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�e concept of M-polynomials determines the algebraic form of a system or network. It creates a structure into an algebraic
equation and makes work easy to do on such a structure. �is has diverse uses in di�erent applied mathematics and as well as in
engineering �elds. In this study, we look closely at the abstract form of Y-shaped junctions. For the generic view of Y-shaped
junctions, we developed some vertex-degree-based M-polynomials formulas. On Y-shaped junctions, we discussed some to-
pological index-based concepts as well and veri�ed the results available in the literature.

1. Introduction

�e future of multiterminal networks and electronic ap-
pliances is possible by the building blocks made by nanotube
junctions or branched nanotubes. �ere are many types of
nanotube junctions serving nano-electronics, such as L, T, Y,
and X. For the literature on the electrical properties of
di�erent junctions, we refer to see [1–3], its mechanical
stability [4], conduction mechanism and transport phe-
nomena [5], thermal recti�cation [6]. Instead of straight
nanotubes, nanostructures developed using the nanotube
junctions are anticipated to deliver much better in terms of
mechanical properties. In order to create nanostructures,
nanotubes are combined, their techniques, approaches, and
succinct descriptions are available (see, for example, [7, 8]).

In this presented work, we will only consider discussing
Y-type junctions of carbon nanotubes. It is obvious by name
that Y-junctions are having the shape of Y-alphabet and are
made by joining three nanotubes. �ese three nanotubes are
joined on a point named as branching point as shown in
Figure 1, which is itself comprised of hexagons and six
heptagons. If the pattern of hexagons surrounds each

heptagon with a pattern distributed symmetrically, and
nanotubes are joined in the identical Y-shape, these types of
Y-junctions are symmetric.

On the topology of nanotubes, Y-junctions may have
further subtypes. For example, single-walled nanotubes have
three types of geometries, chiral, zig-zag, and armchair. So
developed Y-junctions are regarded as armchair carbon
nanotube Y-junction. All these properties are available for
multiwalled nanotubes. In 1991, the �rst nanotube was
discovered [9], and after two years, the �rst structural to-
pology of a Y-shaped junction was made by the authors of
[10, 11] independently. �e researchers in [12] experi-
mentally observed these junctions in 1995. In [13, 14], the
authors presented the idea of asymmetric and symmetric Y-
shaped junctions, their constructions, their models, and
their numerous variants. �e applications and properties of
novel structure Y-shaped junctions are presented in [15, 16].

�e quantitative structure-property and activity rela-
tionships are solely concerned with the forecasting of bio-
activities and chemical or biological structure properties.
Topological indices and physicochemical properties are used
to aid prediction in this method. �ere is a signi�cant body
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of literature related to the topological descriptors of
chemical structure, which can be found in [17]; for example,
the authors of [18] discussed some various types of nano-
tubes and nanostructures, the authors of [19, 20] studied
some chemical networks like honeycomb networks and
nanotubes, and di�erent structures made by basic operations
of linear algebras are discussed in [21]. For more studies on
this topic, we suggest to refer [22–25]. For some relevant
topics, we o�er the literature found in [26–29]. In the fol-
lowing section of this paper, there are some basic formulas
for predicting the physical properties of a network and
system.

De�nition 1. Hosoya polynomials, the famous most and
very �rst, were introduced in 1988, and in 2015, a modi�ed
polynomial, also known as M-polynomial, is introduced by
[30].�is form of the polynomial has a closed relationship to
degree-based topological indices. Topological indices from
M-polynomials of a graph may be obtained using a speci�c
format. �is M-polynomial may be de�ned as follows:

Π(χ;x, y) � ∑
i≤ j

αi,j(χ)x
iyj, (1)

where αi,j(χ) is considered as the size of graph χ given that
i≤ j.

De�nition 2 (see [31, 32]). �e �rst Zagreb index of graph χ
is

M1(χ) � ∑
uv∈E(χ)

(d(u) + d(v)). (2)

De�nition 3 (see [31, 32]).�e second Zagreb index of graph
χ is

M2(χ) � ∑
uv∈E(χ)

(d(u) · d(v)). (3)

De�nition 4 (see [33]). �e M-polynomial of the �rst and
the second Zagreb indices is

∏
M1

(χ) � Dx +Dy( )(Π(χ;x, y)), (4)

∏
M2

(χ) � Dx +Dy( )(Π(χ;x, y)). (5)

De�nition 5 (see [31–33]). �e general Randić index and its
M-polynomials are

Rα(χ) � ∑
uv∈E(χ)

(d(u) · d(v))α, (6)

∏
Rα

(χ) � Dα
xD

α
y( )(Π(χ;x, y)). (7)

De�nition 6 (see [33]). �e operators are de�ned as follows:

Dx(Π(χ;x, y)) � x
z(Π(χ;x, y))

zx
, (8)

Dy(Π(χ;x, y)) � y
z(Π(χ;x, y))

zy
, (9)

Sx(Π(χ;x, y)) � ∫
x

0

(Π(χ; z, y))
z

dz, (10)

Sy(Π(χ;x, y)) � ∫
y

0

(Π(χ;x, z))
z

dz. (11)

�e primary goal or participation of this study work is to
investigate some vertex-degree-based M-polynomials of Y-
shaped junctions and their variants, as well as some com-
prehensive applications of the theoretical and practical ap-
proach of Y-shaped junctions and their variants. We will
investigate the structure of Y-shaped junctions and their
variants in the following section. We will also present some
key �ndings on the vertex-degree-based M-polynomials of Y-
shaped junctions and their variants. Finally, we will reach a
conclusion. �ere would be some interesting and important
references to literature. To entice the reader to investigate Y-
shaped junctions and their variants, vertex-degree-based M-
polynomials, topological index are discussed in this research
work. Furthermore, we also consider to discuss the appli-
cations for the Y-shaped junctions and their variants.

2. Y-Junction Graphs and Methodology of
Presented Work

For the aims of computation, the structures of the Y-
junction are transformed in the vertex-edge graph, and for
this, we follow the methodology presented in [34, 35]. �e
vertex-degree-based edge types are measured after getting
the molecular graphs of junctions and their variants. �ese
vertex-degree-based speci�cations of edges are necessary
tools to compute our main results.

�e Y-junctions investigated in this study are formed by
the covalent connectivity of three armchair single-walled
carbon nanotubes of �nite length, and these nanotubes

Consider this is a front side
and the back side or hiden
side same as and f1, f3 and
f5 attached to f2, f4 and f6
respectively, which are

actually back side of this
branching pooint.

One of the nanotubes will be attached here

f3f5

f1

Figure 1: A branching point Y(6, 6).
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crossed at an angle of 120 degrees and are determined by a
chiral vector (n, n).

Let k≥ 2 for the parameter n � 2k are integers andm≥ 1. A
Y-shaped junction graph Jm(n, n) is assembled by making an
armchairY(n, n), which is called as branching point, and three
carbon nanotubes Tm(n, n) of same length of m-layers of
hexagons. It has 6k2 + 18k + 24mk + 6 number of vertices, and
the edges are 9k2 + 21k + 36mk + 9 in total. It has
6k2 + 6k + 24mk + 6, degree three vertices, and only 12k
degree 2 vertices. Each nanotube comprises of 4mk faces of
hexagons while branching point comprises of 3k2 − 3k + 5
faces. In these faces, 3k2 − 3k − 4 hexagons, six heptagons, and
only three faces were nanotubes joined with branching point.

