-module. Suppose the following
sequence:

0⟶ A⟶ F ⟶
A
F
⟶ 0, ð9Þ

where A, F ∈F is pure exact. Then, we get the exact
sequence HomRðF, CÞ⟶HomRðA, CÞ⟶ Ext1RðF/A, CÞ
⟶ 0: It follows that Ext1RðF/A, CÞ = 0 since F/A is flat.
Hence C, is F-pure injective.

(3) By Exercises 6 in [13], ðI 0,I ⊥
0 Þ is a cotorsion the-

ory. Let G be an I 0-pure injective R-module. We
show that G ∈I ⊥

0 : For any R-module I0 ∈I 0, con-
sider the following exact sequence:

E• : 0⟶ K ⟶ P⟶ I0 ⟶ 0, ð10Þ

where P is projective. By hypothesis, P is injective. Since the
cotorsion theory ðI 0,I ⊥

0 Þ has enough injectives, K is injec-
tive, that is K ∈I 0: It follows that the above sequence E• is
pure exact. Then, we get the exact sequence HomRðP,GÞ
⟶HomRðK ,GÞ⟶ Ext1RðI0,GÞ⟶ 0: Thus, Ext1RðI0,GÞ
= 0 since G is I 0-pure injective. Hence, G ∈I ⊥

0 : Con-
versely, Let G be an I 0-injective R-module. Suppose the
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following exact sequence:

0⟶ E1 ⟶ E2 ⟶
E2
E1

⟶ 0, ð11Þ

where E1, E2 ∈I 0 is pure exact. It follows that E2/E1 ∈I 0
since the cotrosion theory ðI 0,I ⊥

0 Þ has enough injectives.
Then, HomRðE2,GÞ⟶HomRðE1,GÞ is surjective. Hence,
G is I 0-pure injective.

Proposition 24. Let be a X⊥-hereditary ring and X⊥ ⊆B′.
Then, ⊥ðX⊥Þ is a Kaplansky class.

Proof. Let M ∈ ⊥ðX⊥Þ and x ∈M. Consider the inclusion <
x >⟶M, and we get by Lemma 5.3.12 in [13], a cardinal
ℵα and a pure submodule F ⊆M such that <x > ⊆ F and
CardðFÞ ≤ℵα. We get the pure exact sequence

0⟶ F ⟶M⟶
M
F

⟶ 0: ð12Þ

By Proposition 19, F is X⊥-projective. It follows that

HomR M,Gð Þ⟶HomR F,Gð Þ⟶ Ext1R
M
F
,G

� �
⟶ 0,

ð13Þ

for any X-injective R-module G: This implies that
HomRðM,GÞ⟶HomRðF,GÞ is surjective by hypothesis.
Thus, Ext1RðM/F,GÞ = 0: Hence, we proved the proposi-
tion.

Theorem 25. Let R be a X⊥-hereditary ring and X⊥ ⊆B′. If
the class of all X-projective R -modules is closed under direct
limits, then, every R-moduleM has aX⊥-projective cover and
an X-injective envelope.

Proof. By Proposition 24, ⊥ðX⊥Þ is a Kaplansky class.
Since all projective modules are X⊥-projective, ⊥ðX⊥Þ
contains the projective modules. Clearly, ⊥ðX⊥Þ is closed
under extensions. By hypothesis, ⊥ðX⊥Þ is closed under
direct limits. Then by Theorem 2.9 in [22], ð ⊥ðX⊥Þ,
X⊥Þ is a perfect cotorsion theory. Hence, by Definition
4, every module has a ⊥ðX⊥Þ-cover and a X⊥-envelope.

Note that if X⊥ ⊆PI , then the class of all X⊥-projec-
tive R-modules is closed under direct limits by Lemma
3.3.4 in [6]. Then, by Theorem 25 and Remark 22, we have
the following.

Theorem 26. Let R be a X⊥-hereditary ring and X⊥ ⊆PI .
Then, every R-moduleM has aX⊥-projective cover and anX

-injective envelope.

Now we introduce a self-X-injective ring.

Definition 27. A ring R is said to be self X-injective if R over
itself is an X-injective module.

Example 28.

