
Research Article
Two Computational Strategies for the Approximate Solution of
the Nonlinear Gas Dynamic Equations

Muhammad Nadeem 1 and Mouad M. H. Ali 2

1School of Mathematics and Statistics, Qujing Normal University, 655011 Qujing, China
2Department of Computer Science and Engineering, Hodeidah University, Al-Hudaydah, Yemen

Correspondence should be addressed to Mouad M. H. Ali; mouad198080@hoduniv.net.ye

Received 14 August 2022; Revised 25 September 2022; Accepted 30 September 2022; Published 13 October 2022

Academic Editor: Arzu Akbulut

Copyright © 2022 Muhammad Nadeem and Mouad M. H. Ali. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

In this article, we propose an idea of Sawi homotopy perturbation transform method (SHPTM) to derive the analytical results of
nonlinear gas dynamic (GD) equations. The implementation of this numerical scheme is straightforward and produces the results
directly without any assumptions and hypothesis in the recurrence relation. Sawi transform (ST) has an advantage of reducing the
computational work and the error of estimated results towards the precise solution. The results obtained with this approach are in
the shape of an iteration that converges to the precise solution very gradually. We provide the validity and accuracy of this scheme
with the help of illustrated examples and their graphical results. This scheme has shown to be the simplest approach for achieving
the analytical results of nonlinear problems in science and engineering.

1. Introduction

In recent decades, nonlinear models are particularly describ-
ing various physical phenomena in engineering, physics,
chemistry, and other sciences. Numerous analytical and
numerical schemes have been broadly applied to these non-
linear problems. The procedure of obtaining the precise
results for the nonlinear problems is very complicated, and
it is still a challenging issue to solve these nonlinear PDEs
in most of the cases; besides this, there are various strategies
for their solution. As a result, various researchers and scien-
tists have studied multiple novel methods for getting the
analytical solution that are reasonably close to the precise
solutions such as the Jacobi elliptic function method [1],
Exp ð−Φ ðηÞÞ-expansion method [2], new Kudryashov’s
method [3], rank upgrading technique [4], modified expo-
nential rational method [5], Hermite-Ritz method [6], resid-
ual power series (RPS) method [7], and Adomian
decomposition method [8, 9].

He [10, 11] developed an idea of homotopy perturbation
method (HPM) to obtain the analytical solution of differen-
tial problems. Later, Khuri and Sayfy [12] combined Laplace

transform with HPM for the analytical results of differential
problems. Nadeem and Li [13] presented a combined
approach of Laplace transform with HPM for dealing the
analytical work of nonlinear vibration systems and nonlinear
wave problems. HPM provides the significant results to solve
linear and nonlinear equations of reaction-diffusion equa-
tions [14], heat transfer model [15], delay differential equa-
tions [16], integro-differential equation [17], and
Schrödinger equations [18].

Gas dynamic equations are mathematically modeled by
various physical laws such as energy, mass, and momentum
conservation. The study of gas motion and its impact on
structures using the principles of fluid dynamics and fluid
mechanics is known as “gas dynamic,” and it belongs to
the discipline of fluid dynamics [19–21]. Jafari [22] pre-
sented the idea of variational iteration method (VIM) on
the basis of Lagrange multipliers to investigate the analytical
solution of nonlinear gas dynamic equation and Stefan equa-
tion. Later, Matinfar et al. [23] used a simple procedure
using He’s polynomials to obtain the analytical results of
GD equation and provided the efficient results to show that
the suggested algorithm is quite suitable for such problems.
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Kumar and Rashidi [24] formulated a scheme based on
Laplace transform and the homotopy analysis scheme for
handling the time-fractional GD equations. Singh et al.
[25] provided the approximate solution of GD equation
and showed that HPM presents the excellent performance
in various nonlinear problems. Singh and Aggarwal [26]
introduced Sawi transform for population growth and decay
problems. Many authors provided that this transform has an
excellent performance in various differential problems
[27–29].

