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In this study, a predator-prey model with the Allee effect and fear effect is established. We use the comparison principle to prove
boundedness. -e zero equilibrium point and nonzero equilibrium point of the model are calculated, and the local stability
conditions are obtained. Next, according to the Sotomayor theorem, the cross-sectional conditions of transcritical bifurcation and
Hopf bifurcation are obtained. -e conditions for the Hopf bifurcation to be supercritical or subcritical can be calculated by the
normal form theory. -en, to make the model more realistic, we introduce the gestation delay in the proposed mathematical
model. Stability and Hopf bifurcation are also analyzed. Finally, several numerical simulations are presented to verify the
conclusions. Our results demonstrate that the Allee effect, fear effect, and delay play significant roles in population dynamics. -e
Allee effect and delay destabilize the originally stable model, after which Hopf bifurcation occurs. However, the fear effect can
enhance stable coexistence.

1. Introduction

In mathematical ecology, the interaction between the predator
and prey is important and complex and will continue to be
predominant in ecology because it is widespread globally. Since
the establishment of the well-known Lotka–Volterra model
solved the key problems of ecological processes [1, 2], applied
mathematicians usually use mathematical models as tools to
study the complex dynamics between predators and prey. It is
an effective method to study the dynamic behavior of the
population by establishing realistic mathematical models.
Different types of models are proposed to investigate the in-
teractions in mathematical biology. -e classic predator-prey
model can be expressed by the following first-order ordinary
differential equations:

dx

dt
� xl(x) − g(x, y)y,

dy

dt
� − δy + h(x, y)y,

(1)

where x and y are the population of prey and predator,
respectively, l(x) is the birth rate of prey, and δ is the
predator death rate. Here, the role of the functional response
term is to connect the predator and the prey, that is, the prey
biomass consumed by each predator in unit time, which is
described by g(x, y), while h(x, y) is called the numerical
response of the predator [3], which means the growth rate of
the predator realized by consuming the prey. Holling pro-
posed several different functional response types. Because
this method can reflect the interspecies relationship between
the predator and prey in the model, it has wide applicability.
Many scholars incorporate this method into mathematical
ecology modeling. Holling type-I, type-II, and type-III
functional responses have been extensively studied [3–5].
Usually, g(x, y) is called a prey-dependent functional re-
sponse, which is a function that considers the density of the
prey. We choose a simple linear function g(x) � ax, that is,
the Holling type-I functional response in this paper, where a

is the predator predation rate. In the traditional system,
g(·) � h(·); however, in a dissipative system, h(x, y)

� cg(x, y), where c is the prey-to-predator conversion rate
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and 0< c< 1. As is well known, restricted by the competition
of the same species, environmental factors, and other
mechanisms, populations in nature cannot grow indefi-
nitely. Allowing the prey population to grow logically is a
common modeling method and has the form
xl(x) � xr(1 − (x/K)), where r is the intrinsic growth rate
of prey and K is the carrying capacity. In summary, the
interaction between the predator and prey can be expressed
by the following equations:

dx

dt
� rx 1 −

x

K
  − axy,

dy

dt
� caxy − δy.

(2)

Taking the long-term view, predators can impact the
population density of prey only through direct killing.
However, the mere presence of predators can change the
physiology of prey and even reduce its birth rate. -is
phenomenon can exert an effect on the population density of
prey that is even more obvious than direct predation and is
called the fear effect [6–8]. Some animals show a series of
antipredator responses, such as habitat migration and for-
aging behavior change. For example, birds have changed
habitats because of a fear of predators in the same habitat.
Although new habitats are safer, the relocated animals are
unable to adapt to new habitats, and a decline in population
ensues [9, 10]. Wang et al. [11] established a model with a
fear effect and Holling functional response. -ey first for-
mulated the fear-effect term c and combined the fear factor
with a predator-prey model widely [12]. Here, f represents
the fear level that depends on the predator y. -e fear effect
is introduced to further change the prey birth rate by the
following equation:

dx

dt
� n(f, y)xl(x), (3)

and n(f, y) must meet the following conditions before it can
be used as a fear function [11]:

n(0, y) � 1,

n(f, 0) � 1,

lim
f⟶∞

n(f, y) � 0,

lim
y⟶∞

n(f, y) � 0,

zn(f, y)

zf
< 0,

zn(f, y)

zy
< 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

A simple function n(f, y) � (1/1 + fy) satisfies all the
above conditions.

