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In this paper, a new class of functions, namely, exponentially (&, h — m) — p-convex functions is introduced to unify various
classes of functions already defined in the subject of convex analysis. By using this class of functions, generalized versions of well
known fractional integral inequalities of Hadamard and Fejér-Hadamard type are obtained. The results of this paper generate
fractional integral inequalities of Hadamard and Fejér-Hadamard type for various types of convex and exponentially convex

functions simultaneously.

1. Introduction and Preliminary Results

Inequalities are important tools for mathematical modeling
of problems that occur in the diverse fields of science and
engineering. Convex functions are very useful in establishing
new and generalized inequalities. For example, Jensen’s
inequality for convex functions is one of the most celebrating
inequalities in the literature. Many classical inequalities are
direct consequences of Jensen’s inequality. Motivated from
the properties and representations of convex functions,
researchers have published a lot of new definitions of
functions which are usually utilized for extensions, refine-
ments, and generalizations of well known inequalities. In
recent decades, it becomes a fashion for authors to generalize
the classical concepts related to ordinary derivatives and
integrals via fractional integral/derivative operators. These
techniques are used frequently in generalizing the classical
mathematical inequalities. For a detailed study, we refer the
readers to [1-13].

The goal of this paper is to establish general Rie-
mann-Liouville fractional integral inequalities of Hadamard
and Fejér-Hadamard type by defining a new class of
functions which will concurrently hold for many kinds of
convex and exponentially convex functions. Next, we give
definitions of Riemann-Liouville fractional integrals which
we will utilize to establish main results. After that we will
give definition of convex function with a detailed discussion
on related definitions.

Definition 1 (see [14]). Let f € L, [a, b]. Then, the left- and
right-sided Riemann-Liouville fractional integrals of f of
order 7 € R (7> 0) are given as follows:

I;f(x):ﬁ J.: (x—t)Tflf(t)dt, x>a, (1)

b
I f(x) = % L (t-0" ' F(dt, x<b,  (2)
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where I'(-) is the gamma function.

Definition 2 (see [15]). A real-valued function f: [a,b]
— R is called convex if the following inequality holds:

flx+ (1 -t)y)<tf(x)+A-1)f(y),

(3)
Vx, y € [a,b],t € [0,1].

There are many kinds of functions which have been
defined inspiring by inequality (3). For example, functions,
namely, p-convex [16], h-convex [17], m-convex [15],
s-convex [18], harmonically convex [6], and many others are
defined just by convenient possible modifications in the
inequality (3). Moreover, (s,m)-convex [19], («, m)-convex
[20], (h—m)-convex [21], (&, h—m)-convex [22], and
(p, h)-convex [3] functions have been defined elegantly after
the definition of convex function. Further, in [23], the notion
of (a,h—m) — p-convex function is defined which unifies
all the aforementioned convexities.

There also exists a class of exponentially convex func-
tions stated as follows.

Definition 3 (see [24]). A real-valued function f: ] C
R — R, is called exponentially convex on ] if the following
inequality holds:

ftx+(1 —t)y)st];,gf)+ ( _:,zyf(y),

(4)
te[0,1,Vx,y e J,n e R.

The term exponentially convex function is used likewise
to convex function, and notions of exponentially p-convex
[25], exponentially h-convex [26], exponentially s-convex
[25] have been introduced. Also, definitions of exponentially
(s,m)-convex [27], exponentially (a,m)-convex [26], ex-
ponentially (h — m)-convex [26], exponentially
(a, h — m)-convex [28], and exponentially (p,h)-convex
[29] functions have been published.

The exponentially («, h — m)-convex function is defined
as follows.

Definition 4 (see [28]). Let JCR be an interval containing
(0,1), and let h: ] — R be a nonnegative function. Then, a
function f: I — R on an interval of real line is said to be
exponentially (a, h — m)-convex, ifforall x, y € I,t € (0,1),
a,m € [0,1], and 7 € R, the following inequality holds:

flex+m(1-1)y) < h(tzzlf(") L mh(l -eﬂty“)f(y). 5)

The following example is important to distinguish an
exponentially convex function from convex function.

Example 1 (see [30]). The function f(x) = x exp(—x) is
exponentially ~ (1,I; —1)-convex function but not
(1,1, — 1)-convex function. More precisely the function f is
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exponentially convex function on [0, co) but not a convex
function on this domain.

All the aforementioned definitions have been used to
derive Hadamard and Fejér-Hadamard type inequalities.
We are motivated to combine all types of convexities and
exponential convexities in a single definition. We will define
exponentially (&, h —m) — p-convex function and prove
Hadamard and Fejér-Hadamard type inequalities which will
unify a plenty of classical inequalities.