(1) If the class X is R −Mod, then R is a self injective
ring

(2) If X is the class of all finitely presented R-modules,
then R is a self f p-injective ring

(3) If X is the class of all flat R-modules, then R is a
cotorsion ring

We now give some characterizations of X⊥-projective
module:

Proposition 29. Let R be a self X-injective ring, and let M
be an R-module. Then, the following conditions are
equivalent:

(1) M is X⊥-projective

(2) M is projective with respect to every exact sequence
0⟶ A⟶ B⟶ C⟶ 0, with A an X-injective R
-module

(3) For every exact sequence 0⟶ K ⟶ P⟶M⟶ 0,
where P is X-injective, K ⟶ P is an X-injective
preenvelope of K

(4) M is cokernel of an X-injective preenvelope K ⟶ P
with P is a projective R-module

Proof. ð1Þ⇒ ð2Þ. Let 0⟶ A⟶ B⟶ C⟶ 0 be an exact
sequence, where A is X-injective. Then, by hypothesis,
HomRðM, BÞ⟶HomRðM, CÞ is surjective.

ð2Þ⇒ ð1Þ. Let N be an X-injective R-module. Then,
there is a sequence 0⟶N ⟶ E⟶ L⟶ 0 with E
an injective envelope of N . By (2), HomRðM, EÞ⟶
HomRðM, LÞ is surjective. Thus, Ext1RðM,NÞ = 0, as
desired.

ð1Þ⇒ ð3Þ. Clearly, Ext1RðM, F ′Þ = 0 for allX-injective F ′
. Hence, we have an exact sequence HomRðP, F ′Þ⟶
HomRðK , F ′Þ⟶ 0, where P is projective.

ð3Þ⇒ ð4Þ. Consider an exact sequence 0⟶ K ⟶ P
⟶M⟶ 0, where P projective. Since R is self-X-injec-
tive, every projective module is X-injective. Hence, P is X
-injective. Then, by hypothesis, K ⟶ P is an X-injective
preenvelope.

ð4Þ⇒ ð1Þ. By hypothesis, there is an exact sequence 0
⟶ K ⟶ P⟶M⟶ 0, where K ⟶ P is an X-injec-
tive preenvelope with P projective. It gives rise to the exact-
ness of HomRðP,NÞ⟶HomRðK ,NÞ⟶ Ext1RðM,NÞ⟶
0 for each X-injective R-module N . Since R is self X-injec-
tive, HomRðP,NÞ⟶HomRðK ,NÞ is surjective. Hence,
Ext1RðM,NÞ = 0, as desired.
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Proposition 30. Let R be a self X-injective and X⊥-heredi-
tary ring and X⊥ ⊆PI . Then the following are equivalent
for an R-module M:

(1) M is coreduced X⊥-projective

(2) M is a cokernel of an X-injective envelope K ⟶ P
with P is a projective R-module

Proof. ð1Þ⇒ ð2Þ. Consider an exact sequence 0⟶ K⟶f

P⟶g M⟶ 0 with P a projective module. Since R is self
X-injective, P is X-injective. By Theorem 26, the natural
map f : K ⟶ P is an X-injective preenvelope of K . By
hypothesis, K has an X-injective envelope α : K ⟶ P′.
Then, there exist β : P′ ⟶ P and β′ : P⟶ P′ such that
α = β′ f and f = βα. Hence, α = ðββ′Þα. It follows that ββ′
is an isomorphism, P = imðβÞ ⊕ kerðβ′Þ. Note that imð f Þ ⊆
imðβÞ, and so P/imð f Þ⟶ P/imðβÞ⟶ 0 is exact. But M
is coreduced and P/imð f Þ ≅M, and hence, P/imðβÞ = 0, that
is, P = imðβÞ: So β is an isomorphism, and hence, f : K
⟶ P is an X-injective envelope of K .

ð2Þ⇒ ð1Þ. By Proposition 29, M is X⊥-projective and M
is coreduced by Lemma 3.7 in [17].

We are now to prove the main result of this section.

Theorem 31. Let R be a self X-injective and X⊥-hereditary
ring and X⊥ ⊆PI . Then, an R -module M is X⊥-projec-
tive if and only if M is a direct sum of a projective R-mod-
ule and a coreduced X⊥-projective R-module.