In this article, we combined Sawi transform and HPM to
formulate the idea of SHPTM and obtain the analytical
results of GD equations. HPM is used to handle nonlinear
components. Sawi transform has an advantage of reducing
the computational work and minimizing the error of the
estimated results towards the precise results. We observe
that HPM is very efficient technique in solving the nonlinear
phenomena. Results show that this strategy is very unique
and easy to implement than other approaches. This article
is presented as follows: in Section 2, we report the concept
of Sawi transform with some property functions. In Section
3, a basic idea of HPM is revealed to overcome the nonlinear
components. Section 4 demonstrates the basic idea of
SHPTM to handle the nonlinear problems. We illustrate
two numerical examples to sow the performance of SHPTM
and present the conclusion in Sections 5 and 6, respectively.

2. Sawi Transform

Definition 1. Consider f ðtÞ be a function with t ≥ 0, so

L f tð Þf g = F sð Þ = θ
ð∞
0
f tð Þe−stdt ð1Þ

is said to be Laplace transform.

Definition 2. Sawi transform is represented by Sð:Þ for a
function ϑðθÞ

S ϑ tð Þ½ � = R θð Þ = 1
θ2

ð∞
0
ϑ tð Þe−t/θdt, t ≥ 0, k1 ≤ θ ≤ k2: ð2Þ

Here, S is termed as Sawi transform and if RðθÞ is the Sawi
transform of a function ϑðtÞ. then ϑðtÞ is the inverse of Rðθ
Þ so that S−1½RðθÞ� = ϑðtÞ, S−1 is said to be inverse Sawi
transform.

Properties. If SfgðtÞg = RðθÞ, the following differential prop-
erties yield [26, 28]:

(a) Sfg′ðtÞg = ðRðθÞ/θÞ − ðGð0Þ/θ2Þ
(b) Sfg′′ðtÞg = ðRðθÞ/θ2Þ − ðGð0Þ/θ3Þ − ðG′ð0Þ/θ2Þ
(c) SfgmðtÞg = ðRðθÞ/θmÞ − ðGð0Þ/θm+1Þ − ðG′ð0Þ/θmÞ

−⋯−ðGm−1ð0Þ/θ2Þ

3. Fundamental Concept of HPM

This sector presents the strategy of HPM with the consider-
ation of a nonlinear functional equation [13]. Consider

T ϑð Þ − g hð Þ = 0, h ∈Ω, ð3Þ

with conditions

S ϑ, ∂ϑ
∂n

� �
= 0, h ∈ Γ: ð4Þ

Here, T is a general function and S is the boundary operator,
and gðhÞ is source term. We can now split T such that T1 is
said to be a linear and T2 be a nonlinear operator. Thus, we
can write Equation (3) as

T1 ϑð Þ + T2 ϑð Þ − g hð Þ = 0: ð5Þ

Consider ϑðh, θÞ: Ω × ½0, 1�⟶ℍ such that it is suitable
for

H ϑ, θð Þ = 1 − θð Þ T1 ϑð Þ − T1 ϑ0ð Þ½ � + θ T1 ϑð Þ − T2 ϑð Þ − g hð Þ½ �,
ð6Þ

or

H ϑ, θð Þ = T1 ϑð Þ − T1 ϑ0ð Þ + qL ϑ0ð Þ + θ T2 ϑð Þ − g hð Þ½ � = 0:
ð7Þ

Here, θ ∈ ½0, 1� is homotopy element and ϑ0 is the starting
approximation of Equation (3). The study of HPM declares
that θ is assumed as a minimal factor and the result of Equa-
tion (3) can be expressed in the shape of θ.

ϑ = ϑ0 + θϑ1 + θ2ϑ2 + θ3ϑ3+⋯ = 〠
∞

i=0
θiϑi: ð8Þ

Considering θ = 1, we get particular of Equation (3) as

ϑ = lim
θ⟶1

ϑ = ϑ0 + ϑ1 + ϑ2 + ϑ3+⋯ = 〠
∞

i=0
ϑi: ð9Þ

The nonlinear terms are obtained as

T2ϑ x, tð Þ = 〠
∞

n=0
θnHn ϑð Þ, ð10Þ

where HnðϑÞ is defined as

Hn ϑ0 + ϑ1+⋯+ϑnð Þ = 1
n!

