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Interconnection systems in computer science and information technology are mainly represented by graphs. One such
instance is of swapped network simulated by the optical transpose interconnection system (OTIS). Fault tolerance has become
a vital feature of optoelectronic systems. Among multiple types of faults that may take place in an interconnection system, two
signi�cant kinds are either due to malfunctioning of a node (processor in case of OG ) or collapse of communication between
nodes (failure of interprocessor transmission). To prevail over these faults, the unique recognition of every node is essential.
In graph-theoretic interpretation, this leads to instigating the metric dimension β(OG) and fault-metric dimension β′(OG) of
the graph OG obtained from the interconnection system. ­is paper explores OTIS over base graph Pm (path graph over m
vertices) for resolvability and fault-tolerant resolvability. Furthermore, bounds for β(OG) and β′(OG) are also imparted
over G � Pm.

1. Introduction

In computerized broadcasting, data and information are
transmitted by utilizing the connectivity of nodes. ­e data
transmission is carried out either over physical media like
wires, or aerial mode whose widely used illustration is WiFi.
G. Marsden in 1993 [16] put forward an abstraction of OTIS
with optoelectronic (optical and electronic) working pattern.
­is optoelectronic approach escalates the outcome of an
electrical system by minimizing power consumption and
enhancing bandwidth. Due to the combined e�ect of elec-
trical and wireless technology, OTIS is brought about to
establish a worthwhile network to make modern optoelec-
tronic computers’ high yielding.

In OTIS, nodes/processors are set out in the form of
clumps. Within every bunch of processors, the communi-
cation medium is electronic, while the optical medium is

employed among processor clumps. Krishnamoorthy
proved in [11] that if the number of processor nodes in every
cluster are chosen equal to the number of clusters, the ef-
�ciency of OTIS is boosted. A pictorial representation of a
swapped OTIS OPm (see De�nition 1 in section 2.2) with m
processors lined up in each cluster and comprising of m
clusters is shown in Figure 1 for m � 6.

1.1. Background and Related Work. Slater [20] and Harary
and Melter [6] separately asserted the abstraction of the
metric dimension. Many authors worked for determining
the metric dimension of various graphs as in [1, 10, 13]. ­e
graph parameters such as metric dimension, partition di-
mension, fault-tolerant metric dimension, and fault-tolerant
partition dimension have come through with imperative
applicability in numerous areas of study including, network
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analysis [3], robot navigation [12], chemistry [4], and
geographical routing protocols [15]. .e depiction of an
interconnection network by a graph is eventually a popular
tool to probe connectivity and alliance of objects on the
network.

.e graphical representation of interconnection net-
works has motivated researchers to compute graph invari-
ants such as diameter, resolving sets, fault-tolerant resolving
set for such interconnection graphs. Hernando [8] initiates
the abstraction of fault-tolerant metric dimension. Later, this
concept is explored for several interconnection networks
such as oxide interconnection system [21], crystalline
structure [14], convex polytopes [9, 19], butterfly, benes, and
silicate networks [7, 22]. Afterwards, fault-tolerant partition
resolvability of cyclic networks [2] and Toeplitz networks
[17] is investigated. Recently, this fault-tolerant resolvability
is reinvestigated in [18] for multistage interconnection
networks, previously computed by [7]. As a continuation of
this idea, in this paper, we investigate swapped OTIS OPm

for the metric dimension and fault-tolerant metric dimen-
sion and provide a bound for these invariants.

.e rest of the article is organized as follows: Section 2
comprises introductory notions of graphs and the swapped
optical transpose interconnection system. Section 3 provides
a bound for the metric dimension and the fault-tolerant
metric dimension of OPm. In Section 4, the applications of
resolvability and fault-tolerant resolvability are discussed.

2. Introductory Notions

2.1. Basics of Graph 3eory. A graph G is a structure (V, E)
comprising a set V(G) termed as vertex set and an edge set
E(G) � (m, n)|m, n ∈ V{ }. For m, n ∈ V, (m, n) is an edge in
G. .e distance from a vertexm to n, given by d(m, n), is the
number of edges in the shortest possible route from m to n.