The paper is organized as follows: In Section 2, a new
class of functions will be called exponentially
(a, h —m) — p-convex function. Some new definitions will
be deduced in connection with existing definitions in the
literature of mathematical inequalities. In Section 3, we will
present the Hadamard and Fejér-Hadamard inequalities for
newly defined functions via Riemann-Liouville fractional
integrals. We will identify a number of implications of the
results established in this section.

2. Exponentially («, # — m) — p-Convex Function
and Deduced Definitions

We define exponentially (a, h —m) — p-convex function as
follows.

Definition 5. Let J<R be an interval containing (0, 1), and
let h: ] — R be a nonnegative function. Let I ¢ (0, c0)
be a real interval and p € R~{0}. A function f: I — R
is called exponentially (a,h—m)— p-convex if for
te (0,1), neR and (a,m) € [0,1]%, the following in-
equality holds:

B(E)f (@) mh(1=£)f ()
e ’

nb

f( (ta? +m(1 - t)bP)“") <

e

(6)

where a,b € I provided (ta? + m(1 - t)bP)"'? ¢ I.

Remark 1. The following convex functions are reproduced
from above definition:

(i) In Definition 5, if we put p=-1, m=a =1, and
n =0, we have harmonically h-convex function
reproduced (see Definition 2.10 in [31]).

(ii) In Definition 5, for p=1 and 5 =0, we have
(a, h — m)-convex function reproduced (see Def-
inition 4.5 in [20]).

(iii) In Definition 5, for « = m = 1 and # = 0, we have
(p, h)-convex function reproduced (see [3]).

(iv) In Definition 5, for p=1, exponentially
(a, h — m)-convex function is reproduced (see
Definition 1 in [26]). For further deduced func-
tions, see Remark 1 in [26].

(v) In Definition 5, for a=p =1, exponentially
(h —m)-convex function is reproduced (see Def-
inition 2 in [26]).
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(vi) In Definition 5, for p =1 and h(t) = t, exponen-
tially (e, m)-convex function is reproduced (see
Definition 3 in [26]).

(vii) In Definition 5, for p = -1, a =m =1, h(t) = t°,
and 7 = 0, we have harmonic s-convex function in
second sense reproduced (see Remark 1 in [32]).

(viii) In Definition 5, for p=-1, a=m =1, h(t) =t,
and 7 =0, we have harmonic convex function
reproduced (see [33]).

(ix) In Definition 5, for p=1, a =1, h(t) =t°, and
n =0, we have (s, m)-convex function in second
sense reproduced (see Definition 1.2 in [19]).

(x) In Definition 5, for p=-1, a =1, h(t) =t, and
n = 0, we have m-HA-convex function reproduced
(see Definition 2 in [34]).

(xi) In Definition 5, for p = -1, h(t) =t¢, and 5 =0,
(a,m)-HA-convex function is reproduced (see
Definition 2.1 in [35]).

For a=1 in (6), we get
(h —m) — p-convex function as follows:

f( (ta? +m(1 - t)b")llp> sh(tg:(a) +mh(1 _t)f(b).

b
el

exponentially

(7)

For h(t)=t in (6), we get -exponentially

(a, m) — p-convex function as follows:

f< (ta? + m(1 - t)bp)l/p> S t“fn((la) . m(1-t")f (b)' (8)

b
el

For m = 1in (6), we get exponentially (a, h) — p-convex
function as follows:

f( (ta” +(1 - t)bp)l/P> M (t?q{ (@ hA=)F®)

b
el

For =1 and h(t) =¢t° in (6), we get exponentially
(s,m) — p-convex function as follows:

t'f(a) m(1-1t)f(b)

o + .

- (10)

f( (ta? +m(1 - t)bp)”"> <

e

For h(t)=t° in (6), we get exponentially

(s,m) — p-Godunova-Levin function of second kind as
follows:

1f@. m  f®)

+ .
£ e T (1-t) P

f((mp+m(1—t)bf’)”f’)g (11)

Form=a =1 and h(t) =1 in (6), we get exponentially
(p, P)-convex function as follows:

p\_Sf(a)  f(b)
£((ta+ - 007) ") <L 52 AR
For a =m =1, p=-1, and h(t) = (1/t) in (6), we get
exponentially Godunova-Levin type exponentially har-
monic convex function as follows:

f( T )<lf(a)+ LD (13)

th+(1-ta) t & 1-t v’

Fora=m =1, p=-1, and h(t) = (1/t°) in (6), we get
exponentially harmonic convex function as follows:

b 1 f(a) 1 (b)
f( ‘ )<_sfei12+ f

th+(1-t)a)  t (1—1)° o~

(14)

For p = -1 in (6), we get exponentially («, h —m)-HA-
convex function as follows:

f< ab )Sh(t“)f(a)+mh(1 —Wz"‘)f(b). s

tb+m(l-t)a e

e

For p=-1 and m =1 in (6), we get exponentially
(a, h)-HA-convex function as follows:

f( ab )Sh(t“)f(a)th(l—t“)f(b)‘ (16)

th+(1-ta e b

e

For p=-1,m=a=1, and h(t) =t in (6), we get ex-
ponentially HA-convex function as follows:

ab (@) (1-1f®)
f(tb+(1—t)a>S N P (17)

For p=-1 and h(t) =t in (6), we get exponentially
(a, m)-HA-convex function as follows:

f( ab ><t“f(a)+m(1—t“)f(b)_ (18)

th+m(1-t)a)~ € e

From now to onward, we will use the notation E » (a, h —
m) for exponentially (&, h —m) — p-convex function.