∂n

∂θn
T2 〠

∞

i=0
θiϑi

 ! !
θ=0

, n = 0, 1, 2,⋯:

ð11Þ

This result in Equation (10) generally converges as the
rate of convergence depends on the nonlinear operator T2.
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4. Formulation of SHPTM

This section reveals the construction of SHPTM for achiev-
ing the analytical results GD equation. Consider a nonlinear
differential problem such as

ϑ′ x, tð Þ + ϑ x, tð Þ + g ϑð Þ = g x, tð Þ, ð12Þ

with initial condition

ϑ x, 0ð Þ = a, ð13Þ

where ϑ is a function in time domain t, gðϑÞ represents non-
linear component, gðx, tÞ is known, and a is the constant.
Now, Equation (12) can reconsider as

ϑ′ x, tð Þ = −ϑ x, tð Þ − g ϑð Þ + g x, tð Þ: ð14Þ

Operating ST on Equation (14), we get

S ϑ′ x, tð Þ
h i

= S −ϑ x, tð Þ − g ϑð Þ + g x, tð Þ½ �: ð15Þ

Implementing the properties of ST, it yields

R θð Þ
θ

−
G 0ð Þ
θ2

= −S ϑ x, tð Þ + g ϑð Þ − g x, tð Þ½ �: ð16Þ

Thus, RðθÞ is found from Equation (16) as

R θ½ � = G 0ð Þ
θ

− θS ϑ x, tð Þ + g ϑð Þ − g x, tð Þ½ �: ð17Þ

Applying inverse ST on Equation (17), it yields

ϑ x, tð Þ =G x, tð Þ − S−1 θS ϑ x, tð Þ + g ϑð Þ½ �½ �, ð18Þ

Equation (18) is called the recurrence relation of Equa-
tion (12) where

G x, tð Þ = S−1
G 0ð Þ
θ

+ θg x, tð Þ
� �

: ð19Þ

According to the strategy of HPM, consider

ϑ tð Þ = 〠
∞

i=0
piϑi nð Þ = ϑ0 + p1ϑ1 + p2ϑ2+⋯, ð20Þ

and nonlinear terms gðϑÞ can be determined using an algo-
rithm

g ϑð Þ = 〠
∞

i=0
piHi ϑð Þ =H0 + p1H1 + p2H2+⋯, ð21Þ

where Hn ′s is He’s polynomial, and we calculate them by

using the following procedure.

Hn ϑ0 + ϑ1+⋯+ϑnð Þ = 1
n!

∂n

∂pn
g 〠

∞

i=0
piϑi

 ! !
p=0

, n = 0, 1, 2,⋯:

ð22Þ

Putting Equations (20), (21), and (22) in Equation (18)
and equating the same components of p, we obtain the fol-
lowing iterations

p0 : ϑ0 x, tð Þ =G x, tð Þ,
p1 : ϑ1 x, tð Þ = −S−1 θS ϑ0 x, tð Þ +H0 ϑð Þf g½ �,
p2 : ϑ2 x, tð Þ = −S−1 θS ϑ1 x, tð Þ +H1 ϑð Þf g½ �,
p3 : ϑ3 x, tð Þ = −S−1 θS ϑ2 x, tð Þ +H2 ϑð Þf g½ �,

⋮

ð23Þ

By repeating the same manner, we can sum up this series
to obtain the analytical results such that

ϑ x, tð Þ = ϑ0 + ϑ1 + ϑ2+⋯ = 〠
∞

i=0
ϑi: ð24Þ

Thus, Equation (24) yields as an analytical result of dif-
ferential problem of Equation (12).

5. Numerical Applications

In this portion, we implement the idea of SHPTM in order
to obtain the analytical solution of nonlinear GD equations.
The solution series converges to the exact solution with few
iterations which shows the significance of this approach.