For a ∈ V(G) and an ordered set N � n1, n2, n3,􏼈

. . . , nk} ⊂ V(G), the metric code of a for N is given below:

ca(N) � d a, n1( 􏼁, d a, n2( 􏼁, d a, n3( 􏼁, . . . , d a, nk( 􏼁( 􏼁, (1)

where N is known as resolving set if for m, n ∈ V,
m≠ n⇒cm(N)≠ cn(N) [6, 20]. .e smallest resolving set in
G is basis for G and the cardinality of basis is termed as G’s
metric dimension indicated by β(G). For M⊆V(G) and
n ∈ V(G), d(n, M) is defined as d(n, M) � min
d(n, m)|m ∈M{ }. A set M is termed as fault-tolerant re-
solving set if M is itself a resolving set, and for every m ∈M,
M\ m{ } is also a resolving set. .e number of elements in the
smallest fault-tolerant resolving set is termed the fault-tol-
erant metric dimension of G, given by β′(G) [10]. .e
numbers β(G) and β′(G) are related by the following
expression:

β′(G)≥ β(G) + 1. (2)

2.2. 3e Swapped Optical Transpose Interconnection System
(OTIS)

Definition 1 (see [16, 23, 24]). .e swapped optical trans-
pose interconnection system (OTIS) is a graph OG, derived
from a base network G, with V(OG) and E(OG) as given
below:

p16

p21

p22

p23

p24

p25

p26

p31
p32

p33
p34

p35
p36p41

p42
p43

p44
p45

p46

p51

p52

p53

p54

p55

p56

p61

p62
p63

p64

p65
p66 p11

p12
p13

p14
p15

p16

Figure 1: Graph of swapped OTIS OP6.
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Figure 2: Graph of swapped OTIS OPm.
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V OG( 􏼁 � pij|pij ∈ V(G), i, j ∈ N􏽮 􏽯,

E OG( 􏼁 � pij, plm􏼐 􏼑| pij, plm􏼐 􏼑 ∈ E(G)􏽮 􏽯

∪ puv, pvu( 􏼁|puv, pvu ∈ V(G), u≠ v􏼈 􏼉.

(3)

.e graph G in swapped (OTIS) OG is nominated as a
base graph or factor graph. If |V(G)| � m, then OG com-
prises of m copies of G, and each copy is known as a
subnetwork (cluster or clump) in OG. We shall denote each
vertex in OG as puv where uv is the address of vertex v in the
cluster u. In swapped network OG, the intercluster edges are
only between puv and pvu when u≠ v. .e node puu specifies
the processor u in the subnetwork u, and there is no edge
incident to puu from a cluster other than u.

3. New Results

.is section comprises of new results related to resolvability
and fault-tolerant resolvability.

3.1. Bound for Metric Dimension of OPm

Theorem 1. For all m≥ 1, β(OPm)≤m − 1.

Proof. We take a partition of vertex set of OPm (see Fig-
ure 2) as

V OPm( 􏼁 � p11, p12, p13, . . . , p1m􏼈 􏼉∪ p21, p22, p23, . . . , p2m􏼈 􏼉

∪ p31, p32, p33, . . . , p3m􏼈 􏼉

∪ p41, p42, p43, . . . , p4m􏼈 􏼉∪ · · ·

∪ pj1, pj2, pj3, . . . , pjm􏽮 􏽯∪ · · ·

∪ pm1, pm2, pm3, . . . , pmm􏼈 􏼉.

(4)

Let us take M � p11, p22, p33, . . . , pm−1m−1, pmm􏼈 􏼉. .is is
the set of all nodes pjj, for all 1≤ j≤m. We denote m − 1
cardinality subsets of M defined as

Mjj � M\ pjj􏽮 􏽯 � p11, p22, p33, . . . , pj−1j−1,􏽮

pj+1j+1, . . . , pm−1m−1, pmm􏽯.
(5)

To prove our claim, we need to show that Mjj is a re-
solving set for OPm. We shall give metric codes of all
processor nodes for Mjj.