In population dynamics, the cluster lifestyle of biological
populations is beneficial to the growth of populations, but the
excessive density of clusters often causes the growth of bio-
logical populations to be suppressed due to competition for
resources. -e population density is too sparse or too dense to
be unfavorable for the survival and development of the pop-
ulation. For each population, there must be an independent
optimal density for growth and reproduction; this mechanism
is called the Allee effect [13–15]. -e Allee effect is generally
divided into two types: strong and weak [16, 17]. When the
population has a weak Allee effect, although the population
density grows slowly, the increase in population density is
positive. However, when a species with a sparse population
density has a strong effect, the population will eventually be-
come extinct. Since the Allee effect is widely present in natural
populations, taking it into account in modeling will make the
model more complete. Considering the weak Allee effect
ϕ(x) � (x/x + A)(A> 0) [18–20] and the fear effect, a further
modification is required.

dx

dt
�

rx

1 + fy
1 −

x

K
 

x

x + A
− axy,

dy

dt
� caxy − δy.

(5)

To intuitively understand the impact of fear on the
model, the relation between dx/dt and f is shown in Figure 1
[21]. With the increase of the fear parameter, the value of
dx/dt decreases.

-ere are many types of time delay in the biological
models of predators and prey. It is considered herein that the
reproduction of the prey population will not be completed
instantly and that there is a gestation delay τ required for
gestation of prey [22, 23]. To make model (5) closer to
reality, gestation delay is introduced as follows:

dx(t)

dt
�

rx(t)

1 + fy(t)
1 −

x(t − τ)

K
 

x(t)

x(t) + A
− ax(t)y(t),

dy(t)

dt
� cax(t)y(t) − δy(t).

(6)

Human beings have a long history of using mathematics
to explore the world of biological populations and have
made tremendous progress. Nowadays, mathematical
models have been widely used in many fields. Among them,
there are many works on the application of mathematical
models to study the dynamics of populations and infectious
diseases [24–26]. Establishing mathematical models is a
widely used and effective method of studying the dynamic
behavior of populations. -e advantage of this method is
that it is convenient to use the computer to process the main
variables and parameters of a model, save time and cost, and
make predictions based on past and present information
[27].-e fear effect and Allee effect are ecological effects that
actually exist in populations, so incorporating rich ecological
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effects into the mathematical model and constructing a
suitable model to study the impact of ecological effects on
the dynamic behavior of the model are our research mo-
tivation. Although our model is not complicated, an overly
complicated model will not be able to facilitate a detailed
analysis due to the limitations of research methods. -e
objective of this study is to explore how these ecological
effects will affect the dynamic behavior of the population
when there are Allee effects, fear effects, and time delay in the
model. In addition, it will be interesting to explore the bi-
furcation caused by the Allee effect and time delay.

2. Analysis of the Predator-Prey Model

Model (5) has three equilibrium points E0 � (0, 0),
EK � (K, 0), and E∗ � (x∗, y∗). Here, x∗ � (δ/ac) and
y∗ � (

��������������������������
1 + 4frx∗(K − x∗)/Ka(x∗ + A)


− 1/2f). Accord-

ing to the actual meaning of the parameters, (δ/ac)<K is
obtained.

2.1. Boundedness

Theorem 1. .e solution (x(t), y(t)) of the model satisfies

lim
t⟶∞

sup x(t) +
1
c

y(t) ≤
K

4rδ
(δ + r)

2
. (7)

Proof. Define Λ � x(t) + (1/c)y(t).

dΛ
dt

�
dx

dt
+
1
c

dy

dt

�
rx

1 + fy
1 −

x

K
 

x

x + A
− axy +

1
c

c(ax)y −
1
c
δy

�
rx

1 + fy
1 −

x

K
 

x

x + A
−
1
c
δy.

(8)

-en, for all t> 0,
dΛ
dt

+ δΛ �
rx

1 + fy
1 −

x

K
 

x

x + A
−
1
c
δy + δx +

1
c
δy

�
rx

1 + fy
1 −

x

K
 

x

x + A
+ δx

≤ rx 1 −
x

K
  + δx

� x r + δ −
rx

K
 

≤
K

4r
(δ + r)

2
.