Proof. The “if” part is clear.
“Only if” part. Let M be a X⊥-projective R-module. By

Proposition 29, we have an exact sequence 0⟶ K ⟶ P
⟶M⟶ 0 with P a projective module, where K ⟶ P is
an X-injective preenvelope of K . By Theorem 26, K has an
X-injective envelope f ∈HomRðK , P′Þ with P′ an X-injec-
tive R-module. Then, we have the following diagram
(Figure 1):

Note that βα is an isomorphism, and so P = kerβ ⊕ im α.
Since im α ≅ P′, P′ and kerβ are projective. Therefore, P′/
im f is a coreduced X⊥-projective module by Proposition
30. By the Five Lemma, σϕ is an isomorphism. Hence, we
have M = imϕ ⊕ ker σ, where im ϕ ≅ P′/im f . In addition,
we get the commutative diagram (Figure 2).

Hence, kerσ ≅ kerβ.

5. Some Relation between X⊥-Projective and X

-Injective Modules

In this section, we deals with X-injective envelope of a mod-
ule and X⊥-projective module for any class X in R −Mod.

Theorem 32. Let ϕ : M⟶ A be an X-injective envelope.
Then, L = A/ϕðMÞ is X⊥-projective, and hence, A is X⊥

-projective whenever M is X⊥-projective.

Proof. It follows from Lemma 2.1.2 in [25].

Theorem 33. Let 0⟶M⟶ A⟶D⟶ 0 be a minimal
generator of all X⊥-projective extensions of M. Then, A is
an X-injective envelope of M.

Proof. It follows from Theorem 2.2.1 in [25].

LetM be a submodule of a module A. Then, A is called a
X⊥-projective extension of a submodule M if A/M is X⊥

-projective.
Recall that among all X⊥-projective extensions of M, we

call one of them 0⟶M⟶ A⟶D⟶ 0 a generator for
Extð ⊥ðX⊥Þ,MÞ (or a generator for all X⊥-projective exten-
sions of M) if for any X⊥-projective extension 0⟶M
⟶ A′⟶D′ ⟶ 0 of M, then there is a diagram
(Figure 3).

Furthermore, a generator 0⟶M⟶ A⟶D⟶ 0 is
called minimal if for all the vertical maps are isomorphisms
whenever A′,D′ are replaced by A, D, respectively.

Theorem 34. Let R be a X⊥-hereditary ring and X⊥ ⊆PI :
Then, for an R-moduleM, there must be a minimal generator
whenever Extð ⊥ðX⊥Þ,MÞ has a generator.

Proof. It follows from Theorem 2.2.2 in [25].

Theorem 35. Suppose that an R-module M has an X-injec-
tive envelope. Let M be a submodule of an X-injective R
-module L. Then, the following are equivalent:

(1) i : M⟶ L is a special X-injective envelope

L/M is X⊥-projective, and there are no direct summands
L1 of L with L1 ≠ L and M ⊆ L1

(2) L/M is X⊥-projective, and for any epimorphism α
: L/M⟶N such that απ is split, N = 0, where π
: L⟶ L/M is the canonical map

(3) L/M is X⊥-projective, and any endomorphism γ of L
such that γi = i is a monomorphism

(4) L/M isX⊥-projective, and there is no nonzero submo-
dule N of L such that M ∩N = 0 and L = ðM ⊕NÞ is
X⊥-projective

0

0

0

0

0

0K

K

f

K

M

P′ P′/ imf

P′/ imfP′

P

𝜙𝛼

𝛽 𝜎

Figure 1: Commutative diagram with exact rows.
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Proof. ð1Þ⇔ ð2Þ. It follows from Corollary ~1.2.3 in [25] and
Theorem 32.

ð2Þ⇒ ð3Þ. Since απ is split, there is a monomorphism
β : N ⟶ L such that L = kerðαπÞ ⊕ βðNÞ. Note that M ⊆
kerðαπÞ, and so L = kerðαπÞ by (2). Thus, βðNÞ = 0, and
hence, N = 0.

ð3Þ⇒ ð2Þ. If L = L1 ⊕N with M ⊆ L1. Let p : L⟶N be
a canonical projection. Then, there is an epimorphism α
: L/M⟶N such that απ = p. Thus, N = 0 by hypothsis,
and hence, L = L1, as required.