.e metric codes of vertices in the first and second
cluster are stated in Table 1 and 2, respectively.

.e metric codes of vertices in the third cluster are given
in Table 3.

Upon continuation in this manner, we have the metric
codes of the mth cluster in Table 4.

By Tables 1, 2, 3 and 4, we can conclude that

cp1j
(M) � j − 1, j, j, j, . . . , j

􏽺􏽽􏽼􏽻
distance frompj−1j−1

, j + 2
􏽺√􏽽􏽼√􏽻

distance frompj+1j+1

, j + 4, . . . , 2m − j − 2, 2m − j⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

cp2j
(M) � j + 1, j − 2, j − 1, j − 1, . . . , j − 1

􏽺√􏽽􏽼√􏽻
distance frompj−1j−1

, j + 1
􏽺√􏽽􏽼√􏽻

distance frompj+1j+1

, j + 3, . . . , 2m − j − 3, 2m − j − 1⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

cp3j
(M) � j + 2, j, j − 3, j − 2, . . . , j − 2

􏽺√􏽽􏽼√􏽻
distance frompj−1j−1

, j + 2
􏽺√􏽽􏽼√􏽻

distance frompj+11j+1

, j + 4, . . . , 2m − j − 4, 2m − j − 2⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

(6)

and continuing in this manner, we have

Table 1: Metric codes cp1i
(Mjj) of vertices in the first cluster for 1≤ i≤m.

Vertex d(p1i, p11) d(p1i, p22) d(p1i, p33) d(p1i, p44) . . . d(p1i, pj−1j−1) d(p1i, pj+1j+1) . . . d(p1i, pm−1m−1) d(p1i, pmm)

p11 0 3 5 7 . . . 2j − 3 2j + 1 . . . 2m − 3 2m − 1
p12 1 2 4 6 . . . 2j − 4 2j . . . 2m − 4 2m − 2
p13 2 3 3 5 . . . 2j − 5 2j − 1 . . . 2m − 5 2m − 3
p14 3 4 4 4 . . . 2j − 6 2j − 2 . . . 2m − 6 2m − 4
p15 4 5 5 5 . . . 2j − 7 2j − 3 . . . 2m − 7 2m − 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p1j−1 j − 2 j − 1 j − 1 j − 1 . . . j − 1 j + 3 . . . 2m − j − 1 2m − j + 1
p1j j − 1 j j j . . . j j + 2 . . . 2m − j − 2 2m − j

p1j+1 j j + 1 j + 1 j + 1 . . . j + 1 j + 1 . . . 2m − j − 3 2m − j − 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p1m−1 m − 2 m − 1 m − 1 m − 1 . . . m − 1 m − 1 . . . m − 1 m − 1
p1m m − 1 m m m . . . m m . . . m m
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cpmj
(M) � m + j − 1, m + j − 3, m + j − 5, m + j − 7, m + j − 9, m + j − 11, . . . , m − j + 3

􏽺√√√􏽽􏽼√√√􏽻
distance frompj−1j−1

, m − j + 1
􏽺√√√􏽽􏽼√√√􏽻

distance frompj+1j+1

, m − j + 1, . . . , m − j + 1, m − j⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(7)

Clearly, the metric codes for all nodes in each cluster
differ by at least one component. .is gives that Mjj, for all

1≤ j≤m, is a resolving set for OPm and β(OPm)≤
m − 1. □

Table 2: Metric codes cp2i
(Mjj) of vertices in the second cluster for 1≤ i≤m.