(9)

-us,

lim
t⟶∞

sup x(t) +
1
c

y(t) ≤
K

4rδ
(δ + r)

2
. (10)

□

2.2. Stability Analysis

Theorem 2.

(1) Trivial equilibrium point E0 is stable.
(2) If a> (δ/cK), the axial equilibrium point EK is a

saddle point and is stable, otherwise.
(3) Interior equilibrium E∗ is locally asymptotically stable

for

A<
rx∗ 2K − 3x∗(  +

����������������������������������������

r
2
x
2
∗ 2K − 3x∗( 

2
+ 4ay∗K 1 + fy∗( rx

2
∗ x∗ − K( 



2ay∗K 1 + fy∗( 
−

δ
ac

, (11)

and E∗ is unstable, otherwise.

Proof. Let
F(x, y) �

rx

1 + fy
1 −

x

K
 

x

x + A
− axy,

G(x, y) � c(ax)y − δy.

(12)

-e Jacobian matrix of model (3) is given by

J �

zF

zx

zF

zy

zG

zx

zG

zy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (13)
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Figure 1: Relation between dx/dt and f of model (5) (y � 1,
r � 2.65, K � 10, A � 5, a � 0.02, c � 0.22, and δ � 1.04).
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where

zF

zx
�

Krx(2K − 3x)(1 + fy)(x + A) + rx
2
K(x − K)(1 + fy)

[K(1 + fy)(x + A)]
2 − ay,

zF

zy
�

rx
2
f(x − K)

K(x + A)(1 + fy)
2 − ax,

zG

zx
� cay,

zG

zy
� cax − δ.

(14)

-e community matrix at E0 � (0, 0), EK � (K, 0), and
E∗ � (x∗, y∗) is given by

JE0
�

0 0

0 − δ
⎛⎝ ⎞⎠,

JEK
�

− rK

(1 + fy)(K + A)
− aK

0 caK − δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

JE∗
�

Krx∗ 2K − 3x∗(  x∗ + A(  + rx
2
∗K x∗ − K( 

K
2 1 + fy∗(  x∗ + A( 

2 − ay∗
rx

2
∗f x∗ − K( 

K x∗ + A(  1 + fy∗( 
2 −

δ
c

cay∗ 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(15)

It is found that E0 is stable. -e first eigenvalue of JEK
is

negative. If a< (δ/cK), EK is stable, and if a> (δ/cK), EK is a
saddle point.

Next, the community matrix at the interior equilibrium
E∗ is considered. -e characteristic polynomial of JE∗

is

H(λ) � λ2 − Tr JE∗
 λ + Det JE∗

 , (16)

where

Tr JE∗
  �

Krx∗ 2K − 3x∗(  x∗ + A(  + rx
2
∗K x∗ − K( 

K
2 1 + fy∗(  x∗ + A( 

2 − ay∗,

Det JE∗
  � δay∗ −

rx
2
∗f x∗ − K( cay∗

K x∗ + A(  1 + fy∗( 
2.

(17)

One must obtain the conditions of Tr(JE∗
)< 0Det (JE∗

)

> 0; that is, if

A<
rx∗ 2K − 3x∗(  +

����������������������������������������

r
2
x
2
∗ 2K − 3x∗( 

2
+ 4ay∗K 1 + fy∗( rx

2
∗ x∗ − K( 



2ay∗K 1 + fy∗( 
−

δ
ac

, (18)

E∗ is locally asymptotically stable. If

A>
rx∗ 2K − 3x∗(  +

����������������������������������������

r
2
x
2
∗ 2K − 3x∗( 

2
+ 4ay∗K 1 + fy∗( rx

2
∗ x∗ − K( 



2ay∗K 1 + fy∗( 
−

δ
ac

, (19)

E∗ is unstable. □
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2.3. Bifurcation Analysis

2.3.1. Transcritical Bifurcation

Theorem 3. At a � a0, where a0 � (δ/cK), model (5) enters
into transcritical bifurcation around EK.