ð1Þ⇒ ð4Þ. By Wakamatsu’s Lemma ([13], Proposition
~7.2.4), L/M is X⊥-projective. Since γi = i and i is mono-
morphism, γ is monomorphism.

ð4Þ⇒ ð1Þ. Since L/M is X⊥-projective, i is a special X
-injective preenvelope. Let ψ : M⟶X⊥ðMÞ be an X

-injective envelope of M. Then, there exist μ : L⟶X⊥ðM
Þ and ν : X⊥ðMÞ⟶ L such that μi = ψ and νψ = i. Hence
μνψ = ψ and i = νμi. Thus, μν is an isomorphism, and so μ
is epic. In addition, by (4), νμ is monic, and hence, μ is
monic. Therefore, μ is an isomorphism, and hence, i is an
X-injective envelope of M.

ð1Þ⇒ ð5Þ. It is obvious that L/M is X⊥-projective. Sup-
pose there is a nonzero submodule N ⊆ L such that M ∩N
= 0 and L = ðM ⊕NÞ is X⊥-projective. Let π : L⟶ L/N
be a canonical map. Since L/ðN ⊕MÞ is X⊥-projective and
L is X-injective, there is a β : L/N ⟶ L in the following
diagram (Figure 4)

Hence, βπi = i. Note that i is an envelope, and so βπ is
an isomorphism, whence π is an isomorphism. But this is
impossible since πðNÞ = 0.

ð5Þ⇒ ð1Þ. Let ψM : M⟶X⊥ðMÞ be an X-injective
envelope of M. Since L/M is X⊥-projective, i is a special X
-injective preenvelope. Thus, we have the following diagram
shown in Figure 5.

That is, fψM = i,gi = ψM . So gfψM = ψM . Note that ψM
is an X-injective envelope, and hence, gf is an isomor-

phism. Without loss of generality, we may assume gf = 1.
Write α = ϕg : L⟶Q. It is clear that α is epic and M ∩
kerðgÞ = 0. We show that M ⊕ kerðgÞ = kerðαÞ. Clearly, M
⊕ kerðgÞ ⊆ kerðαÞ. Let x ∈ kerðαÞ. Then, αðxÞ = ϕgðxÞ = 0.
It follows that gðxÞ = ψMðmÞ for some m ∈M, and hence,
f gðxÞ = fψMðmÞ =m, gðxÞ = gf gðxÞ = gðmÞ. Thus, x ∈M ⊕
kerðgÞ, and so kerðαÞ ⊆M ⊕ kerðgÞ, as desired. Conse-
quently, L = ðM ⊕ kerðgÞÞ = L/kerðαÞ ≅Q is X⊥-projective
by Wakamatsu’s Lemma. Thus, kerðgÞ = 0 by hypothesis,
and hence, g is an isomorphism. So i : M⟶ L is an X

-injective envelope.

Theorem 36. Let R be a X⊥-hereditary ring and X⊥ ⊆PI :
If M is a submodule of an X-injective R-module A, then, the
following are equivalent:

(1) i : M⟶ A is a special X-injective envelope of M

A is a X⊥-projective essential extension of M:

Proof. ð1Þ⇒ ð2Þ. It follows by Proposition 35.
ð2Þ⇒ ð1Þ. By hypothesis, we have an exact sequence: 0

⟶M⟶ A⟶ L⟶ 0 with A an X-injective module
and D an X⊥-projective module. This sequence is a genera-
tor of all X⊥-projective extensions of M. By Theorems 33
and 34, we have an X⊥-projective extension sequence of M
0⟶M⟶ A′ ⟶ L′ ⟶ 0 which gives an X-injective
envelope of M. Then, we have the diagram shown in
Figure 6.

It is easy to see that A = f ðA′Þ ⊕ kerðgÞ. We claim that
kerðgÞ = 0. Since M = f α′ðMÞ ⊆ f ðA′Þ, kerðgÞ ∩M = 0. We
define the following homomorphism ψ : A/ðM ⊕ kerðgÞÞ
⟶ L′, a + ðM ⊕ kerðgÞÞ↦ α′gðaÞ. Obviously, ψ is well
defined. By diagram chasing, we see that ψ is injective. But
both g and β′ are surjective, so is ψ. Therefore, kerðgÞ is
X⊥-projective essential extension of A/kerðgÞ. This contra-
dicts the hypothesis that A is X⊥-projective essential exten-
sion of M. This implies that kerðgÞ = 0 and so f is an
isomorphism.