�e notation Jm(n, n) is referred as graph of Y-shaped
junction, and it contained no vertex of one degree. �e
notation I′Jm(n, n) is an extension of graph of Y-shaped
junction Jm(n, n) as shown in Figure 2. �is graph
(I′Jm(n, n)) appears when one of the three nanotubes has
exactly 4k degree one vertices. �e total number of vertices
and edges of I′Jm(n, n) are 24mk + 6k2 + 22k + 6 and
36mk + 9k2 + 25k + 9, accordingly. �e graph with notation
I″Jm(n, n) is another extension of Jm(n, n) junction graph. It
contains 36mk + 9k2 + 29k + 9 edges and
24mk + 6k2 + 26k + 6 vertices. �is graph is obtained by
having 8k degree one vertices on any two nanotubes of
Jm(n, n). In total, 12k degree one vertices attaching to all
three nanotubes of Jm(n, n) made another variant Y-junc-
tion, and it is known as I‴Jm(n, n). �is newly developed
graph contains 36mk + 9k2 + 33k + 9 edges and
24mk + 6k2 + 30k + 6 vertices.

�e structure shown in Figure 1 is a front view of
branching point Y(n, n) with n � 6. �ere are three sides
where armchair carbon nanotubes Tm(n, n) with di�erent
lengths, which ism≥ 1, will be attached.�e structure shown
in the Figure 2 is a variant of Y-junction having 4k pendent
or one degree vertices, and the notation used is I′Jm(n, n). In
the same �gure, a place on a single nanotube is pointed
where the extension of one degree 4k, 8k, and 12k vertices
can be attached for di�erent variants of Y-junctions, and
these variants are denoted as I′Jm(n, n), I″Jm(n, n), and
I‴Jm(n, n), respectively. Without any one degree vertex,
there will be original Y-junction of notation Jm(n, n).

Some vertex-degree-based M-polynomials for Y-junc-
tion and its all variants are as follows.

Theorem 1. Let Jm(n, n) be a structure of Y-type junction
with k≥ 2, n � 2k, m≥ 1 and Π(Jm(n, n);x, y) is the general
M-polynomials for Jm(n, n). �en,

Π Jm(n, n);x, y( ) � 6kx2y2 + 12kx2y3

+ 9k2 + 3k + 36mk + 9( )x3y3.
(12)

Proof. From Figure 2, which is the construction for the
structure of Y-type junction, we can observe that there are
three edge partitions based on the degree of end vertices of
each edge that is de�ned as follows:

e2,2 � uv ∈ E Jm(n, n)( ): d(u) � d(v) � 2{ }, (13)

te2,3 � uv ∈ E Jm(n, n)( ): d(u) � 2, d(v) � 3{ }, (14)

e3,3 � uv ∈ E Jm(n, n)( ): d(u) � d(v) � 3{ }. (15)

�e numbers of these edge types are |e2,2| � 6k,
|e2,3| � 12k, and |e3,3| � 9k2 + 3k + 36mk + 9.�en, from the
De�nition 1, the M-polynomial of Jm(n, n) can be found as

Π Jm(n, n); x, y( ) � ∑
i≤ j
mi,j Jm(n, n)( )xiyj

� 6kx2y2 + 12kx2y3

+ 9k2 + 3k + 36mk + 9( )x3y3.

(16)

□

Lemma 1. Let Jm(n, n) be a structure of Y-type junction with
k≥ 2, n � 2k, m≥ 1, Dx(Π(Jm(n, n);x, y)) and Dy(Π
(Jm(n, n); x, y)) are the di�erential operators for Jm(n, n).
�en,

Dx Π Jm(n, n); x, y( )( ) � 12kx2y2 + 24kx2y3

+ 27k2 + 9k + 108mk + 27( )x3y3,
(17)

Dy Π Jm(n, n);x, y( )( ) � 12kx2y2 + 36kx2y3

+ 27k2 + 9k + 108mk + 27( )x3y3.
(18)

Proof. In this proof, we will provide an example of the usage
of di�erential operators. Di�erentiating the equation given
in the proof of �eorem 1 with respect to variable x and
times the result with the same variable. We will have the

Extension of
Jm (n,n) to

D'Jm (n,n) by
adding one degree

vertices

Figure 2: A variant of Y-junction I′Jm(n, n).
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required result of the operatorDx(Π(Jm(n, n); x, y)), for the
structure of the Y-type junction which is Jm(n, n).

Dx Π Jm(n, n); x, y( 􏼁( 􏼁 � x
zΠ Jm(n, n)( 􏼁

zx

� x
z

zx
(6k)x

2
y
2

+(12k)x
2
y
3

+ 9k
2

+ 3k + 36mk + 9􏼐 􏼑x
3
y
3

􏼐 􏼑

� x (12k)xy
2

+(24k)xy
3

+ 27k
2

+ 9k + 108mk + 27􏼐 􏼑x
2
y
3

􏼐 􏼑

� 12kx
2
y
2

+ 24kx
2
y
3

+ 27k
2

+ 9k + 108mk + 27􏼐 􏼑x
3
y
3
.

(19)

Similarly, by differentiating the equation given in the
proof of )eorem 1 with respect to variable y and times the
result with the same variable, we will have the required result

of the operator Dy(Π(Jm(n, n); x, y)), for the structure of Y-
type junction which is Jm(n, n).

Dy Π Jm(n, n); x, y( 􏼁( 􏼁 � y
zΠ Jm(n, n)( 􏼁

zy

� y
z

zy
(6k)x

2
y
2

+(12k)x
2
y
3

+ 9k
2

+ 3k + 36mk + 9􏼐 􏼑x
3
y
3

􏼐 􏼑

� y (12k)x
2
y +(36k)x

2
y
2

+ 27k
2

+ 9k + 108mk + 27􏼐 􏼑x
3
y
2

􏼐 􏼑

� 12kx
2
y
2

+ 36kx
2
y
3

+ 27k
2

+ 9k + 108mk + 27􏼐 􏼑x
3
y
3
.

(20)

□Lemma 2. Let Jm(n, n) be a structure of Y-type junction with
k≥ 2, n � 2k, m≥ 1, Sx(Π(Jm(n, n); x, y)) and Sy(Π(Jm

(n, n); x, y)) are the integral operators for Jm(n, n). 5en,

Sx Π Jm(n, n); x, y( 􏼁( 􏼁 � 3kx
2
y
2

+ 6kx
2
y
3

+ 3k
2

+ k + 18mk + 3􏼐 􏼑x
3
y
3
,

(21)

Sy Π Jm(n, n); x, y( 􏼁( 􏼁 � 2kxy
3

+ 3kxy
4

+
3 3k

2
+ k + 18mk + 3􏼐 􏼑

4
xy

4
.

(22)

Proof. In this proof, we will provide an example of the usage
of integral operators. Introducing a new parameter in the
place of a variable x, and integrating the equation given in
the proof of )eorem 1 with respect to the same variable, let
say z and times the result with the same variable. We will
have the required result of the operator Sx(Π(Jm(n, n);

x, y)), for the structure of the Y-type junction which is
Jm(n, n).

Sx Π Jm(n, n); x, y( 􏼁( 􏼁 � 􏽚
x

0

Π Jm(n, n); z, y( 􏼁

z
dz

� 􏽚
x

0

1
z

(6k)z
2
y
2

+(12k)z
2
y
3

+ 9k
2

+ 3k + 36mk + 9􏼐 􏼑z
3
y
3

􏼐 􏼑dz

� 􏽚
x

0
(6k)zy

2
+ 􏽚

x

0
(12k)zy

3
+ 􏽚

x

0
9k

2
+ 3k + 36mk + 9􏼐 􏼑z

2
y
3dz

� (6k)
z2

2
y
2
|

x

0
+(12k)

z2

2
y
3
|

x

0
+ 9k

2
+ 3k + 36mk + 9􏼐 􏼑

z3

3
y
3
|

x

0

� 3kx
2
y
2

+ 6kx
2
y
3

+ 3k
2

+ k + 18mk + 3􏼐 􏼑x
3
y
3
.