3. Inequalities of Hadamard Type for
E, (a, h —m) Function

Theorem 1. Let f: I c (0,00) — R be an Ep(oc,h—m)
positive  function as defined in Definition 5 and
felLlab],abel,a<b. Then, for (a,m) € (0, 112, one
can have fractional integral inequalities for operators (1) and
(2) as follows.

(i) For p>0, we have
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() Yo e (o) o 2,25 i ()

f(a) 21\ fO)\ (! -1y
{(@ (h(e) e+ Dy h< N )87> [ e (19)
YA VA IS A P LU | SRR
om{ D, 00k ) 5+ 2 o S [t
where &(z) = zVP, z € [aP, mbF], D, (5 ) T —nbm''? for n<o0, (ii) For p <0, we have

D, () =e " for n=0,D,(y) =e (“

") for >0, and
D, (1) = e for n<0.

N P Pt )
{(fbs( (e )f(a)+5>4( ym h< )fi?) JO £ (e de (20)
+m<®3(q)h( )fe— @4(q)mh<2a2;1)i((:::;)> j;f‘lh(l—t“)dt},

1/p a
where &(z) = zVP, z € [mbP,af], D, (1) = e~ nbm"'p for <0, f<(xP+myP) >Sh<1)f(x) +mh(2 _ 1>f(y)'

D,(n) =€ for 120, D,y(n) =€ n(aim'®) gor 7<0, and 2 2¢) " 2 e

D, (y) =e " for n=0. (21)
Proof. (i) By using (6), one can have the following For x= (ta? +m(1 -t)b?)""? and y = (tb? + (1 -1)
inequality: (a?/m))"'F in (21), we get

f<<M>I/P> gh(%) f( (ta? +m(1 - t)bp)l/p> . mh<2a _ 1) f( (b +(1-1) (ap/m))l/p) (22)

o1 ((taP4m (1-0)67)'"7) o1 ((tb7+(1-6) @?1m)) ™)

Multiplying the above inequality with t*~! on both sides
and integrating over [0, 1], we have

af + mbP\"P\ (1 1 1t771f< (ta? + m(1 - t)bl’)”P>
fll——— J tT*IdtSh<—a)J ] dr
2 0 2 0 o1 ((ta?+m(1-0p9) ")

+ mh<2a _ 1) Jl tT_lf( (0" +(1-1) (“P/rn))l/p> dr.

2 0 o1 (6P +(1=) (a? /)P

(23)

Set taf + m (1 — t)bP = x, that is, t = (mb? — x)/ (mb? —
aP) and tb? + (1 —t)(aP/m) = y, thatis, t = (y — (af /m))/
(bP— (aP/m)) in right hand side of the above inequality.
Then, after some calculations, one can obtain the first in-
equality of (19).
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On the other hand, by using (6) on the right hand side of
(22), one can obtain the inequality as follows:
| f((ta" fm(l- t)bP)”P) 1 f( (6" + (1~ 1) (aP/m))”P)
h<7) 1/ +m ( a ) 1/
2 eq((mmm(u)hp) ?) 2 eq((tb”ﬂl—t)(a"/m)) ?)
h(1/2%) o f(@) mh(1—t%)f (D) ”
o (h(t L g (24)
mh((2*-1)12%) () f®) mh (1—t%) f (a/m?)
o (07 +(1=0) (a? /) '7) et (natm?) ‘
Multiplying the above inequality with t*!, by inte-
grating over [0, 1], one can get
1\ (!,
D, (")h(z_“) Iot 1f( (ta? + m(1 - t)bP)“P)dt
2°-1\ (! , af
+§)2(;7)mh( - >j0t f((tb (1-t) E) )
1 (25)
s(‘bm)h( ENRALNE N (2 . l)f“’ ) [ e neyar
2 0
f(b) f(aim®) J ol 1 s
+ m( (r])h( ) +9,( ( = ) e h(1 - t%)dt.
Set taf + m(1 — t)b? = x, that is. t = (mb? — x)/ (mb? — (iii) In Theorem 1 (ii), if we put a=m =1, h(t) =1t,

aP) and tbP + (1 —t)(aP/m) = y, that is,
t = (y— (aP/m))/ (bP — (aP/m)) in (25). Then, after some
calculations, the second inequality of (19) is obtained.