Proof. -e eigenvalues of JEK
are (− rK/(1 + fy)(K + A))

and λ2 � caK − δ. λ1 is negative when a � (δ/cK) � a0 and
λ2 � 0. -us, JEK

has a zero eigenvalue. V and W are the
eigenvectors corresponding to the zero eigenvalue of the
matrices JEK

and JT
EK
, where V � ((− a(1 + fy) (K + A)

/r), 1)T and W � (0, 1)T.

J
T
EK

�

− rK

(1 + fy)(K + A)
0

− aK 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

W
T
fa(x, y, a) � 0,

W
T

Dfa(x, y, a)V  � cK≠ 0,

W
T

D
2
fa(x, y, a)(V, V)  �

− 2ca
2
(1 + fy)(K + A)

r
≠ 0.

(20)

By the Sotomayor theorem [28], the model attains
transcritical bifurcation around EK at a � a0. □

2.3.2. Hopf Bifurcation. Model (5) undergoes bifurcation
when

A �
rx∗ 2K − 3x∗(  +

����������������������������������������

r
2
x
2
∗ 2K − 3x∗( 

2
+ 4ay∗K 1 + fy∗( rx

2
∗ x∗ − K( 



2ay∗K 1 + fy∗( 
−

δ
ac

. (21)

-e model (5) undergoes a Hopf bifurcation will be
proved in this section.

-e parameter A0 is chosen to analyze the Hopf bi-
furcation at E∗ � (x∗, y∗), where

A0 �
rx∗ 2K − 3x∗(  +

����������������������������������������

r
2
x
2
∗ 2K − 3x∗( 

2
+ 4ay∗K 1 + fy∗( rx

2
∗ x∗ − K( 



2ay∗K 1 + fy∗( 
−

δ
ac

. (22)

When A � A0, one has T(JE∗
) � 0, and λ � ± i�������������������������������������������

(2Kf(x∗ + A)cay∗/[K(1 + fy∗)(x∗ + A)]2) + δay∗



are
imaginary eigenvalues of the Jacobian matrix JE∗

. Let λ �

α(A) ± iβ(A) be the roots of λ2 − T(JE∗
) + D(JE∗

) � 0,

α2 − β2 − aT + D � 0,

2αβ − Tβ � 0.
(23)

-en,

α �
T

2
,

β �

��������
4 D − T

2


2
,

dα
dA

A�A0

�
1
2

d

dA
Tr JE∗

  
A�A0

≠ 0.

(24)

-e cross-sectional condition is satisfied, so model (3)
undergoes a Hopf bifurcation at E∗ � (x∗, y∗)when A � A0.
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Next, the detailed nature of the Hopf bifurcation is analyzed.
Transforming the equilibrium point E∗ into the origin by
setting x � X + x∗ and y � Y + y∗, one has the following
model:

dX

dt
�

r X + x∗( 

1 + f Y + y∗( 
1 −

X + x∗( 

k
 

X + x∗( 

X + x∗(  + A

− a X + x∗(  Y + y∗( ,

dY

dt
� ca X + x∗(  Y + y∗(  − δ Y + y∗( .

(25)

Expanding Taylor’s series of the above model at
(X, Y) � (0, 0),

_X � c10X + c01Y + c20X
2

+ c11XY + c02Y
2

+ c30X
3

+ c21X
2
Y + c12XY

2
+ c03Y

3
+ o,

_Y � d10X + d01Y + d20X
2

+ d11XY + d02Y
2

+ d30X
3

+ d21X
2
Y + d12XY

2
+ d03Y

3
+ o,

(26)