(23)
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Similarly, by introducing a new parameter in the place of
variable y and integrating the equation given in the proof of
)eorem 1 with respect to the same variable, let say z and

times the result with same variable, we will have the required
result of operator Sy(Π(Jm(n, n); x, y)), for the structure of
Y-type junction which is Jm(n, n).

Sy Π Jm(n, n); x, y( 􏼁( 􏼁 � 􏽚
y

0

Π Jm(n, n); x, z( 􏼁

z
dz

� 􏽚
y

0

1
z

(6k)x
2
z
2

+(12k)x
2
z
3

+ 9k
2

+ 3k + 36mk + 9􏼐 􏼑x
3
z
3

􏼐 􏼑dz

� 􏽚
y

0
(6k)xz

2
+ 􏽚

y

0
(12k)xz

3
+ 􏽚

y

0
9k

2
+ 3k + 36mk + 9􏼐 􏼑x

2
z
3dz

� (6k)x
z3

3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

y

0
+(12k)x

z4

4

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

y

0
+ 9k

2
+ 3k + 36mk + 9􏼐 􏼑x

z4

4

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

y

0

� 2kxy
3

+ 3kxy
4

+
3 3k

2
+ k + 18mk + 3􏼐 􏼑

4
xy

4
.

(24)

□
Theorem 2. Let Jm(n, n) be a structure of Y-type junction
with k≥ 2, n � 2k, m≥ 1 and 􏽑M1

(Jm(n, n); x, y) is the first
Zagreb M-polynomials for Jm(n, n). 5en,

􏽙
M1

Jm(n, n)( 􏼁 � 24kx
2
y
2

+ 60k + x
2
y
3

+ 54k
2

+ 18k + 216mk + 54􏼐 􏼑x
3
y
3
.

(25)

Proof. Amethod to compute the first ZagrebM-polynomial,
given in the equation (4) of Definition 4, and this meth-
odology is derived from the basic formula of the first Zagreb
index given in the equation (2) of Definition 2. Now, by
using the differential operator of Jm(n, n) defined in the
Lemma 1 and applying on the equation (4), we will have the
required result of first Zagreb M-polynomial of Jm(n, n),
which is computed as follows:

􏽙
M1

Jm(n, n)( 􏼁 � Dx + Dy􏼐 􏼑 Π Jm(n, n)( 􏼁( 􏼁

� Dx Π Jm(n, n)( 􏼁( 􏼁 + Dy Π Jm(n, n)( 􏼁( 􏼁

� (12k)x
2
y
2

+(24k)x
2
y
3

+ 27k
2

+ 9k + 108mk + 27􏼐 􏼑x
3
y
3

+(12k)x
2
y
2

+(36k)x
2
y
3

+ 27k
2

+ 9k + 108mk + 27􏼐 􏼑x
3
y
3

� 24kx
2
y
2

+ 60kx
2
y
3

+ 54k
2

+ 18k + 216mk + 54􏼐 􏼑x
3
y
3
.

(26)

□
Theorem 3. Let Jm(n, n) be a structure of Y-type junction
with k≥ 2, n � 2k, m≥ 1, and 􏽑M2

(Jm(n, n); x, y) is the
second Zagreb M-polynomials for Jm(n, n). 5en,

􏽙
M2

Jm(n, n)( 􏼁 � 24kx
2
y
2

+ 72kx
2
y
3

+ 3 27k
2

+ 9k + 108mk + 27􏼐 􏼑x
3
y
3
.

(27)

Proof. A method to compute the second Zagreb M-poly-
nomial, given in the equation (5) of Definition 4, and this
methodology is derived from the basic formula of the second
Zagreb index given in the equation (3) of Definition 3. Now
using the differential operator of Jm(n, n), defined in the
Lemma 1 and applying it on the equation (5), we will have
the required result of the second Zagreb M-polynomial of
Jm(n, n), which is computed as follows:

􏽙
M2

Jm(n, n)( 􏼁 � DxDy􏼐 􏼑 Π Jm(n, n)( 􏼁( 􏼁

� Dx (12k)x
2
y
2

+(36k)x
2
y
3

+ 27k
2

+ 9k + 108mk + 27􏼐 􏼑x
3
y
3

􏼐 􏼑

� 24kx
2
y
2

+ 72kx
2
y
3

+ 3 27k
2

+ 9k + 108mk + 27􏼐 􏼑x
3
y
3
.

(28)

□
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Theorem 4. Let Jm(n, n) be a structure of Y-type junction
with k≥ 2, n � 2k, m≥ 1, and ΠRα

(Jm(n, n); x, y) is the
general Randić M-polynomials for Jm(n, n). 5en,

􏽙
Rα

Jm(n, n)( 􏼁 � 4α(6k)x
2
y
2

+ 6α(12k)x
2
y
3

+ 9α 9k
2

+ 3k + 36mk + 9􏼐 􏼑x
3
y
3
.

(29)

Proof. A method to compute the generalized Randić
M-polynomial is given in equation (7) of Definition 5, and
this methodology is derived from the basic formula of the
generalized Randić index as given in equation (6) of Defi-
nition 5. Now, by using the generalized view of differential
operators of Jm(n, n), defined in the Lemma 1, and applying
it on equation (7), we will have the required result of
generalized Randić M-polynomial of Jm(n, n), which is
computed as follows:

􏽙
Rα

Jm(n, n)( 􏼁 � D
α
xD

α
y􏼐 􏼑 Π Jm(n, n)( 􏼁( 􏼁

� D
α
xD

α
y􏼐 􏼑 (6k)x

2
y
2

+(12k)x
2
y
3

+ 9k
2

+ 3k + 36mk + 9􏼐 􏼑x
3
y
3

􏼐 􏼑

� D
α
x 2α(6k)x

2
y
2

+ 3α(12k)x
2
y
3

+ 3α 9k
2

+ 3k + 36mk + 9􏼐 􏼑x
3
y
3

􏼐 􏼑

� 4α(6k)x
2
y
2

+ 6α(12k)x
2
y
3

+ 9α 9k
2

+ 3k + 36mk + 9􏼐 􏼑x
3
y
3
.

(30)

□
3. I9Jm(n, n) Structure of Y-Second
Type Junction

Theorem 5. Let I′Jm(n, n) be a structure of Y-second type
junction with k≥ 2, n � 2k, m≥ 1 and 􏽑(I′Jm(n, n); x, y) is
the general M-polynomials for I′Jm(n, n). 5en,

Π I′Jm(n, n); x, y( 􏼁 � 4kxy
3

+ 4kx
2
y
2

+ 8kx
2
y
3

+ 9k
2

+ 9k + 36mk + 9􏼐 􏼑x
3
y
3
.

(31)

Proof. From Figure 2, which is the construction for the
structure of Y-second type junction, we can observe that

there are four edge partitions based on the degree of end
vertices of each edge that is defined as

e1,3 � uv ∈ E I′Jm(n, n)( 􏼁: d(u) � 1, d(v) � 3􏼈 􏼉,

e2,2 � uv ∈ E I′Jm(n, n)( 􏼁: d(u) � d(v) � 2􏼈 􏼉,
(32)

e2,3 � uv ∈ E I′Jm(n, n)( 􏼁: d(u) � 2, d(v) � 3􏼈 􏼉, (33)

e3,3 � uv ∈ E I′Jm(n, n)( 􏼁: d(u) � d(v) � 3􏼈 􏼉. (34)

)e numbers of these edge types are |e1,3| � 4k,

|e2,2| � 4k, |e2,3| � 8k and |e3,3| � 9k2 + 9k+ 36mk + 9. )en
from the Definition 1, theM-polynomial of I′Jm(n, n) can be
found as

􏽙 I′Jm(n, n); x, y( 􏼁 � 􏽘
i≤ j

mi,j I′Jm(n, n)( 􏼁x
i
y

j
� 4kxy

3
+ 4kx

2
y
2

+ 8kx
2
y
3

+ 9k
2

+ 9k + 36mk + 9􏼐 􏼑x
3
y
3
. (35)