(ii) Proof is similar as (i). O
Remark 2.

(i) In Theorem 1 (i), if we put a =m =1, h(t) =t,
n=0, and p=1, then Theorem 2 in [12] is
reproduced.

(ii) In Theorem 1 (i), if we put a=m=1, p=1,
h(t)=t,n =0, and 7 = 1, then classical Hadamard
inequality is reproduced.

aP + mbP\"'P 2 T
f<< 2 > )SF(T+1)(mbP—aP)

a P
- <$1 (n)h(%)(lf(a“mwwzrf °§) (mb) + D, (”)mﬁ1h<227“1)(1 (apmbryamy | f)<IL>>

omin( %
m<®1<n>h(21)f(b’+®2< i

()

n=0, and p=
reproduced.

-1, then Theorem 4 in [8] is

The other variant of the Hadamard inequality is stated
and proved as follows.

Theorem 2. Let the assumptions of Theorem 1 hold. Then, we
have the following inequalities.

(i) For p>0, we have

m

(26)

) () e

)l



where &(z) =zVF, z € [aP,mbF], D,(n), and D, (n) are

same as given in Theorem 1 (i).

a? + mbP\"* 2 T
f<< 2 >>SF(T+1)(aP—mbP)
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(ii) For p <0, we have

1 (25 =1, N
X<®3(n)h(?)(q(www)/zyf°f) (mb) + D, (m)m” lh( 2" >(I<<ap+mbp)/zm)*f f)<%>>

ey

where &(z) = 2P, z € [mbP,aP], D, (y), and D, (1) are

same as given in Theorem 1 (ii).

()h<

+m<s>3( )h( )f(b)+‘2>4() h(

(27)

IO [l () e

S ) [ -G

Proof. (i) For x = ((t/2)a? +m(1 — (t/2))b?)"'P and y =
((t12)bP + (1 = (t/2)) (a?/m))P in (21), we get

f( (1206 + (1 = (¢12)) (aPIm))"* )

() Yoz, ey

2 2%

Multiplying the above inequality with t*~! on both sides
and integrating over [0, 1], we have

2

28
¢ ((2ar sm(1-ar2)b) ) 2" o1 (2067 4(1~(212)) @ 1)) ) 2
o b\ (1 Lyt (@ e m - @)
-
/ ( ) Jot dtSh<2_“> ,[o ev(((t/Z)aP+m(Ht/z»bP)”P) dt
(29)

N 1f< ((t/2)bF + (1~ (8/2)) (ap/m))up>

dt.

2% -1
+mh( 5

Set (t/2)af + m (1 — (t/2))b? = x, thatis, (t/2) = (mb? —
x)/ (mbP —aP) and (1 - (¢/2)) (aP/m) + (t/2)bP = y, that is,
(t/2) = (y — (aP/m))/ (bP — (aP/m)) in right hand side of
the above inequality. Then, after some calculations, one can
obtain the first inequality of (26).

0 o1 (@267 +(1=(/2)) (aPIm))'?)

On the other hand, by applying the E,, (a,h —m) of f,
from right hand side of (28), one can obtain the following
inequality:

2" e’?(((t/Z)aP+m(1_(t/2))bp)1/p)

= N ((t/2):’+(ri/<?2/2>>w>”f’) (h<<2> ) d (a)

mh((2* - 1)/2%)

. WG
o1 (207 +(1112) (a? 1m))''P)

W5 )f (w2 +m(1 - w2p)'") R mh(

w1-()2)

2“— 1) f< ((t12)6" + (1 - (£/2)) (ap/m))l/p>

2% ¢! (((tr2)bP+(1~(t/2)) (aP1m))'P)

(
(1)) )
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Multiplying t! on both sides of (30), then by inte-
grating on [0, 1], one can get

b
M<@1(f1)h<21 )L )+s>2<n>mh(

Set (t/2)af + m (1 — (t/2))b? = x, thatis, (t/2) = (mb? —
x)/ (mb? —aP) and (1 - (t/2)) (a?/m) + (¢/2)bP = y, that is,
(t/2) = (y — (aPIm))/ (bP - (aP/m)) in (31). Then, after
some calculations, the second inequality of (26) is obtained.

(ii) Proof is similar as (i). O

Remark 3.

(i) In Theorem 2 (i), if we puta =1=m, n =0, p>0,
and h(t) =t, then Theorem 2.1(i) in [36] is
reproduced.

(ii) In Theorem 2 (ii), if we puta =1 =m, n =0, p<0,
and h(t) =t, then Theorem 2.1(ii) in [36] is
reproduced.