where

c10 �
Krx∗ 2K − 3x∗(  1 + fy∗(  x∗ + A(  + rx

2
∗K x∗ − K(  1 + fy∗( 

K 1 + fy∗(  x∗ + A(  
2 − ay∗,

c01 �
rx

2
∗f x∗ − K( 

K x∗ + A(  1 + fy∗( 
2 −

δ
c
,

c20 �
r 2K − 6x∗(  1 + fy∗( 

2
x∗ + A( 

2
− rx∗ 2K − 3x∗(  1 + fy∗( 

2
x∗ + A(  − 2rx

2
∗ x∗ − K(  1 + fy∗( 

2

2K 1 + fy∗(  x∗ + A(  
3 ,

c11 � −
frx∗ 2K − 3x∗(  x∗ + A(  + frx

2
∗ x∗ − 1( 

2K 1 + fy∗(  x∗ + A(  
2 − a,

c02 �
− 2rx

2
∗f

2
x∗ − K( 

K x∗ + A(  1 + fy∗( 
3,

c30 �
r 15x∗ + 6A − 2K(  x∗ + A( 

2
+ 2rx∗ x∗ − 2A(  x∗ − K(  − rx∗ 2K − 3x∗( 

12K x∗ + A( 
4 1 + fy∗( 

+
r 2x∗ + A(  2K − 3x∗(  − 2rx

2
∗

12K x∗ + A( 
3 1 + fy∗( 

,

c21 �
− fr 2K − 6x∗(  x∗ + A( 

2 1 + fy∗(  + 2frx
2
∗ x∗ − K(  1 + fy∗( 

2K 1 + fy∗(  x∗ + A(  
3 +

+fr 3x∗ − 2(  2K − 3x∗( 

2K 1 + fy∗(  x∗ + A(  
2 ,

c12 �
frx∗ 2K − 3x∗(  x∗ + A( 

2
+ frx

2
∗ x∗ − K(  x∗ + A( 

6K 1 + fy∗(  x∗ + A(  
3 ,

c03 �
6rx

2
∗f

3
x∗ − K( 

K x∗ + A(  1 + fy∗( 
4,

d10 � cay∗,

d01 � 0,

d20 � 0,

d11 �
ca

2
,

d02 � 0,

d30 � 0,

d21 � 0,

d12 � 0,

d03 � 0.

(27)
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Let

P1(X, Y) � c20X
2

+ c11XY + c02Y
2

+ c30X
3

+ c21X
2
Y + c12XY

2
+ c03Y

3
,

P2(X, Y) � d20X
2

+ d11XY + d02Y
2

+ d30X
3

+ d21X
2
Y + d12XY

2
+ d03Y

3
.

(28)

Now,
_X � c10X + c01Y + P1(X, Y),

_Y � d10X + d01Y + P2(X, Y).
(29)

Taking the transformation u � X and v � − (1/β)

(c10X + c01Y),

du

dt
� − βv + G1(u, v),

dv

dt
� βu + G2(u, v),

(30)

where

G1(u, v) � P1 u, −
1

c01
c10u + βv(  ,

G2(u, v) � −
1
β

c10P1 u, −
1

c01
c10u + βv(   

+ c01P2 u, −
1

c01
c10u + βv(  .

(31)

-erefore,

G1(u, v) � c20u
2

+ c11u −
1

c01
c10u + βv(   + c02 −

1
c01

c10u + βv(  

2

+ c30u
3
+

c21u
2

−
1

c01
c10u + βv(   + c12u −

1
c01

c10u + βv(  

2

+ c03 −
1

c01
c10u + βv(  

3

,

G2(u, v) � −
1
β

c10 c20u
2

+ c11u −
1

c01
c10u + βv(   + c02 −

1
c01

c10u + βv(  

2

+ c30u
3⎛⎝⎡⎢⎢⎣

+c21u
2

−
1

c01
c10u + βv(   + c12u −

1
c01

c10u + βv(  

2

+ c03 −
1

c01
c10u + βv(  

3
⎞⎠⎤⎥⎥⎦

+ c01d11u −
1

c01
c10u + βv(  .

(32)

-e following is set:

ψ �
1
16

z
3
G1

zu
3 +

z
3
G1

zu zv
2 +

z
3
G2

zu
2
zv

+
z
3
G2

zv
3  +

1
16β
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(33)

where
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(34)

If ψ < 0, the Hopf bifurcation is supercritical, and the
Hopf bifurcation is subcritical if ψ > 0.
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3. Stability andHopf Bifurcation Analysis of the
Delay Model

Letting X(t) � x(t) − x∗ and Y(t) � y(t) − y∗, after line-
arization, model (6) could be expressed as the following
matrix:

d
dt

X(t)

Y(t)

⎛⎝ ⎞⎠ � A1

X(t)

Y(t)

⎛⎝ ⎞⎠ + A2

x(t − τ)

y(t − τ)