□
Lemma 3. Let I′Jm(n, n) be a structure of Y-second type
junction with k≥ 2, n � 2k, m≥ 1, Dx(Π(I′Jm(n, n); x, y))

and Dy(Π(I′Jm(n, n); x, y)) are the differential operators for
I′Jm(n, n). 5en,

Dx Π I′Jm(n, n); x, y( 􏼁( 􏼁 � 4kxy
3

+ 8kx
2
y
2

+ 16kx
2
y
3

+ 27k
2

+ 27k + 108mk + 27􏼐 􏼑x
3
y
3
, (36)

Dy Π I′Jm(n, n); x, y( 􏼁( 􏼁 � 12kxy
3

+ 8kx
2
y
2

+ 24kx
2
y
3

+ 27k
2

+ 27k + 108mk + 27􏼐 􏼑x
3
y
3
. (37)

Proof. In this proof, we will provide an example for the usage
of differential operators. By differentiating the equation given
in the proof of)eorem 5with respect to variable x and times

the result with same variable, we will have the required result
of operator Dx(Π(I′Jm(n, n); x, y)), for the structure of Y-
type junction which is I′Jm(n, n).
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Dx Π I′Jm(n, n); x, y( 􏼁( 􏼁

� x
zΠ I′Jm(n, n)( 􏼁

zx

� x
z

zx
(4k)xy

3
+(4k)x

2
y
2

+(8k)x
2
y
3

+ 9k
2

+ 9k + 36mk + 9􏼐 􏼑x
3
y
3

􏼐 􏼑

� x| (4k)xy
3

+(8k)x
2
y
2

+(16k)x
2
y
3

+ 27k
2

+ 27k + 108mk + 27􏼐 􏼑x
3
y
3

􏼐 􏼑

� 4kxy
3

+ 8kx
2
y
2

+ 16kx
2
y
3

+ 27k
2

+ 27k + 108mk + 27􏼐 􏼑x
3
y
3
.

(38)

Similarly, by differentiating the equation given in the
proof of )eorem 5 with respect to variable y and times the
result with same variable, we will have the required result of

operator Dy(Π(I′Jm(n, n); x, y)), for the structure of Y-type
junction which is I′Jm(n, n).

Dy Π I′Jm(n, n); x, y( 􏼁( 􏼁

� y
zΠ I′Jm(n, n)( 􏼁

zy

� y
z

zy
(4k)xy

3
+(4k)x

2
y
2

+(8k)x
2
y
3

+ 9k
2

+ 9k + 36mk + 9􏼐 􏼑x
3
y
3

􏼐 􏼑

� y (12k)xy
3

+(8k)x
2
y
2

+(24k)x
2
y
3

+ 27k
2

+ 27k + 108mk + 27􏼐 􏼑x
3
y
3

􏼐 􏼑

� 12kxy
3

+ 8kx
2
y
2

+ 24kx
2
y
3

+ 27k
2

+ 27k + 108mk + 27􏼐 􏼑x
3
y
3
.

(39)

□
Lemma 4. Let I′Jm(n, n) be a structure of Y-second type
junction with k≥ 2, n � 2k, m≥ 1, Sx(Π(I′Jm(n, n); x, y))

and Sy(Π(I′Jm(n, n); x, y)) are the integral operators for
I′Jm(n, n). 5en,

Sx Π I′Jm(n, n); x, y( 􏼁( 􏼁 � 4kxy
3

+ 2kx
2
y
2

+ 4kx
2
y
3

+ 3k
2

+ 3k + 18mk + 3􏼐 􏼑x
3
y
3
, (40)

Sy Π I′Jm(n, n); x, y( 􏼁( 􏼁 �
4k

3
xy

3
+ 2kx

2
y
2

+
8k

3
x
2
y
3

+ 3k
2

+ 3k + 18mk + 3􏼐 􏼑x
3
y
3
. (41)

Proof. In this proof, we will provide an example for the
usage of integral operators. Introducing a new parameter
in the place of variable x, and integrating the equation
given in the proof of )eorem 5 with respect to the same

variable, let say z and times the result with the same
variable. We will have the required result of operator
Sx(Π(I′Jm(n, n); x, y)), for the structure of Y-type junction
which is I′Jm(n, n).
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Sx Π I′Jm(n, n); x, y( 􏼁( 􏼁

� 􏽚
x

0

Π Jm(n, n); z, y( 􏼁

z
dz

� 􏽚
x

0

1
z

(4k)zy
3

+(4k)z
2
y
2

+(8k)z
2
y
3

+ 9k
2

+ 9k + 36mk + 9􏼐 􏼑z
3
y
3

􏼐 􏼑dz

� 􏽚
x

0
(4k)y

3
dz + 􏽚

x

0
(4k)zy

2
dz + 􏽚

x

0
(8k)zy

3
dz + 􏽚

x

0
9k

2
+ 9k + 36mk + 9􏼐 􏼑z

2
y
3dz

� (4k)zy
3
|
x

0 +(4k)z
2
y
2
|
x

0 +(8k)z
2
y
3
|
x

0 + 9k
2
|
x

0 + 9k + 36mk + 9􏼐 􏼑z
3
y
3
|
x

0(6k)
z2

2
y
2
|

x

0

+(12k)
z
2

2
y
3
|
x

0 + 9k
2

+ 3k + 36mk + 9􏼐 􏼑
z
3

3
y
3
|
x

0

� 4kxy
3

+ 2kx
2
y
2

+ 4kx
2
y
3

+ 3k
2

+ 3k + 18mk + 3􏼐 􏼑x
3
y
3
.

(42)

Similarly, introducing a new parameter in the place of
variable y, and integrating the equation given in the proof of
)eorem 5 with respect to the same variable, let say z and

times the result with the same variable. We will have the
required result of operator Sy(Π(I′Jm(n, n); x, y)), for the
structure of the Y-type junction which is I′Jm(n, n).

Sy Π I′Jm(n, n); x, y( 􏼁( 􏼁 � 􏽚
y

0

Π Jm(n, n); x, z( 􏼁

z
dz

� 􏽚
y

0

1
z

(4k)xz
3

+(4k)x
2
z
2

+(8k)x
2
z
3

+ 9k
2

+ 9k + 36mk + 9􏼐 􏼑x
3
z
3

􏼐 􏼑dz

� 􏽚
y

0
(4k)xz

2dz + 􏽚
y

0
(4k)x

2
zdz + 􏽚

y

0
(8k)x

2
z
2dz + 􏽚

y

0
9k

2
+ 9k + 36mk + 9􏼐 􏼑x

3
z
2dz

� (4k)xz
3
|
y

0 +(4k)x
2
z
2
|
y

0 +(8k)x
2
z
3
|
y

0 + 9k
2
|
y

0 + 9k + 36mk + 9􏼐 􏼑x
3
z
3
|
y

0

�
4k

3
xy

3
+ 2kx

2
y
2

+
8k

3
x
2
y
3

+ 3k
2

+ 3k + 18mk + 3􏼐 􏼑x
3
y
3
.

(43)

□
Theorem 6. Let Jm(n, n) be a structure of Y-second type
junction with k≥ 2, n � 2k, m≥ 1 and ΠM1

(I′Jm(n, n); x, y)

is the first Zagreb M-polynomials for I′Jm(n, n). 5en

􏽙
M1

I′Jm(n, n)( 􏼁 � 16kxy
3

+ 16kx
2
y
2

+ 40kx
2
y
3

+ 54k
2

+ 54k + 216mk + 54􏼐 􏼑x
3
y
3
.