6. W -Injective Cover

In this section, we assume W is the class of all pure projec-
tive R-modules and we prove that all modules have W

-injective covers.

0

0

0

0 0

0 0 0

0 0 0

0

0

K P M

K L

ker 𝛽 ker 𝜎 

P′/ imf

𝛽 𝜎

Figure 2: Pullback diagram.

0

0

0

0

M

M A D

A′ D′

Figure 3: Commutative diagram.

L

M

L

i

i

L/N L/ (N M)0 0

𝜋

𝛽

𝛼

Figure 4: Commutative diagram with exact rows.
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Proposition 37. The class W ⊥ of all W -injective modules is
closed under pure submodules.

Proof. Let A be a pure submodule of a W -injective module
M. Then there is a pure exact sequence 0⟶ A⟶M
⟶M/A⟶ 0 and a functor HomRðX, −Þ preseves this
sequence is exact whenever X ∈W : This implies that the
sequence 0⟶HomRðW, AÞ⟶HomRðW,MÞ⟶HomR
ðW,M/AÞ⟶ Ext1RðW, AÞ⟶ 0 is also exact for all W ∈
W . It follows that Ext1RðW, AÞ = 0 for all W ∈W , as desired.

Theorem 38. Every R-module has a W -injective preenvelope.

Proof. Let M be an R-module. By Lemma 5.3.12 in [13],
there is a cardinal number ℵα such that for any R-homo-
morphism ϕ : M⟶G with G a W -injective R-module,
there exists a pure submodule A of G such that jAj ≤ℵα

and ϕðMÞ ⊂ A: Clearly, W ⊥ is closed under direct products
and by Proposition 37 A is W -injective. Hence, the theorem
follows Proposition 6.2.1 in [13].

Proposition 39. The class W ⊥ of all W -injective modules is
injectively resolving.

Proof. Let 0⟶M1 ⟶
ϕ M2 ⟶

ψ M3 ⟶ 0 be an exact
sequence of left R-modules with M1,M2 ∈W

⊥. Let G ∈W ⊥

. By Theorem 38, every module has a W ⊥-preenvelope. By
Lemma 1.9 in [29], G has a special W ⊥-preenvelope. By
Lemma 2.2.6 in [6], G has a special ⊥ðW ⊥Þ-precover. Then,
there exists an exact sequence 0⟶ K ⟶ A⟶G⟶ 0
with A∈⊥ðW ⊥Þ and K ∈W ⊥. We prove that M3 is W

-injection, i.e., to prove that Ext1RðG,M3Þ = 0. For this, it suf-
fices to extend any α ∈HomRðK ,M3Þ to an element of
HomRðA,M3Þ. Clearly, K has ⊥ðW ⊥Þ-precover,

0⟶ K ′⟶f
A′⟶g

K ⟶ 0, ð14Þ

where K , K ′ ∈W ⊥, and A′∈⊥ðW ⊥Þ. As the class W ⊥ is
closed under extensions, A′ ∈W ⊥. Since α ∘ g : A′⟶M3
with A′ ∈W ⊥ and M1 a W -injective module, then there

exists β : A′⟶M2 such that ψ ∘ β = α ∘ g. That is, we have
the diagram shown in Figure 7.

Now, we define β↾imϕ : A′ ⟶ imϕ, where ↾ is a restric-

tion map. Then, there exists γ : K ′ ⟶M1 such that β↾imϕ

ð f ðK ′ÞÞ = ϕγðK ′Þ. Hence, we have the diagram shown in
Figure 8.

The W -injectivity of M1 yields a homomorphism γ1 : A′
⟶M1 such that γ = γ1 ∘ f . So for each k′ ∈ K ′, we get ðβ ∘
f Þðk′Þ = ðϕ ∘ γÞðk′Þ = ðϕ ∘ ðγ1 ∘ f ÞÞðk′Þ. Then, there exists a
map β1 ∈HomRðK ,M2Þ such that β = β1 ∘ g, and we get α
= ψ ∘ β1. Thus, we have the diagram shown in Figure 9.