(iii) In Theorem 2 (i), if weputa=1=m, p=1,41=0,
and h(t) =t, then Corollary 2.1 in [36] is
reproduced.

/ ((%)v (g &) (mb?)

<D, (h( 55 ) (T Fg28) (mb?) + D, (ﬂ)m”lh<2 -

mp—aPT a
L (2on)

0

R CUTERIE

2—1)
e

+9,(n) h(

(31)

2 o
) [ e

Remark 4. From Theorems 1 and 2, one can deduce results
for convex, exponentially  convex, Ep (1,1;-1),
E,(1,1;-m), Ep(l,l'z -1, E,(a1;-m), Ep(l,h -m),
and E, (1,h - 1) functions.

4. Fejéer-Hadamard Type Inequalities for
E,(a, h —m) Function

Theorem 3. Let f: I — R be an E, (o, h —m) positive
function  as  given in  Definition 5  and
f((af + mbP —x)/m) = f(x),a,bel,a<b, m+0. If
g: I — Riisapositive function and f, g € L, [a, b], then one
can have fractional integral inequalities for operators (1) and
(2) as follows.

(i) For p>0, we have

e son(%)
) f (b))

(32)

x Jl tT_1g< (ta® +m(1 - t)bp)”p>h(t“)dt

2% -1 f(a/mz)
> (mm h( )  (rain?) >

1
X IO tHg< (ta? +m(1 - t)bp)”P)h(l - t“)dt},
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where &(z) =zVP, z € [aP,mbP], fgo&= (fo&)(g-f), (ii) For p <0, we have
D, (), and D, (n) are same as given in Theorem 1 (i).

f<<ap Zmbp)”}’) (55 g8) (mb)

<§>3(’7)h< )(IaP’fg 5)(mbp)+$4(’7)mﬂlh<

L (2ol P om(

o sa-0(%)
)f (b))

(33)
1
X JO tT_1g< (ta? +m(1 - t)bp)”p>h(t“)dt

o / 2
() L2 w2 )
e

1
x JO £ 1g< (ta? +m(1 - t)bf’)”f’)hu - t“)dt},

where &(z) = 2P, z e [mbP,aP], fgo&= (fo&)(ge),  Proof. (i) Multiplying (22)byt™'g((ta? +m(1 —t)bP)"'F),
D; (1), and D, (1) are same as given in Theorem 1 (ii). then making integration on [0, 1], the following inequality is
yielded:

1/p
f<<aP +2mbP) > Jl thg( (mp +m(l - t)bp)l/P)dt
0

1
=2 (”)h<zl_“> I e £ (a4 m (1= 067) " Y (ta” 4 m(1 - 067)"" )at (34)
0
@ _ 1 p\ /P
+D, (ri)mh(2 5 1) J tT"f((tbP +(1- t)%) )g((tap +m(1- t)bP)“P)dt
0
For taf +m(1 —1)bP = x, that is, (1 —1)(aP/m) + tbF = Now, multiplying g ((ta? +m(1-1)b?)"?) with

((aP + mbP — x)/m) in (34) and then utilizing condition (24) and integrating over [0, 1], we have
f(x) = f((af + mbP — x)/m) and equations (1) and (2), the
first inequality of (32) can be achieved.

D, (’1)h<2ioc> J; tT_1f< (ta? +m(1 - t)bp)l/P>g< (ta’ +m(1 - t)bp)l/p>dt

1/p
+ @z(ﬂ)mh<2 . 1>j t”f<<tbp +(1 —t)%p) >9<(tap +m(1 —t)bP)l/p>dt
0
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(o) mion(5 2
<@()h( ), i 7).

Again,  setting ta’ +m(1-1t)b? =x, that is,
(1 =1t)(a?/m) + tb? = ((a? + mbP — x)/m) in (35) and uti-
lizing condition f (x) = f ((a? + mb? — x)/m), then by us-
ing definitions (1) and (2), one can get second inequality of
(32).

(ii) Proof is similar as (i). O

e

Remark 5.
(i) In Theorem 3 (i), if we put a =m =1, h(t) =t,
g(x)=1,n=0,and p = 1 then Theorem 2 in [12] is

reproduced.

(ii) In Theorem 3 (i), if we put a=m=1, p=1,
h(t)=t, g(x)=1, =0, and 7=1, then the
Hadamard inequality is reproduced.

(iii) In Theorem 3 (i), if we put a=m=1, p=1,
h(t)=t, n=0, and 7v=1 then classical

Fejér-Hadamard inequality is reproduced.

a? +mbP\'"?\ , |
f<(f> (I((aP+mbP)/2)+g°€) (mbp)

9
“g( (o +m(1 - 0p)" Y (t)ae
? (35)
g:}) J; t“g( (ta” +m(1 - t)bP)”P)hu —t%)dt.
(iv) In Theorem 3 (ii), if we put a =m =1, h(t) =t,

g(x)=1,1=0,and p = -1, then Theorem 4 in [8]
is reproduced.