(44)

Proof. Amethod to compute the first Zagreb M-polynomial
is given in equation (4) of Definition 4, and this method-
ology is derived from the basic formula of the first Zagreb
index given as shown in equation (2) of Definition 2. Now,
by using the differential operator of I′Jm(n, n), defined in the
Lemma 3, and applying it to equation (4), we will have the
required result of the first Zagreb M-polynomial of
I′Jm(n, n), which is computed as given follows:
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􏽙
M1

I′Jm(n, n)( 􏼁 � Dx + Dy􏼐 􏼑 Π I′Jm(n, n)( 􏼁( 􏼁

� Dx Π I′Jm(n, n)( 􏼁( 􏼁 + Dy Π I′Jm(n, n)( 􏼁( 􏼁

� (4k)xy
3

+(8k)x
2
y
2

+(16k)x
2
y
3

+ 27k
2

+ 27k + 108mk + 27􏼐 􏼑x
3
y
3

+(12k)xy
3

+(8k)x
2
y
2

+(24k)x
2
y
3

+ 27k
2

+ 27k + 108mk + 27􏼐 􏼑x
3
y
3

� 16kxy
3

+ 16kx
2
y
2

+ 40kx
2
y
3

+ 54k
2

+ 54k + 216mk + 54􏼐 􏼑x
3
y
3
.

(45)

□
Theorem 7. Let Jm(n, n) be a structure of Y-second type
junction with k≥ 2, n � 2k, m≥ 1 and ΠM2

(I′Jm(n, n); x, y)

is the second Zagreb M-polynomials for I′Jm(n, n). 5en,

􏽙
M2

I′Jm(n, n)( 􏼁 � 12kxy
3

+ 16kx
2
y
2

+ 48kx
2
y
3

+ 81k
2

+ 81k + 324mk + 81􏼐 􏼑x
3
y
3
.

(46)

Proof. A method to compute the second Zagreb M-poly-
nomial is given in equation (5) of Definition 4, and this
methodology is derived from the basic formula of the second
Zagreb index given in equation (3) of Definition 3. Now, by
using the differential operator of I′Jm(n, n), defined in the
Lemma 3 and applying it to equation (5), we will have the
required result of the second Zagreb M-polynomial of
I′Jm(n, n), which is computed as follows:

􏽙
M2

I′Jm(n, n)( 􏼁 � DxDy􏼐 􏼑 Π I′Jm(n, n)( 􏼁( 􏼁

� Dx (12k)xy
3

+(8k)x
2
y
2

+(24k)x
2
y
3

+ 27k
2

+ 27k + 108mk + 27􏼐 􏼑x
3
y
3

􏼐 􏼑

� 12kxy
3

+ 16kx
2
y
2

+ 48kx
2
y
3

+ 81k
2

+ 81k + 324mk + 81􏼐 􏼑x
3
y
3
.

(47)

□
Theorem 8. Let Jm(n, n) be a structure of Y-second type
junction with k≥ 2, n � 2k, m≥ 1, and ΠRα

(I′Jm(n, n); x, y)

is the general Randić M-polynomials for I′Jm(n, n). 5en,

􏽙
Rα

I′Jm(n, n)( 􏼁 � 3α(4k)xy
3

+ 22α(4k)x
2
y
2

+ 6α(8k)x
2
y
3

+ 32α 9k
2

+ 9k + 36mk + 9􏼐 􏼑x
3
y
3
.

(48)

Proof. A method to compute the generalized Randić
M-polynomial is given in the following equation of Defi-
nition 5, and this methodology is derived from the basic
formula of the generalized Randić index as given in equation
(6) of Definition 5. Now, by using the generalized view of
differential operators of I′Jm(n, n), defined in the Lemma 3,
and applying it to equation (7), we will have the required
result of generalized Randić M-polynomial of I′Jm(n, n),
which is computed as follows:

􏽙
Rα

I′Jm(n, n)( 􏼁 � D
α
xD

α
y􏼐 􏼑 Π I′Jm(n, n)( 􏼁( 􏼁

� D
α
xD

α
y􏼐 􏼑 4kxy

3
+ 4kx

2
y
2

+ 8kx
2
y
3

+ 9k
2

+ 9k + 36mk + 9􏼐 􏼑x
3
y
3

􏼐 􏼑

� 3α(4k)xy
3

+ 22α(4k)x
2
y
2

+ 6α(8k)x
2
y
3

+ 32α 9k
2

+ 9k + 36mk + 9􏼐 􏼑x
3
y
3
.

(49)

□
4. I0Jm(n, n) Structure ofY-Third Type Junction

Theorem 9. Let I″Jm(n, n) be a structure of Y-third type
junction with k≥ 2, n � 2k, m≥ 1 and Π(I″Jm(n, n); x, y) is
the general M-polynomials for I″Jm(n, n). 5en,

Π I″Jm(n, n); x, y( 􏼁 � 8kxy
3

+ 2kx
2
y
2

+ 4kx
2
y
3

+ 9k
2

+ 15k + 36mk + 9􏼐 􏼑x
3
y
3
.

(50)

Proof. From Figure 2, which is the construction for the
structure of the Y-second type junction, we can observe that
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there are four edge partitions based on the degree of end
vertices of each edge that is defined as follows:

e1,3 � uv ∈ E I″Jm(n, n)( 􏼁: d(u) � 1, d(v) � 3􏼈 􏼉,

e2,2 � uv ∈ E I″Jm(n, n)( 􏼁: d(u) � d(v) � 2􏼈 􏼉,
(51)

e2,3 � uv ∈ E I″Jm(n, n)( 􏼁: d(u) � 2, d(v) � 3􏼈 􏼉, (52)

e3,3 � uv ∈ E I″Jm(n, n)( 􏼁: d(u) � d(v) � 3􏼈 􏼉. (53)

)e numbers of these edge types are |e1,3| � 8k,

|e2,2| � 2k, |e2,3| � 4k, and |e3,3| � 9k2 + 15k + 36mk + 9.
)en, from the Definition 1, the M-polynomial of I″Jm(n, n)

can be found as

Π I″Jm(n, n); x, y( 􏼁 � 􏽘
i≤ j

mi,j I″Jm(n, n)( 􏼁x
i
y

j

� 8kxy
3

+ 2kx
2
y
2

+ 4kx
2
y
3

+ 9k
2

+ 15k + 36mk + 9􏼐 􏼑x
3
y
3
.

(54)

□
Lemma 5. Let I″Jm(n, n) be a structure of Y-third type
junction with k≥ 2, n � 2k, m≥ 1, Dx(Π(I″Jm(n, n); x, y))

and Dy(I″Π(Jm(n, n); x, y)) are the differential operators for
I″Jm(n, n). 5en,

Dx Π I″Jm(n, n); x, y( 􏼁( 􏼁 � 8kxy
3

+ 4kx
2
y
2

+ 8kx
2
y
3

+ 27k
2

+ 45k + 108mk + 27􏼐 􏼑x
3
y
3
, (55)

Dy Π I″Jm(n, n); x, y( 􏼁( 􏼁 � 24kxy
3

+ 4kx
2
y
2

+ 12kx
2
y
3

+ 27k
2

+ 45k + 108mk + 27􏼐 􏼑x
3
y
3
. (56)

Proof. In this proof, we will provide an example for the
usage of differential operators. By differentiating the
equation given in the proof of )eorem 9 with respect to
variable x and times the result with the same variable, we will

have the required result of the operator Dx(Π(I″Jm

(n, n); x, y)), for the structure of Y-type junction, which is
I″Jm(n, n).

Dx Π I″Jm(n, n); x, y( 􏼁( 􏼁 � x
zΠ I″Jm(n, n)( 􏼁

zx

� x
z

zx
(8k)xy

3
+(2k)x

2
y
2

+(4k)x
2
y
3

+ 9k
2

+ 15k + 36mk + 9􏼐 􏼑x
3
y
3

􏼐 􏼑

� x (8k)y
3

+(4k)xy
2

+(8k)xy
3

+ 27k
2

+ 45k + 108mk + 27􏼐 􏼑x
2
y
3

􏼐 􏼑

� 8kxy
3

+ 4kx
2
y
2

+ 8kx
2
y
3

+ 27k
2

+ 45k + 108mk + 27􏼐 􏼑x
3
y
3
.