5.1. Example 1. Consider the homogenous and nonlinear GD
equation

∂ϑ
∂t

+ ϑ
∂ϑ
∂x

− ϑ 1 − ϑð Þ = 0, ð25Þ

with initial condition

ϑ x, 0ð Þ = e−x: ð26Þ

Taking the Sawi transform of Equation (25), we get

S
∂ϑ
∂t

+ ϑ
∂ϑ
∂x

− ϑ 1 − ϑð Þ
� �

= 0,

S
∂ϑ
∂t

� �
= −S ϑ

∂ϑ
∂x

− ϑ 1 − ϑð Þ
� �

= 0:
ð27Þ

Employing the properties of Sawi transform, we get

ϑ x, θð Þ
θ

−
ϑ x, 0ð Þ
θ2

= −S ϑ
∂ϑ
∂x

− ϑ 1 − ϑð Þ
� �

, ð28Þ

3Journal of Mathematics



which may be solved further as

ϑ x, θð Þ = ϑ x, 0ð Þ
θ

− θS ϑ
∂ϑ
∂x

− ϑ + ϑ2
Á� �

: ð29Þ

Applying inverse Sawi transform, we get

ϑ x, tð Þ = ϑ x, 0ð Þ − S−1 θS ϑ
∂ϑ
∂x

− ϑ + ϑ2
Á� �� �

: ð30Þ

Utilizing HPM on Equation (30), we get

〠
∞

n=0
pnϑn x, tð Þ = ϑ x, 0ð Þ − pS−1

θS 〠
∞

n=0
pnϑn x, tð Þ ∂

∂x
〠
∞

n=0
pnϑn x, tð Þ − 〠

∞

n=0
pnϑn x, tð Þ + 〠

∞

n=0
pnϑ2n x, tð Þ

( )" #
:

ð31Þ

In comparing, the following iterations can be obtained:

p0 : ϑ0 x, tð Þ = e−x,

p1 : ϑ1 x, tð Þ = −S−1 θS ϑ0
∂ϑ0
∂x

− ϑ0 + ϑ20

� �� �
= e−xt

p2 : ϑ2 x, tð Þ = −S−1 θS ϑ0
∂ϑ1
∂x

+ ϑ1
∂ϑ0
∂x

− ϑ1 + 2ϑ0ϑ1
� �� �

= e−x
t2

2! ,

p3 : ϑ3 x, tð Þ = −S−1 θS ϑ0
∂ϑ2
∂x

+ ϑ1
∂ϑ1
∂x

+ ϑ2
∂ϑ0
∂x

− ϑ2 + ϑ21 + 2ϑ0ϑ2
� �� �

= e−x
t3

3! ,

⋮

ð32Þ

Hence, the solution can be expressed as

ϑ x, tð Þ = ϑ0 x, tð Þ + ϑ1 x, tð Þ + ϑ2 x, tð Þ + ϑ3 x, tð Þ+⋯,

ϑ x, tð Þ = e−x + e−xt + e−x
t2

2! + e−x
t3

3!+⋯,

ϑ x, tð Þ = et−x:

ð33Þ

In Figure 1, we show the analytical and exact solution
graphs of Problem 1 at −3:5 ≤ x ≤ 3:5 and 0 ≤ t ≤ 0:1. The
graphical results show that the analytical solution and the
exact solutions are very close to each other. In addition,
Figure 2 presents the graphical error with −π ≤ x ≤ π at t =
0:01, and it seems that the suggested approach is very effi-
cient and authentic for finding the analytical solution of
nonlinear GD equations.

5.2. Example 2. Consider the nonhomogenous and nonlinear
GD equation

∂ϑ
∂t

+ ϑ
∂ϑ
∂x

− ϑ 1 − ϑð Þ = −et−x, ð34Þ

with initial condition

ϑ x, 0ð Þ = 1 − e−x: ð35Þ
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(a) The analytical solution of ϑðx, tÞ
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(b) The exact solution of ϑðx, tÞ

Figure 1: The surface solution of GD equation for Example 1.
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Figure 2: 2D plot for ϑðx, tÞ with various parameter of t:
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Taking the Sawi transform of Equation (34), we get