⎛⎝ ⎞⎠, (35)

where

A1 �

2rx∗ 1 + fy∗(  x∗ + A(  − rx
2
∗K 1 + fy∗( 

1 + fy∗(  x∗ + A(  
2

−
2rx

2
∗K 1 + fy∗(  x∗ + A(  − rx

3
∗ 1 + fy∗( 

K 1 + fy∗(  x∗ + A(  
2 − ay∗

− rfx
2
∗ x∗ + A( 

1 + fy∗(  x∗ + A(  
2

+
rKfx

2
∗ x∗ + A( 

k 1 + fy∗(  x∗ + A(  
2 −

δ
c

cay∗ 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A2 �

−
rx

2
∗

k 1 + fy∗(  x∗ + A( 
0

0 0
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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(36)

Let

G �
2rx∗ 1 + fy∗(  x∗ + A(  − rx

2
∗K 1 + fy∗( 

1 + fy∗(  x∗ + A(  
2

−
2rx

2
∗K 1 + fy∗(  x∗ + A(  − rx

3
∗ 1 + fy∗( 

K 1 + fy∗(  x∗ + A(  
2 − ay∗,

H �
rx

2
∗

k 1 + fy∗(  x∗ + A( 
,

I �
rKfx

2
∗ x∗ + A( 

k 1 + fy∗(  x∗ + A(  
2 −

rfx
2
∗ x∗ + A( 

1 + fy∗(  x∗ + A(  
2.

(37)

-e characteristic polynomial is

H(λ) � λ2 − G − He
− λt

 λ + aδy∗ − Icay∗. (38)

Theorem 4. If H2 − G2 + 2F − 2IL> 0 and
− F2 + 2IFL − I2L2 > 0, the interior equilibrium E∗ is locally
asymptotically stable, and Hopf bifurcation occurs when τ
passes the value

τ �
1
ω0

arctan
ω2
0 + IL − F

Gω0
. (39)

Proof. -e characteristic equation is

λ2 − G − He
− λt

 λ + aδy∗ − Icay∗ � 0. (40)

Supposing that λ(τ0) � iω0 is a solution of H(λ), one has

− ω2
0 − G − He

− iω0τ iω0 + aδy∗ − Icay∗ � 0. (41)

It is known that

e
− ω0τ � cos ω0τ − i sin ω0τ, (42)

so one obtains

− ω2
0 − G − H cos ω0τ − i sin ω0τ( ( iω0 + aδy∗ − Icay∗ � 0.

(43)

Let F � aδy∗ and L � Icay∗; then,

− ω2
0 − iω0G + iω0H cos ω0τ + Hω0 sin ω0τ + F − IL � 0.

(44)

Next, separating real and imaginary parts,

Hω0 sin ω0τ � ω2
0 + IL − F,

ω0H cos ω0τ � ω0G,
(45)

one obtains

ω4
0 + ω2

0 H
2

− G
2

+ 2F − 2IL  − F
2

+ 2IFL − I
2
L
2

� 0.

(46)

Assuming that

W � ω2
0, (47)

one has
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W
2

+ W H
2

− G
2

+ 2F − 2IL  − F
2

+ 2IFL − I
2
L
2

� 0.

(48)

If H2 − G2 + 2F − 2IL> 0 and − F2 + 2IFL − I2L2 > 0, all
roots of the equation have negative real parts, which means
that the interior equilibrium E∗ is locally asymptotically
stable:

W �
− N ±

�����������������������
N

2
− 4 − F

2
+ 2IFL − I

2
L
2

 



2
, (49)

where
N � H

2
− G

2
+ 2F − 2IL. (50)

If − N> 0, N2 � 4(− F2 + 2IFL − I2L2), and − F2 + 2IFL

− I2L2 > 0, the equation has a unique positive solution. -e
interior equilibrium E∗ is stable. If − N> 0, N2 > 4
(− F2 + 2IFL − I2L2), and − F2 + 2IFL − I2L2 > 0, the equa-
tion has two positive solutions.