(57)

Similarly, by differentiating the equation given in
the proof of )eorem 9 with respect to variable y

and times the result with the same variable, we will have

the required result of the operator Dy(Π(I″Jm

(n, n); x, y)), for the structure of Y-type junction which is
I″Jm(n, n).
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Dy Π I″Jm(n, n); x, y( 􏼁( 􏼁 � y
zΠ I″Jm(n, n)( 􏼁

zy

� y
z

zy
(8k)xy

3
+(2k)x

2
y
2

+(4k)x
2
y
3

+ 9k
2

+ 15k + 36mk + 9􏼐 􏼑x
3
y
3

􏼐 􏼑

� y (24k)xy
2

+(4k)x
2
y +(12k)x

2
y
2

+ 27k
2

+ 45k + 108mk + 27􏼐 􏼑x
3
y
2

􏼐 􏼑

� 24kxy
3

+ 4kx
2
y
2

+ 12kx
2
y
3

+ 27k
2

+ 45k + 108mk + 27􏼐 􏼑x
3
y
3
.

(58)

□
Lemma 6. Let I″Jm(n, n) be a structure of Y-third type
junction with k≥ 2, n � 2k, m≥ 1, Sx(Π(I″Jm(n, n); x, y))

and Sy(I″Π(Jm(n, n); x, y)) are the integral operators for
I″Jm(n, n). 5en,

Sx Π I″Jm(n, n); x, y( 􏼁( 􏼁 � 3kx
2
y
2

+ 6kx
2
y
3

+ 3k
2

+ k + 18mk + 3􏼐 􏼑x
3
y
3
, (59)

Sy Π I″Jm(n, n); x, y( 􏼁( 􏼁 � 3kx
2
y
2

+ 4kx
2
y
3

+ 3k
2

+ k + 18mk + 3􏼐 􏼑x
3
y
3
. (60)

Proof. In this proof, we will provide an example for the
usage of integral operators. By introducing a new parameter
in the place of a variable x and integrating the equation given
in the proof of )eorem 9 with respect to the same variable,

let say z and times the result with the same variable, we will
have the required result of operator Sx(Π(I″Jm(n, n); x, y)),
for the structure of Y-type junction which is I″Jm(n, n).

Sx Π I″Jm(n, n); x, y( 􏼁( 􏼁 � 􏽚
x

0

Π I″Jm(n, n); z, y( 􏼁

z
dz

� 􏽚
x

0

1
z

(8k)zy
3

+(2k)z
2
y
2

+(4k)z
2
y
3

+ 9k
2

+ 15k + 36mk + 9􏼐 􏼑z
3
y
3

􏼐 􏼑dz

� 􏽚
x

0
(8k)y

3
+ 􏽚

x

0
(2k)zy

2
+ 􏽚

x

0
(4k)zy

3
+ 􏽚

x

0
9k

2
+ 15k + 36mk + 9􏼐 􏼑z

2
y
3dz

� (8k)zy
3
|
x

0 | +(2k)z
2
y
2
|
x

0 +(4k)z
2
y
3
|
x

0 + 9k
2

+ 15k + 36mk + 9􏼐 􏼑z
3
y
3
|
x

0

� 3kx
2
y
2

+ 6kx
2
y
3

+ 3k
2

+ k + 18mk + 3􏼐 􏼑x
3
y
3
.

(61)

Similarly, by introducing a new parameter in the place of
variable y and integrating the equation given in the proof of
)eorem 9 with respect to the same variable, let say z and

times the result with same variable, we will have the required
result of operator Sy(Π(I″Jm(n, n); x, y)), for the structure
of Y-type junction which is I″Jm(n, n).
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Sy Π I″Jm(n, n); x, y( 􏼁( 􏼁 � 􏽚
y

0

Π Jm(n, n); x, z( 􏼁

z
dz

� 􏽚
y

0

1
z

(8k)xz
3

+(2k)x
2
z
2

+(4k)x
2
z
3

+ 9k
2

+ 15k + 36mk + 9􏼐 􏼑x
3
z
3

􏼐 􏼑dz

� 􏽚
y

0
(8k)xz

2
+ 􏽚

y

0
(2k)x

2
z + 􏽚

y

0
(4k)x

2
z
2

+ 􏽚
y

0
9k

2
+ 15k + 36mk + 9􏼐 􏼑x

3
z
2dz

� (8k)xz
2

+ 􏽚
y

0
(2k)x

2
z + 􏽚

y

0
(4k)x

2
z
2

+ 􏽚
y

0
9k

2
+ 15k + 36mk + 9􏼐 􏼑x

3
z
2
|
y

0

� 3kx
2
y
2

+ 4kx
2
y
3

+ 3k
2

+ k + 18mk + 3􏼐 􏼑x
3
y
3
.

(62)

□
Theorem 10. Let I″Jm(n, n) be a structure of Y-third type
junction with k≥ 2, n � 2k, m≥ 1 and ΠM1

(I″Jm(n, n); x, y)

is the first Zagreb M-polynomials for I″Jm(n, n). 5en,

􏽙
M1

I″Jm(n, n)( 􏼁 � 32kxy
3

+ 8kx
2
y
2

+ 20kx
2
y
3

+ 54k
2

+ 90k + 216mk + 54􏼐 􏼑x
3
y
3
.

(63)

Proof. Amethod to compute the first Zagreb M-polynomial
is given in equation (4) of Definition 4, and this method-
ology is derived from the basic formula of the first Zagreb
index given in equation (2) of Definition 2. Now, by using
the differential operator of I″Jm(n, n), defined in the Lemma
5 and applying it to the equation (4), we will have the re-
quired result of the first Zagreb M-polynomial of I″Jm(n, n),
which is computed as follows:

􏽙
M1

I″Jm(n, n)( 􏼁 � Dx + Dy􏼐 􏼑 Π I″Jm(n, n)( 􏼁( 􏼁

� Dx Π I″Jm(n, n)( 􏼁( 􏼁 + Dy Π I″Jm(n, n)( 􏼁( 􏼁

� (8k)xy
3

+(4k)x
2
y
2

+(8k)x
2
y
3

+ 27k
2

+ 45k + 108mk + 27􏼐 􏼑x
3
y
3

+(24k)xy
3

+(4k)x
2
y
2

+(12k)x
2
y
3

+ 27k
2

+ 45k + 108mk + 27􏼐 􏼑x
3
y
3

� 32kxy
3

+ 8kx
2
y
2

+ 20kx
2
y
3

+ 54k
2

+ 90k + 216mk + 54􏼐 􏼑x
3
y
3
.

(64)

□
Theorem 11. Let I″Jm(n, n) be a structure of Y-third type
junction with k≥ 2, n � 2k, m≥ 1 and ΠM2

(I″Jm(n, n); x, y)

is the second Zagreb M-polynomials for I″Jm(n, n). 5en,

􏽙
M2

I″Jm(n, n)( 􏼁 � 24kxy
3

+ 8kx
2
y
2

+ 24kx
2
y
3

+ 81k
2

+ 135k + 324mk + 81􏼐 􏼑x
3
y
3
.