(v) In Theorem 3 (ii), if we put a =m =1, h(t) =t,
n=0, and p=-1 then Theorem 5 in [8] is
reproduced.

The second variant of the Fejér-Hadamard inequality is
stated and proved as follows.

Theorem 4. Let the assumptions of Theorem 3 hold. Then, we
have the following inequalities.

(i) For p>0, we have

1\, . (25 =1\, . a?
<, (ﬂ)h<27>(1((ap+mbp>/z)*fg ° f) (’“bp) + D, (n)m 1h<2a)(1((a1’+mb1’)/2m) fge f)<m)

sitn (77 {2 mom(F) )
o)) WG J o on7) 52
)

~

ool

(36)

G e | M (R (B Ty R TR

where &(z) =zVP, z € [aP,mbP], fgo&= (fo&)(g-é),
D, (1), and D, (1) are same as given in Theorem 1 (i).

p b 1/p .
/ < (%) >(I (arsmbryiay 9 °8) (mbF)

(ii) For p <0, we have

1\,.. e (25=1\, a?
<D (”)h(z_“>(1 (arsmbryay £9°8) (mbF) + D, (m)m lh(z—“>(1 (ar+mbr)y2my S 9 ° E)(E)
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() (2 2

ool G

(1) () e e () 0
)
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)

(37)

e = I (GRS R (RO}

where &(z) =27, z € [mbP,aP], fgo&= (fo&)(gef),
D, (1), and D, (1) are same as given in Theorem 1 (ii).

Proof.

(i) Multiplying (28) by " 'g(((t/2)a? +m
(1 - (t/2))bP)VP) and integrating over [0, 1], the following

inequality is yielded:

() )G emle-5)” o

cou () (oo ) (- Y
msom( ) (o4

Setting (t/2)af + m(1 — (t/2))b? = x, that is
(1= (t/2)) (a?/m) + (t/2)b? = (a? + mbP — x)/m in (38)
and using condition f(x) = f ((a? + mb? — x)/m) and the
definitions (1), (2), one can get first inequality of (36).

s ) (ol G

(38)

o) el om0 5p) Yo

Now, multiplying t*'g(((t/2)a? +m (1 - (t/2))bP)"P)
with (30) and integrating over [0, 1], we have

(
+i‘)2(r1)mh<2 _1>J0t”f(<;b1’+ 1—;)Z)I/P>g<(£ap+m<1—;)bp)w>dt

(39)

(
< (o) L2 (55 L2
(o) s ) [ (o) )

(ii) In Theorem 4 (ii), if we put a=1=m, p<O0,
g(x)=1,1=0, and h(t) = t, then Theorem 2.1(ii)

Again  for (t/2)af + m(1 — (t/2))bP = x, that is,
(1= (t/2)) (aPIm) + (t/2)bP = (a? + mbP — x)/m in (39)

and the utilizing condition f(x) = f((a? + mb? — x)/m)
and equations (1) and (2), the second inequality of (36) can
be achieved.

(ii) Proof is similar as (i). O

Remark 6.
(i) In Theorem 4 (i), if we put a=1=m, p>0,
g(x)=1,1n=0,and h(t) =t, then Theorem 2.1 (i)
in [36] is reproduced.

in [36] is reproduced.

(iii) In Theorem 4 (i), if we put a=1=m, p=1,
g(x)=1,1=0,and h(t) =t, then Corollary 2.1 in
[36] is reproduced.

Remark 7. From Theorems 3 and 4, one can deduce results
for convex, exponentially convex, E,(1,I;-1),
Ep(lald - m): EP (l»h - 1)) EP ((x: Id - m): EP (l»h - m):
and E, (1,h - 1) functions.
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4.1. Results for E,, (h — m) Function. For a =1 in Theorems  Theorem 5. With the same conditions of Theorem 1, for
1-4, one can obtain the results for E, (h —m) function: E,(h—-m) functions, the following inequalities hold:

(i) For p>0, we have

1 p bP Vp r 1 - T+1 /7T P
hmg((“ ) ><(mb(5 (o ren e s oo @, o5(5)

sr{(a(mfeﬁ) , ("L “”)jo e (e (40)

2
+m<s> (11)f( ) @z(q)mf(“/m )>Jlf‘1h(1—t)dt}.
e 0

(qa/mz)

(ii) For p <0, we have

1 P+ mbP\"P I(r+1 . s P
)’ <<a B ) )S(af’(—T ;bl)f@“”)(’apf °£) (mb”) + D, ()m 1(Ibmfoaf)&))
b)
K%(’“ﬂa >, o’ )Io " (41)

2
+m<§) (q)f( ) ®4(11)mf(a/m )>JltT_lh(1—t)dt}.
e 0

(qa/mz)

Theorem 6. With the same conditions of Theorem 2, for (i) For p>0, we have
E,, (h—m) function, the following inequalities hold:

1 ab + mbP\'"? 2 T . 5 1l vt af
h(1/2)f < ) > <I'(r+ 1)<m> <§31(W)(I((ap+mhp)/2)+f°f) (mb?) + D, (mm (I((aPerbP)/Zm)’foE)(;))

<ol 20 L e o, 0m I [ () (42)

110) flam®)\ (* . ¢
+m<®1(’1)eqb+$2(’7)me(w/mz) jot h<1_5)dt .