One has
Hω0 sin ω0τ � ω2

0 + IL − F,

ω0H cos ω0τ � ω0G,
(51)

so

sin ω0τ �
ω2
0 + IL − F

Hω0
,

cos ω0τ �
G

H
,

(52)

and one obtains

tan ω0τ �
ω2
0 + IL − F

Gω0
. (53)

-is shows that if − N< 0 and − F2 + 2IFL − I2L2 < 0, the
characteristic equation

λ2 − G − He
− λt

 λ + aδy∗ − Icay∗ � 0 (54)

has a pair of imaginary eigenvalues λ � ± iω0, η(τ) � 0
when τ ±j � (1/ω ±0 )arctan(ω2

0 +IL − F/Gω0) + (2πj/ ω ±0 ), j

� 0, 1, . . ..
Next, the cross-sectional condition holds and is proved.
-e characteristic equation is

λ2 − G − He
− λt

 λ + F − IL � 0 (55)

at j � 0 and τ � τ � τj.
One obtains

2λ
dλ
dτ

−
dλ
dτ

G − He
− λτ

  + λGe
− λτ

− τ
dλ
dτ

− λ  � 0,

dλ
dτ

 

− 1

�
τ
λ

−
H

λ2G
+

1
λ2e− λτ

−
2

λGe
− λτ ,

dRe(λ)

dτ
 

− 1

≠ 0.

(56)
□

4. Numerical Simulations

In this section, the realization of numerical simulation uses
Matlab 2016a (MathWorks, USA). -rough extensive nu-
merical simulations, several results that verify the above
analytical analysis conclusion of models (5) and (6) are
obtained. -e parameters are fixed as r� 2.65, f� 0.1,
K� 900, c� 0.215, and δ � 1.06, and a, A, and τ are con-
sidered controlling parameters. Letting a � 0.002< (δ/cK),
EK is stable. Considering the parameters a� 0.02 and A� 5,
which satisfy the conditions of -eorem 2, the interior
equilibrium E∗(246.5, 26.4) is locally asymptotically stable.
Let A� 149, the other parameters are unchanged, and the
interior equilibrium becomes unstable. A series of calcula-
tions show that τ � 7.752, and E∗ loses its stability when τ
crosses through the critical τ.

First, the stability conditions of EK and E∗ are obtained.
By choosing appropriate parameters for the numerical sim-
ulations, the stable phase portraits of EK and E∗ are obtained,
as shown in Figures 2 and 3. -e stable phase portrait of E∗
without the Allee effect is also obtained (Figure 4, A� 0). By
comparing Figures 4–6, it is found that the stability of the
equilibrium point E∗ will change as parameter A changes. A
bifurcation diagram is provided, so the results look more
intuitive. As Figure 7 shows, a bifurcation occurs when the
bifurcation parameter value is approximately 65, which is
consistent with this study. -e population dynamic changes
from stable to unstable with an increasing value of parameter
A. Finally, the dynamical behaviors of model (6) are studied,
and mainly, the effect of gestation delay on the stability of the
interior equilibrium point is simulated. Figures 8 and 9 show
that the equilibrium point is stable at τ � 0.9 and unstable at
τ � 8. In Figure 10, when f � 0, the other parameters remain
unchanged, and themodel is simulated without the fear effect.
-e phase portrait is unstable and shows periodicity with
increasing time (τ � 0.9). Upon comparison with Figure 8,
the existence of the fear effect promotes the stability of the
phase portrait.
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Figure 2: Phase portrait of model (5); EK is stable (r� 2.65, f� 0.1,
K� 900, A� 5, a� 0.002, c� 0.215, and δ � 1.06).
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Figure 3: Phase portrait of model (5); E∗ is stable (r� 2.65, f� 0.1, K� 900, A� 5, a� 0.02, c� 0.215, and δ � 1.06).
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Figure 4: Phase portrait of model (5); E∗ is stable (r� 2.65, f� 0.1, K� 900, A� 0, a� 0.02, c� 0.215, and δ � 1.06).
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Figure 5: Phase portrait of model (5); E∗ is stable (r� 2.65, f� 0.1, K� 900, A� 5, a� 0.02, c� 0.215, and δ � 1.06).
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Figure 6: Phase portrait of model (5); E∗ is unstable (r� 2.65, f� 0.1, K� 900, A� 149, a� 0.02, c� 0.215, and δ � 1.06).
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Figure 7: Bifurcation diagram with parameter A (r� 2.65, f� 0.1, K� 900, a� 0.02, c� 0.215, and δ � 1.06).
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Figure 8: Phase portrait of model (6); E∗ is stable (r� 2.65, f� 0.1, K� 900, A� 0.01, a� 0.02, c� 0.215, δ � 1.06, and τ � 0.9).
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5. Conclusions