(65)

Proof. A method to compute the second Zagreb M-poly-
nomial is given in equation (5) of Definition 4, and this
methodology is derived from the basic formula of the second
Zagreb index given in equation (3) of Definition 3. Now, by
using the differential operator of I″Jm(n, n), defined in the
Lemma 5 and applying it to equation (5), we will have the
required result of the second Zagreb M-polynomial of
I″Jm(n, n), which is computed as follows:

􏽙
M2

I″Jm(n, n)( 􏼁 � DxDy􏼐 􏼑 Π I″Jm(n, n)( 􏼁( 􏼁

� Dx (24k)xy
3

+(4k)x
2
y
2

+(12k)x
2
y
3

+ 27k
2

+ 45k + 108mk + 27􏼐 􏼑x
3
y
3

􏼐 􏼑

� 24kxy
3

+ 8kx
2
y
2

+ 24kx
2
y
3

+ 81k
2

+ 135k + 324mk + 81􏼐 􏼑x
3
y
3
.

(66)

□
Theorem 12. Let I″Jm(n, n) be a structure of Y-third type
junction with k≥ 2, n � 2k, m≥ 1 and ΠRα

(I″Jm(n, n); x, y)

is the general Randić M-polynomials for I″Jm(n, n). 5en,

12 Journal of Mathematics



􏽙
Rα

I″Jm(n, n)( 􏼁 � 3α(8k)xy
3

+ 4α(2k)x
2
y
2

+ 6α(4k)x
2
y
3

+ 9α 9k
2

+ 15k + 36mk + 9􏼐 􏼑x
3
y
3
. (67)

Proof. A method to compute the generalized Randić
M-polynomial is given in equation (7) of Definition 5, and
this methodology is derived from the basic formula of the
generalized Randić index given in equation (6) of Definition
5. Now, by using the generalized view of differential

operators of I″Jm(n, n), defined in the Lemma 5 and ap-
plying it to equation (7), we will have the required result of
generalized Randić M-polynomial of I″Jm(n, n), which is
computed as follows:

􏽙
Rα

I″Jm(n, n)( 􏼁 � D
α
xD

α
y􏼐 􏼑 Π I″Jm(n, n)( 􏼁( 􏼁

� D
α
xD

α
y􏼐 􏼑 (8k)xy

3
+(2k)x

2
y
2

+(4k)x
2
y
3

+ 9k
2

+ 15k + 36mk + 9􏼐 􏼑x
3
y
3

􏼐 􏼑

� 3α(8k)xy
3

+ 4α(2k)x
2
y
2

+ 6α(4k)x
2
y
3

+ 9α 9k
2

+ 15k + 36mk + 9􏼐 􏼑x
3
y
3
.

(68)

□
5. I-Jm(n, n) Structure of Y-Fourth
Type Junction

Theorem 13. Let I‴Jm(n, n) be a structure of Y-fourth type
junction with k≥ 2, n � 2k, m≥ 1 and Π(I‴Jm(n, n); x, y) is
the general M-polynomials for I‴Jm(n, n). 5en,

Π I
‴

Jm(n, n); x, y􏼒 􏼓 � 12kxy
3

+ 9k
2

+ 21k + 36mk + 9􏼐 􏼑x
3
y
3
.

(69)

Proof. From Figure 2, which is the construction for the
structure of the Y-second type junction, we can observe that
there are two edge partitions based on the degree of end
vertices of each edge that is defined as

e1,3 � uv ∈ E I
‴

Jm(n, n)􏼒 􏼓: d(u) � 1, d(v) � 3􏼚 􏼛,

e3,3 � uv ∈ E I
‴

Jm(n, n)􏼒 􏼓: d(u) � d(v) � 3􏼚 􏼛.

(70)

)e numbers of these edge types are |e1,3| � 12k and
|e3,3| � 9k2 + 21k + 36mk + 9. )en, from the Definition 1,
the M-polynomial of I‴Jm(n, n) can be found as

Π I″″Jm(n, n); x, y􏼒 􏼓 � 􏽘
i≤ j

mi,j I″″Jm(n, n)􏼒 􏼓x
i
y

j

� 12kxy
3

+ 9k
2

+ 21k + 36mk + 9􏼐 􏼑x
3
y
3
.

(71)

□
Lemma 7. Let I‴Jm(n, n) be a structure of Y-fourth type
junction with k≥ 2, n � 2k, m≥ 1, Dx(Π(I‴Jm(n, n); x, y))

and Dy(I‴Π(Jm(n, n); x, y)) are the integral operators for
I‴Jm(n, n). 5en,

Dx Π I
‴

Jm(n, n); x, y􏼒 􏼓􏼒 􏼓 � 12kxy
3

+ 27k
2

+ 63k + 108mk + 27􏼐 􏼑x
3
y
3
, (72)

Dy Π I
‴

Jm(n, n); x, y􏼒 􏼓􏼒 􏼓 � 36kxy
3

+ 27k
2

+ 63k + 108mk + 27􏼐 􏼑x
3
y
3
. (73)

Proof. In this proof, we will provide an example for the usage
of differential operators. By differentiating the equation given
in the proof of )eorem 13 with respect to variable x and

times the result with the same variable, we will have the
required result of the operator Dx(Π (I‴Jm(n, n); x, y)), for
the structure of Y-type junction which is I‴Jm(n, n).
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Dx Π I
‴

Jm(n, n); x, y􏼒 􏼓􏼒 􏼓 � x
zΠ I
‴

Jm(n, n)􏼒 􏼓

zx

� x
z

zx
(12k)xy

3
+ 9k

2
+ 21k + 36mk + 9􏼐 􏼑x

3
y
3

􏼐 􏼑

� x (12k)y
3

+ 27k
2

+ 63k + 108mk + 27􏼐 􏼑x
2
y
3

􏼐 􏼑

� 12kxy
3

+ 27k
2

+ 63k + 108mk + 27􏼐 􏼑x
3
y
3
.

(74)

Similarly, by differentiating the equation given in the
proof of)eorem 13 with respect to variable y and times the
result with the same variable, we will have the required result

of the operator Dy(Π(I‴Jm(n, n); x, y)), for the structure of
Y-type junction which is I‴Jm(n, n).

Dy Π I
‴

Jm(n, n); x, y􏼒 􏼓􏼒 􏼓 � y
zΠ I
‴

Jm(n, n)􏼒 􏼓

zy

� y
z

zx
(12k)xy

3
+ 9k

2
+ 21k + 36mk + 9􏼐 􏼑x

3
y
2

􏼐 􏼑

� y (36k)xy
2

+ 27k
2

+ 63k + 108mk + 27􏼐 􏼑x
3
y
2

􏼐 􏼑

� 36kxy
3

+ 27k
2

+ 63k + 108mk + 27􏼐 􏼑x
3
y
3
.

(75)

□
Lemma 8. Let I‴Jm(n, n) be a structure of Y-fourth type
junction with k≥ 2, n � 2k, m≥ 1, Sx(Π(I‴Jm(n, n); x, y))

and Sy(I‴Π(Jm(n, n); x, y)) are the integral operators for
I‴Jm(n, n). 5en,

Sx Π I
‴

Jm(n, n); x, y􏼒 􏼓􏼒 􏼓 � 3kx
2
y
2

+ 6kx
2
y
3

+ 3k
2

+ k + 18mk + 3􏼐 􏼑x
3
y
3
, (76)

Sy � 3kx
2
y
2

+ 4kx
2
y
3

+ 3k
2

+ k + 18mk + 3􏼐 􏼑x
3
y
3
. (77)

Proof. In this proof, we will provide an example for the
usage of integral operators. By introducing a new parameter
in the place of variable x and integrating the equation given
in the proof of)eorem 13 with respect to the same variable,

let say z and times the result with the same variable, we will
have the required result of the operator Sx(Π(I‴Jm

(n, n); x, y)), for the structure of Y-type junction which is
I′′′Jm(n, n).