(ii) For p <0, we have

1 a? + mbP\"? 2 T . . af
h(1/2)f<< 2 > )SF(TH)(W) <®3(”)(I((apmbﬁ)/zrf"f)(mbp)+94(’7)m (T arsmboyyamy £ © £)<m))

<ol 2 L 2.0 LD [ () (43

)L Flatm? )\ [ n )t
+m<® 2 pm S jot h(l—z)dt.
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Theorem 7. With the same conditions of Theorem 3, for (i) For p>0, we have
E,, (h—m) functions, the following inequalities hold:

! at + b\ " I b)) <D, (n) (I b))+ D I @
h(1/2)f ( B ) (Ip-g° &) (mb") <D, (1) (I fg 2 &) (mb?) + D, (m)m( bpfg"f)(;)

(mb? - aP)’ f(a) f(b) p
T D, ()~ + D, (1)m JO g< (ta? + m(1 - t)bF) )h(t)dt (44)

2
+m<®1 (11)%+ Qz(ﬂ)mf(a/m )> Jl t771g<(tap +m(1 —t)bp)llp)h(l - t)dt}.
e 0

e (natm?)

(ii) For p <0, we have

aP + mbP\ P " , aP
h(1/2) ( ) I, go&) (mb") <Dy () (I fgo&) (mb”) + Dy (nym (I fgo f)( )

P _ bPT b N
S(QF(T))‘K% f m )jot 1g<(tap+n1(1—t)bp)l/P)h(t)dt (45)

2
g ( )f(b) + @4(’7)mf(a/m2) Jl tT_lg< (tap + m(l _t)bp)l/p>h(1 - t)dt .
e (naim?) 0

Theorem 8. With the same conditions of Theorem 4, for (i) For p>0, we have
E,, (h—m) functions, the following inequalities hold:

1 ab + mbP\ "' .
h(1/2) f(( 2 ) >(I((u1’+mw)/z)*9 ° f) (Mbp)

P
=D (’7)( ((aP+mbP)/2)" fg° f)(Mbp)"'gZ(”)mm( (aP+mbP)/2m)fg°f)<(:n>
1 (mbP —af\" f(a) f(b) t t Up\ st
m( 2 ){(9 ) g~ + D2 (m )Jt 9((5““"‘(“5)“’) )h@‘”
f( ) f(a/mz) 1 ¢ ¢ 1/p ¢
+’ﬂ<® () =5~ + Dy ()m ) Iot 1g<<2a1’+m<1—2>b1’) )h<1—2>dt :

(ii) For p <0, we have

(46)




Journal of Mathematics 13

h(11/2) s < (ap +zmw)”p>(1 (a9 °€) (mb")

< D3 (L@t smry £928) (mbF) + Dy (0™ (I sooyyomy £ © 5)(%)
crta(“7 ) {2 G e o2 [ (oo 5) P
+m<®3( )f(b) %M)m%) J;t”g«; Pem(1- )bp) >h<1—£>dt}.

4.2. Results for E, (a« — m) Functions. For h(t) =t in Theo- ~ Theorem 9. With the same conditions of Theorem 1, for
rems 1-4, one can obtain the results for E,(a-m) function E,(a-m) functions, the following inequalities hold:
as follows.

(47)

(1) For p>0, we have

1/
2rxf<(ap+mbp) P>S I(r+1) T(gl(”)(l‘i’”fof)(mbp)+92(’7)m”1(2“—1)(Igp_fo§)(%p))

2 (mbf - a?)

b
S${< l(n)f( D o, (Pm (2" —1)f( )> (48)

(2.0 Leme o L))

(ii) For p <0, we have

2«f<<ap+szp)1/P> (E(Hl)) (i‘>3<n>(1apf °£) (mb") + Dy (™ (2 = 1) (I}, f E’(ﬁ))

< {(%(n)f 1@ o, pme - 1)L (b)) (49)

T+«

I
L ma <$3(’7)];(11;)+m(2a_1)$4(’7)f(a m2)>}'

T+o e(na/m)
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Theorem 10. With the same conditions of Theorem 2, for (i) For p>0, we have
E, (a —m) functions, the following inequalities hold:

P p\ /P T
2f<(a Wb) )f“””(ﬁ)

p
X (@1 (n)(IE(aPerhl’)/z)*f ° E) (Mbp) + Q2 (n)mﬁ—l (za - 1)(I€(ap+mbp)/2m)' f ° E) (a_>)

m
(50)
b
SZOC(TT+(X)< l(ﬂ)f( )+®2(’1) & )f( )>
: £t f(atnr’)
m(lﬁx (g 2 0m( ) wm)
(ii) For p <0, we have
« a? +mbP\"'"? 2 T
2 f<< - ) >Sr(”1)<r—mw>
p
X(Qa(ﬂ)(lz(apmbp)/z)f"f) (mb”) + @4(’7)7”1+1 (2%~ 1)(11(—(aP+mbP)/2m)*f°f)(%
(51)
b
S2"C(TT+06)( 3(’7)f( )+§> (pm (2* _l)f( ))
4 £ ) « o flam’)
+m<1 —21.(T+“)><®3(7]) Wb ®4(7’l)m(2 - 1)W .
Theorem 11. Under the assumptions of Theorem 3, for (i) For p>0, we have
E, (a—m) functions, the following inequalities hold:
2 f<(““”“" ) >(12p+g°f)(mbp)
p
<D0 (1 fa () + D5 o™ (@ - ) e 1252
(52)
(Q (n)f( )@, (pm (2 - )J;g’;)>(1;;f‘gog)(mbp)
b /m?
+m<s> <n>f ) s o, (pm(* - 1) ((ZaZZ))>((IZP+g°5) (mbf) ~ (1537 g o &) (mbP)).
e

(ii) For p <0, we have
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2 f<<a + mbP ) P)(Iap go &) (mb?) <D, () (I, fgo&) (mb) + D, (nm™" (2 1)(1Zp+fg°£)(§>

g<s>3< 1L s, 0im (“—1)67>(1;:f‘g

om0

Theorem 12. With the same conditions of Theorem 4, for
E, (a—m) functions,

o+ Dy (m m(2" -

F®) 2 &) (mb”) (53)

n? ((ZZZ))) (T 9°8) (mb?) = (159 &) (b)),

(i) For p>0, we have

o aP + mbP Vp . p T » T+1 T a’
2°f 2 (I((apmbp)/z)*g" f) (mb") <D, (W)(I((aumbp)/z)*fg ° 'f) (mb") + D, (mm™ (2 - 1)(1((ap+mbp>/zm)’ fa °£) m

1
S270¢<®1 (ﬂ)fga

+D, (pm(2° - 1)

(ii) For p <0, we have

b T+Q
+D, (nm (2 1)%)(1 (ab+mbP)/2)* 9 © E)(mbp)+m<£b (="

f (b)

a ab + mbP\VP ] D
7S < <f) (I((aPerbP)/z)* g f) (mbp)

P
<D, (ﬂ)(IE(aMmbP)/z)’ fg° f) (mbp) +9, (ﬂ)mm (2% - 1)(1((al’+mb1’ )2m)* +fge £)<a )

<®3(n)f(a)+®4(f7) (2° —l)f(b))(

+D, (nm (2% - )

Remark 8. From Theorems 1-4, one can deduce results for
exponentially  (a, h) — p-convex function, exponentially
(s,m) — p-convex function of second kind, exponentially
(s,m) — p-Godunova-Levin-convex function of second kind,
exponentially (p, P)-convex function, Godunova-Levin type
exponentially harmonic convex function, s-Godunova-Levin
type exponentially harmonic convex function, exponentially
(a, h — m)-HA-convex function, exponentially (a,h)-HA-
convex function, exponentially HA-convex function, and
exponentially («, m)-HA-convex function.

5. Conclusion

The Hadamard and the Fejér-Hadamard inequalities for
Riemann-Liouville fractional integrals are proved by ap-
plying a generalized class of functions. Two fractional

ey 99 E) () + m(ss L ®

alm®
i((na/mz))>((lz(ul’+mhl’)/2 “g° E) (’”bp) 21 (I((uP+mbP y2)r9g° f)(mb")).
(54)
(55)

f(b)

) ( )><(I((“”+mb">/2 g° 5)(mbp) (ngmb?’)/z 9 °f)(’”bp)>'

versions of the Hadamard inequality lead to almost all
variants of such inequalities already published by different
authors using various kinds of convex functions. Hadamard
type inequalities for some new classes of functions are also
given. Two fractional versions of the Fejér-Hadamard in-
equality are also proved which appear as generalizations of
the Hadamard inequalities. By using the generalized con-
vexity defined in this paper, one can obtain extensions of
other classical integral inequalities hold for convex and
related functions. It is also possible to establish these in-
equalities for many kinds of integral operators already
existing in the literature.
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