Since M2 is W -injective, there exists ρ ∈HomRðA,M2Þ
such that β1 = ρ ∘ f . Thus, α = ψ ∘ β1 = ψ ∘ ðρ ∘ f Þ, where ψ
∘ ρ ∈HomRðA,M3Þ. Hence, M3 is W -injective.

Proposition 40. Let M be a W -injective R-module and A be
a pure submodule M. Then, an R-module M/A is W

-injective.

Proof. By Proposition 39, W ⊥ is injectively resolving. Let
M ∈W ⊥ and A be a pure submodule of M. By Proposition
37, A is W -injective. From the short exact sequence 0⟶
A⟶M⟶M/A⟶ 0, we get M/A is W -injective.

The terminology of the Definition 41 is used in [30].

Definition 41 (see [31]). An R -module M is f p −Ω1ðsmall
−Ω1Þ if there is a projective resolution

P• : ⋯⟶ P2 ⟶ P1 ⟶
ϕ

P0 ⟶M⟶ 0, ð15Þ

such that the first syzygy Ω1ðP•Þ = imðϕÞ is finitely pre-
sented (small). We denote by C the class of all f p −Ω1R
-modules and S the class of all small −Ω1-modules.

Theorem 42 (see [31], Theorem 2.3). LetM be an R-module.

(1) If M is an f p −Ω1-module, then Ext1RðM, −Þ com-
mutes with direct limits

(2) If M is a small-f p −Ω1-module, then Ext1RðM, −Þ
commutes with direct sums

The converses of these statements are true when an R
-module M is finitely generated.

0 0

L

M (M)

i

𝜓M Q

g f
𝛼

𝜒 𝜙

Figure 5: Commutative diagram with exact rows.

M0

0

0

0M

L′

A

g f

L𝛼

𝛼′

𝛽

𝛽′

Figure 6: Commutative diagram.

M2

K
g

M3.

𝛼
𝛽

A′

𝜓

Figure 7: Commutative diagram.
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We recall that an R-module M is pure projective if and
only ifM is a direct summand of a direct sum of finitely pre-
sented R-modules [32]. Warfield proved that every pure pro-
jective R-module is a direct sum of finitely presented
modules over a Noetherian local ring in Corollary 4 in
[33]. Further, Puninski and Rothmalar [18] proved that the
general question of when all pure projective modules are
direct sum of finitely presented R-modules. They proved this
over a hereditary Noetherian ring ([18], Corollary 6.5).
Thus, every pure projective R-module is finitely presented
over a hereditary Noetherian ring. It follows that Ext1RðA, −
Þ commutes with direct limits for all pure projective R
-modules A: By Theorem 42, every pure projective R-mod-
ule is f p −Ω1 over a hereditary Noetherian ring.

The converse part of the Proposition 43 is not necessar-
ily true. It will be held immediately over a hereditary
Noetherian ring by the argument of the previous paragraph.
In this article, we proved the converse part of Proposition 43
over a Noetherian ring by Theorem 45; that is,W -injective R
-modules are injective from ([34], Theorem 3).

Proposition 43. Every W -injective R-module is absolutely
pure.

Proof. Every finitely presented R-module is pure projective,
hence the proposition.

Theorem 44. Let R be a perfect ring. Then the following con-
ditions are equivalent:

(1) R is coherent

(2) The class of W -injective R-modules is closed under
direct limits and closed under direct sums

(3) Every absolutely pure R-module is injective

Proof. ð1Þ⇒ ð2Þ. It follows by Corollary 57 (2) and (3)
in [30].

ð2Þ⇒ ð3Þ. By Proposition 43 and Theorem 3.2 in [1], R
is coherent. A perfect coherent ring R is Noetherian. Then,
we get (3) immediately by Theorem 3 in [34].

Let FP denote the class of all absolutely pure R
-modules.

Theorem 45. The following conditions are equivalent:

(i) R is Noetherian

(ii) W -injective R-modules coincide with the injective R
-modules

(iii) Absolutely pure R-modules coincide with injective R
-modules

Proof. ðiÞ⇒ ðiiÞ: By Proposition 43, every W -injective R
-module is an absolutely pure R-module. It follows that
every absolutely pure R-module is injective by Theorem 3
in [34]. Hence, every W -injective R-module is injective.