S
∂ϑ
∂t

+ ϑ
∂ϑ
∂x

− ϑ 1 − ϑð Þ
� �

= −S et−x
Â Ã

,

S
∂ϑ
∂t

� �
= −S et−x

Â Ã
− S ϑ

∂ϑ
∂x

− ϑ 1 − ϑð Þ
� �

:

ð36Þ

Employing the properties of Sawi transform, we get

ϑ x, θð Þ
θ

−
ϑ x, 0ð Þ
θ2

= −
e−x

θ 1 − θð Þ − S ϑ
∂ϑ
∂x

− ϑ 1 − ϑð Þ
� �

, ð37Þ

which may be solved further as

ϑ x, θð Þ = ϑ x, 0ð Þ
θ

−
e−x

1 − θ
− θS ϑ

∂ϑ
∂x

− ϑ + ϑ2
� �

: ð38Þ

Applying inverse Sawi transform, we get

ϑ x, tð Þ = ϑ x, 0ð Þ − e−xS−1
1

1 − θ

� �
− S−1 θS ϑ

∂ϑ
∂x

− ϑ + ϑ2
� �� �

:

ð39Þ

Utilizing HPM on Equation (39), we get

〠
∞

n=0
pnϑn x, tð Þ = 1 − et−x − pS−1

θS 〠
∞

n=0
pnϑn x, tð Þ ∂

∂x
〠
∞

n=0
pnϑn x, tð Þ − 〠

∞

n=0
pnϑn x, tð Þ + 〠

∞

n=0
pnϑ2n x, tð Þ

( )" #
:

ð40Þ

In comparing, the following iterations can be obtained:

p0 : ϑ0 x, tð Þ = 1 − et−x,

p1 : ϑ1 x, tð Þ = S−1 θS ϑ0
∂ϑ0
∂x

− ϑ0 + ϑ20

� �� �
= 0

p2 : ϑ2 x, tð Þ = S−1 θS ϑ0
∂ϑ1
∂x

+ ϑ1
∂ϑ0
∂x

− ϑ1 + 2ϑ0ϑ1
� �� �

= 0,

p3 : ϑ3 x, tð Þ = S−1 θS ϑ0
∂ϑ2
∂x

+ ϑ1
∂ϑ1
∂x

+ ϑ2
∂ϑ0
∂x

− ϑ2 + ϑ21 + 2ϑ0ϑ2
� �� �

= 0,

⋮

ð41Þ

Hence, the solution can be expressed as

ϑ x, tð Þ = ϑ0 x, tð Þ + ϑ1 x, tð Þ + ϑ2 x, tð Þ + ϑ3 x, tð Þ+⋯,
ϑ x, tð Þ = 1 − et−x + 0 + 0+⋯,

ϑ x, tð Þ = 1 − et−x:

ð42Þ

In Figure 3, we show the analytical and exact solution
graphs of Problem 1 at −5 ≤ x ≤ 5 and 0 ≤ t ≤ 0:03. The
graphical results show that the analytical solution and the
exact solutions are very close to each other. In addition,
Figure 4 presents the graphical error with −1 ≤ x1 at t =
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Figure 4: 2D plot for ϑðx, tÞ with various parameter of t.
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Figure 3: The surface solution of GD equation for Example 2.
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0:01, and it seems that the suggested approach is very effi-
cient and authentic for finding the analytical solution of
nonlinear GD equations.

6. Conclusion

In this paper, we constructed a SHPTM to obtain the analyt-
ical solution of nonlinear GD equations. The conservation
characteristics of the numerical scheme are demonstrated
by theoretical analysis. Additionally, we determined the
error estimates to show that the obtained results are in quick
convergence. One observation is that if Sawi transform is
used with HPM, we do not need to digitize the GD equations
which leads to a high number of restrictions and assump-
tions. This is because Sawi transform is independent of
restrictive variable and considered as a direct approach for
the conservation law in both linear and nonlinear problems.
We use Mathematica software 11.0.1 for the numerical anal-
ysis and computation of the iterations of series solutions.
One can use this scheme for other nonlinear numerical
problems to obtain the excellent results that are stable and
accurate. However, our work can easily be modified to study
the theory of fractional calculus in science and engineering.
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