Vertex d(p2i, p11) d(p2i, p22) d(p2i, p33) d(p2i, p44) . . . d(p2i, pj−1j−1) d(p2i, pj+1j+1) . . . d(p2i, pm−1m−1) d(p2i, pmm)

p21 2 1 4 6 . . . 2j − 4 2j . . . 2m − 4 2m − 2
p22 3 0 3 5 . . . 2j − 5 2j − 1 . . . 2m − 5 2m − 3
p23 4 1 2 4 . . . 2j − 6 2j − 2 . . . 2m − 6 2m − 4
p24 5 2 3 3 . . . 2j − 7 2j − 3 . . . 2m − 7 2m − 5
p25 6 3 4 4 . . . 2j − 8 2j − 4 . . . 2m − 8 2m − 6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p2j−1 j j − 3 j − 2 j − 2 . . . j − 2 j + 2 . . . 2m − j − 2 2m − j

p2j j + 1 j − 2 j − 1 j − 1 . . . j − 1 j + 1 . . . 2m − j − 3 2m − j − 1
p2j+1 j + 2 j − 1 j j . . . j j . . . 2m − j − 4 2m − j − 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p2m−1 m m − 3 m − 2 m − 2 . . . m − 2 m − 2 . . . m − 2 m

p2m m + 1 m − 2 m − 1 m − 1 . . . m − 1 m − 1 . . . m − 1 m − 1

Table 3: Metric codes cp3i
(Mjj) of vertices in the third cluster for 1≤ i≤m.

Vertex d(p3i, p11) d(p3i, p22) d(p3i, p33) d(p3i, p44) . . . d(p3i, pj−1j−1) d(p3i, pj+1j+1) . . . d(p3i, pm−1m−1) d(p3i, pmm)

p31 3 3 2 5 . . . 2j − 5 2j − 1 . . . 2m − 5 2m − 3
p32 4 2 1 4 . . . 2j − 6 2j − 2 . . . 2m − 6 2m − 4
p33 5 3 0 3 . . . 2j − 7 2j − 3 . . . 2m − 7 2m − 5
p34 6 4 1 2 . . . 2j − 8 2j − 4 . . . 2m − 8 2m − 6
p35 7 5 2 3 . . . 2j − 9 2j − 5 . . . 2m − 9 2m − 7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p3j−1 j + 1 j − 1 j − 4 j − 3 . . . j − 3 j + 1 . . . 2m − j − 3 2m − j − 1
p3j j + 2 j j − 3 j − 2 . . . j − 2 j + 2 . . . 2m − j − 4 2m − j − 2
p3j+1 j + 3 j + 1 j − 2 j − 1 . . . j − 1 j + 3 . . . 2m − j − 5 2m − j − 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p3m−1 m + 1 m − 1 m − 4 m − 3 . . . m − 3 m − 3 . . . m − 3 m − 3
p3m m + 2 m m − 3 m − 2 . . . m − 2 m − 2 . . . m − 2 m − 2

Table 4: Metric codes cpmi
(Mjj) of vertices in the third cluster for 1≤ i≤m.

Vertex d(pmi, p11) d(pmi, p22) d(pmi, p33) d(pmi, p44) . . . d(pmi, pj−1j−1) d(pmi, pj+1j+1) . . . d(pmi, pm−1m−1) d(pmi, pmm)

pm1 m m m m . . . m m . . . m m − 1
pm2 m + 1 m − 1 m − 1 m − 1 . . . m − 1 m − 1 . . . m − 1 m − 2
pm3 m + 2 m m − 2 m − 2 . . . m − 2 m − 2 . . . m − 2 m − 3
pm4 m + 3 m + 1 m − 1 m − 3 . . . m − 3 m − 3 . . . m − 3 m − 4
pm5 m + 4 m + 2 m m − 2 . . . m − 4 m − 4 . . . m − 4 m − 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pmj−1 m + j − 2 m + j − 4 m + j − 6 m + j − 8 . . . m − j + 2 m − j + 2 . . . m − j + 2 m − j + 1
pmj m + j − 1 m + j − 3 m + j − 5 m + j − 7 . . . m − j + 3 m − j + 1 . . . m − j + 1 m − j

pmj+1 m + j m + j − 2 m + j − 4 m + j − 6 . . . m − j + 4 m − j . . . m − j m − j − 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pmm−1 2m − 2 2m − 4 2m − 6 2m − 8 . . . 2m − 2j + 2 2m − 2j − 2 . . . 2 1
pmm 2m − 1 2m − 3 2m − 5 2m − 7 . . . 2m − 2j + 3 2m − 2j − 1 . . . 3 0
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3.2. Bound for Fault-Tolerant Metric Dimension of OPm

Theorem 2. For all m≥ 1, β′(OPm)≤m.