ðiiÞ⇒ ðiiiÞ: Clearly, I 0 ⊆FP ⊆W ⊥: By (ii), W ⊥ ⊆I 0:
Thus I 0 =FP

ðiiiÞ⇒ ðiÞ: It follows Theorem 3 in [34].

By Theorem 45, W -injective cover and injective cover
for every R-module are coincide over a Noetherian ring.
Therefore, we prove Theorem 46 and Proposition 47 with-
out Noetherian condition.

The following result establishes an analog version of
Theorem 2.6 in [16].

Theorem 46. SupposeW ⊆ S: Then, every R-moduleM has a
W -injective precover.

Proof. Let W be a set with CardðWÞ ≤ κ, where κ is the car-
dinal in [11] (Theorem 5). Denote P ðWÞ the power set of
W. We find all the binary operations ∗ : G × G⟶G for
each element G ∈P ðWÞ, and we get a new collection
∪G∈P ðWÞfG,∗g = �G ′. From �G ′, find all the scalar multiplica-
tions, which are functions from the cross product into itself.
This remains a set ∪G∈P ðWÞfðG,∗, · Þg which is denoted by �G

. Some collection of members of �G form a module, and we
can get the class G of W -injective modules which is con-
tained in the class W ⊥. Clearly, I 0 is contained in the class
G . Since W ⊆ S , then by Theorem 42 (2) the direct sum of
W -injective R-modules is W -injective. Hence ⊕ N∈I 0

NðHomRðN ,MÞÞ is an W -injective R-module because every
injective module is W -injective. We prove that ⊕ N∈I 0

NðHomRðN ,MÞÞ ⟶ϕ M is a W -injective precover. That is, to
show that if for any homomorphism N ′ ⟶M with N ′ ∈
W ⊥, then we have the following diagram (Figure 10):

Let K be the kernel of the map N ′⟶M, where N ′ is
sufficiently large. Then, N ′/K is sufficiently small since jN ′
/Kj ≤ jMj. By Bican et al.’s Theorem [11], K has a nonzero
submodule L that is pure in N ′. Therefore, L is W -injec-
tive by Proposition 37. This implies that N ′/L is W -injec-
tive by Proposition 40. If N ′/L is still sufficiently large,
then repeat the process from the map N ′/L⟶M. Since
N ′/K1 is sufficiently small, K1/L has a nonzero submodule

M2M1 M3

A′ KK′ gf

𝛼𝛽

0

0

0

0
𝜙

𝛾

Figure 8: Commutative diagram.

M2M1 M3

A′ KK′
gf

𝛼𝛽
𝛽1

0

0 0

0
𝜙

𝛾
𝛾1

Figure 9: Commutative diagram.

10 Journal of Mathematics



L1/K1 that is pure in N ′/L. Thus, ðN ′/K1Þ/ðL1/K1Þ =N ′/L1
is W -injective. But again, this may be too large. Then by
continuing this process we get lim ðN ′/LiÞ is W -injective
since W ⊥ is closed under direct limits, and it is sufficiently
small, namely jlim ðN ′/LiÞj ≤ κ. Then the map N ′⟶M
can be factored through a W -injective module lim ðN ′/LiÞ.
Let f ∈HomRðlim ðN ′/LiÞ,MÞ. We define a map �f : lim ðN
′/LiÞ⟶ ⊕NðHomRðN ,MÞÞ such that �f ðn′ + L′Þ = ðnf , 0, 0,⋯Þ,
with nf = n. Clearly, �f is a linear map. Then, we have the dia-
gram shown in Figure 11.

Hence, we get the diagram shown in Figure 12.
Thus, ⊕

N∈I 0
NðHomRðN ,MÞÞ ⟶ϕ M is a W -injective

precover.
By Theorem 42 (1), the class of all W -injective R-mod-

ules are closed under direct limits if W ⊆C . But we prove
this result over a coherent in Proposition 47.

Proposition 47. Let R be a coherent ring. Then, the class of
all W -injective R-modules is closed under direct limits.

Proof. It follows Corollary 57(2) shown in [30].

Theorem 48 follows from Theorem 46 and Proposition
47 by Corollary 5.2.7 in [13].

Theorem 48. Let R be a coherent ring and W ⊆ S: Then,
every R-module has a W -injective cover.
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