Mathematical models play an important role in many fields,
such as ecology [29–31], dynamics [32], physics [33], al-
gorithms [34, 35], and epidemiology [36–38]. In this study, a
predator-prey model is established with a fear effect and
weak Allee effect, and the effect of the weak Allee effect on
the model is studied. All equilibrium points of the model
were solved, and stability analysis was performed. Fur-
thermore, the conditions required for the equilibrium points
to be stable were determined. -e boundedness and stability
of the model were analyzed. Model (5), which undergoes a
transcritical bifurcation at the axial equilibrium point EK

and undergoes a Hopf bifurcation at the interior equilibrium
point E∗, was also analyzed. Moreover, the direction of the
Hopf bifurcation was determined. After completing these
proofs, gestation delay was introduced into model (5) to
obtain model (6). Time delay can change the stability of
model (6); that is, the stability of the interior equilibrium
point of model (6) changes with the change in delay. Finally,
parameters were selected that satisfy the conditions for

numerical simulation. Stable phase portraits of the equi-
librium points EK and E∗ were obtained. By increasing the
value of parameter A, it was found that the stability of the
equilibrium point E∗ changed. Upon comparison with the
situation without the Allee effect, it was found that the Allee
effect has a significant impact on the stability of the equi-
librium point. -en, phase portraits and a bifurcation dia-
gram with A as the parameter were generated to verify the
study. -e effect of gestation delay on the stability of the
interior equilibrium point was mainly studied using model
(6). By giving unstable and stable phase portraits, the ges-
tation delay will change the stability of the original model.
When the model has no fear effect, the stable phase portrait
becomes unstable. In other words, the fear effect promotes
stability.

Dynamic complexities are the common characteristics in
a variety of systems. -e complexity of an ecosystem is
reflected in both time and space [39, 40]. From a biological
point of view, this research shows that a weak Allee effect
and gestation delay can destroy the stability of a species and
lead to a decrease in population density. Moreover, the
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Figure 10: Phase portrait of model (6); E∗ is unstable (r� 2.65, f� 0, K� 900, A� 0.01, a� 0.02, c� 0.215, δ � 1.06, and τ � 0.9).
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Figure 9: Phase portrait of model (6); E∗ is unstable (r� 2.65, f� 0.1, K� 900, A� 0.01, a� 0.02, c� 0.215, δ� 1.06, and τ � 8).
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introduction of some ecological effects makes the model
closer to representing the complex relationships between
populations. Appropriate model construction can capture
accurate characteristics of interacting population dynamics.
-is is an important modeling idea to help us better un-
derstand population dynamics. Generally speaking, con-
sidering the weak Allee effect, fear effect, and gestation delay,
the model proposed in this study is more biologically rea-
sonable than some previous predator-prey models. Our
finding suggests that the Allee effect and delay can cause
unexpected dynamic predictions of interacting populations,
such as stability switching. -is result is more or less similar
to some previous viewpoints. Ye et al. [4] studied the dy-
namic behavior of a predator-prey model and found that the
Allee effect, searching delay, and digestion delay can all cause
Hopf bifurcation. Huang et al. [41] showed that the Allee
effect, fear effect, and prey refuge will complicate the dy-
namic behavior of a predator-prey model. Another im-
portant result is that the stability of the model with weak
Allee effect and gestation delay is very sensitive to changes in
the fear level. -erefore, the model with a Holling type-I
functional response and weak Allee effect makes it difficult to
resist changes in the fear effect. Hence, a low level of fear will
have a significant impact on the stability of the model.
Overall, it is found that a weak Allee effect, fear effect, and
delay all play significant roles in population dynamics. -e
previous studies show that the Allee effect and delay can
induce Hopf bifurcation and that the fear effect will promote
the system stability [4, 22, 42, 43]. Wang et al. [11] con-
sidered the fear effect term in the interacting prey-predator
model and completed a comprehensive work on fear factor.
Qiao et al. [21] showed that the fear effect reduces the
population density of prey and causes Hopf bifurcation.
Overall, these findings suggest that a weak Allee effect, fear
effect, and delay all play significant roles in population
dynamics. According to the existing references, the present
work covers a variety of ecological effects and obtained
appropriate results.
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