Proof. We take a partition of vertex set of OPm as

V OPm( 􏼁 � p11, p12, p13, . . . , p1m􏼈 􏼉∪ p21, p22, p23, . . . , p2m􏼈 􏼉

∪ p31, p32, p33, . . . , p3m􏼈 􏼉

∪ p41, p42, p43, . . . , p4m􏼈 􏼉∪ · · ·

∪ pj1, pj2, pj3, . . . , pjm􏽮 􏽯∪ · · ·

∪ pm1, pm2, pm3, . . . , pmm􏼈 􏼉.

(8)

By .eorem 1, for M � p11, p22, p33, . . . , pmm􏼈 􏼉, every
m-1 cardinality set Mjj � M\ pjj􏽮 􏽯 is a resolving set for
OPm. .e metric codes for M � Mjj ∪pjj are m-tuples
obtained from metric codes of Mjj and d(puv, pjj). By
carefully observing metric codes in .eorem 1, we conclude
that m − 1 tuple metric codes differ in more than one co-
ordinate. Consequently, m-tuple metric codes are different
in at least one coordinate for all vertices, and M is a resolving
set. By definition of fault-tolerant resolving set, M is a fault-
tolerant resolving set for OPm. Consequently,
β′(OPm)≤m. □

4. Applications

.e significance of resolvability and fault-tolerance in
resolvability, in diverse areas of study, has stimulated ana-
lysts and researchers to scrutinize their application aspects.
Congenitally, the abstraction of metric dimension is anal-
ogous to the working pattern of the global positioning
system termed as trilateration in which the position of every
object on Earth is specified by its unique distances from
three satellites surrounding the earth in orbit.

Chartrand [5] put forward the idea of using members of
a resolving set as sensors. When a sensor is out of order and
fails to track down an intruder (a thief, fire etc.), the system
may not work correctly due to data loss caused by the in-
truder. .is issue is resolved by fault-tolerant resolving set
that guarantees an intruder’s recognition even a sensor is
failed to work. Consequently, fault-tolerant metric dimen-
sion enhances the applicability of metric dimension.

Another application of resolvability is a navigation
system. A navigation system is used to navigate an object
such as a ship, an aircraft, a submarine, and a robot, using
some signal transmission medium to control that object. A
navigation system determines the location of an object
through sensors or some landmarks at some specified po-
sition. An instance of such a system is robot navigation. In a
graph framework, the robot identifies its position by de-
termining its distances from specified landmarks. .e
minimum set of landmarks used for robot navigation gives a
resolving set. A fault-tolerant resolving set still locates the
robot when any landmark is neglected in this scenario. So, a
fault-tolerant resolving set is superior to the resolving set by
its application.

Multiprocessor interconnection networks consist of
thousands of processors where interprocessor communi-
cation is via optical or electrical signals. Multiprocessor
interconnection networks are popular because micropro-
cessors and memory chips are inexpensive and widely
available. Among such systems, one is the optical transpose
interconnection system OPm over the base graph Pm,
consisting of m2 nodes (processors). Each processor serves
as a source for data transmission to the other processors in
the same cluster (path in this case) and intercluster com-
munication. .e idea of the metric dimension of OPm gives
an estimate of the minimum number of processors required
for complete and flawless data transmission throughout the
system. A malfunctioning processor results in the failure of
complete information transfer and may cause data loss.
Another factor affecting the performance of the intercon-
nection system is a faulty optoelectronic connection: either
due to defective electrical network within base paths or
inoperative optical transmission among paths within the
system.

.e concept of fault-tolerant resolving set and the fault-
tolerant metric dimension has significant considerations to
subjugate the faulty communication system. .e processors
in the fault-tolerant resolving set ensure flawless data
transmission even if a processor is out of order or any
transmission line is interrupted due to some unavoidable
factors. It makes a fault-tolerant resolving set applicable in
an interconnection network framework.
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