Sx Π I
‴

Jm(n, n); x, y􏼒 􏼓􏼒 􏼓 � 􏽚
x

0

Π I
‴

Jm(n, n); z, y􏼒 􏼓

z
dz

� 􏽚
x

0

1
z

12kzy
3

+ 9k
2

+ 21k + 36mk + 9􏼐 􏼑z
3
y
3

􏼐 􏼑dz

� 􏽚
x

0
(12k)y

3
+ 􏽚

x

0
9k

2
+ 21k + 36mk + 9􏼐 􏼑z

2
y
3
z

� (12k)zy
3
|
x

0 + 9k
2

+ 21k + 36mk + 9􏼐 􏼑z
3
y
3
|
x

0

� 3kx
2
y
2

+ 6kx
2
y
3

+ 3k
2

+ k + 18mk + 3􏼐 􏼑x
3
y
3
.

(78)

Similarly, by introducing a new parameter in the place of
variable y, and integrating the equation given in the proof of
)eorem 13 with respect to the same variable, let say z and

times the result with the same variable, we will have the
required result of the operator Sy(Π(I‴Jm(n, n); x, y)), for
the structure of Y-type junction which is I‴Jm(n, n).
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Sy Π I
‴

Jm(n, n); x, y􏼒 􏼓􏼒 􏼓 � 􏽚
x

0

Π I
‴

Jm(n, n); x, z􏼒 􏼓

z
dz

� 􏽚
y

0

1
z

(12k)xz
3

+ 9k
2

+ 21k + 36mk + 9􏼐 􏼑x
3
z
3

􏼐 􏼑dz

� 􏽚
y

0
(12k)xz

2
dz + 􏽚

y

0
9k

2
+ 21k + 36mk + 9􏼐 􏼑x

3
z
2
zdz

� (12k)x
z3

3
|

y

0
+ 9k

2
+ 21k + 36mk + 9􏼐 􏼑x

3z
3

3
|

y

0

� 3kx
2
y
2

+ 4kx
2
y
3

+ 3k
2

+ k + 18mk + 3􏼐 􏼑x
3
y
3
.

(79)

□
Theorem 14. Let I‴Jm(n, n) be a structure of Y-fourth type
junction with k≥ 2, n � 2k, m≥ 1 and ΠM1

(I‴Jm (n, n);

x, y) is the first Zagreb M-polynomials for I‴Jm(n, n). 5en,

􏽙
M1

I
‴

Jm(n, n)􏼒 􏼓 � 48kxy
3

+ 54k
2

+ 126k + 216mk + 54􏼐 􏼑x
3
y
3
.

(80)

Proof. Amethod to compute the first Zagreb M-polynomial
is given in equation (4) of Definition 4, and this method-
ology is derived from the basic formula of the first Zagreb
index given in equation (2) of Definition 2. Now, by using
the differential operator of I‴Jm(n, n), defined in the Lemma
7 and applying it to Equation 4, we will have the required
result of the first Zagreb M-polynomial of I‴Jm(n, n), which
is computed as follows:

􏽙
M1

I
‴

Jm(n, n)􏼒 􏼓 � Dx + Dy􏼐 􏼑 Π I
‴

Jm(n, n)􏼒 􏼓􏼒 􏼓

� Dx Π I
‴

Jm(n, n)􏼒 􏼓􏼒 􏼓 + Dy Π I
‴

Jm(n, n)􏼒 􏼓􏼒 􏼓

� (12k)xy
3

+ 27k
2

+ 63k + 108mk + 27􏼐 􏼑x
3
y
3

+(36k)xy
3

+ 27k
2

+ 63k + 108mk + 27􏼐 􏼑x
3
y
3

� 48kxy
3

+ 54k
2

+ 126k + 216mk + 54􏼐 􏼑x
3
y
3
.

(81)

□
Theorem 15. Let I‴Jm(n, n) be a structure of Y-fourth type
junction with k≥ 2, n � 2k, m≥ 1 andΠM2

(I‴Jm(n, n); x, y)

is the second Zagreb M-polynomials for I‴Jm(n, n). 5en,

􏽙
M2

I
‴

Jm(n, n)􏼒 􏼓 � 36kxy
3

+ 81k
2

+ 189k + 324mk + 27􏼐 􏼑x
3
y
3
.

(82)

Proof. A method to compute the second Zagreb M-poly-
nomial is given in equation (5) of Definition 4, and this
methodology is derived from the basic formula of the second
Zagreb index given in equation (3) of Definition 3. Now, by
using the differential operator of I‴Jm(n, n), defined in the
Lemma 7 and applying it to equation (5), we will have the
required result of the second Zagreb M-polynomial of
I‴Jm(n, n), which is computed as follows:

􏽙
M2

I
‴

Jm(n, n)􏼒 􏼓 � DxDy􏼐 􏼑 Π I
‴

Jm(n, n)􏼒 􏼓􏼒 􏼓

� Dx (36k)xy
3

+ 27k
2

+ 63k + 108mk + 9􏼐 􏼑x
3
y
3

􏼐 􏼑

� 36kxy
3

+ 81k
2

+ 189k + 324mk + 27􏼐 􏼑x
3
y
3
.

(83)

□
Theorem 16. Let I‴Jm(n, n) be a structure of Y-fourth type
junction with k≥ 2, n � 2k, m≥ 1 and ΠRα

(I‴Jm(n, n); x, y)

is the general Randić M-polynomials for I‴Jm(n, n). 5en,
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􏽙
Rα

I
‴

Jm(n, n)􏼒 􏼓 � 3α(12k)xy
3

+ 32α 9k
2

+ 21k + 36mk + 9􏼐 􏼑x
3
y
3
.

(84)

Proof. A method to compute the generalized Randić
M-polynomial is given in equation (7) of Definition 1, and

this methodology is derived from the basic formula of the
generalized Randić index given in equation (6) of Definition
5. Now, by using the generalized view of differential oper-
ators of I‴Jm(n, n), defined in the Lemma 7, and applying it
to equation (7), we will have the required result of gener-
alized Randić M-polynomial of I‴Jm(n, n), which is com-
puted as follows:

􏽙
Rα

I
‴

Jm(n, n)􏼒 􏼓 � D
α
xD

α
y􏼐 􏼑 Π I

‴
Jm(n, n)􏼒 􏼓􏼒 􏼓

� D
α
xD

α
y􏼐 􏼑 12kxy

3
+ 9k

2
+ 21k + 36mk + 9􏼐 􏼑x

3
y
3

􏼐 􏼑

� 3α(12k)xy
3

+ 32α 9k
2

+ 21k + 36mk + 9􏼐 􏼑x
3
y
3
.

(85)

□

6. Verifications of Topological Indices

)ere are some techniques to find the authenticity or cor-
rectness of topological indices. M-polynomial is one of the
techniques. By using)eorems 2 to 4, we can verify the main
results of topological indices given in the [36], for the
structure of Y-type junction or Jm(n, n). Similarly, for the
results of the structure of Y-second type junction or
I′Jm(n, n), we can use the results of our main )eorems 6 to
8 and use the values of x � y � 1. For the results of the
structure of the Y-third type junction or I″Jm(n, n), we can
use the results of our main )eorems 10 to 12 while )e-
orems 14 to 16 are used to verify the results of the structure
of the Y-fourth type junction or I‴Jm(n, n), given as follows.

Theorem 17. Let Jm(n, n) be a structure of Y-type junction
with k≥ 2, n � 2k, m≥ 1 and M1(Jm(n, n)) is the first Zagreb
index for Jm(n, n). 5en,

M1 Jm(n, n)( 􏼁 � 102k + 54k
2

+ 216mk + 54. (86)

Theorem 18. Let Jm(n, n) be a structure of Y-type junction
with k≥ 2, n � 2k, m≥ 1 and M2(Jm(n, n)) is the second
Zagreb index for Jm(n, n). 5en,

M2 Jm(n, n)( 􏼁 � 123k + 81k
2

+ 324mk + 81. (87)

Theorem 19. Let Jm(n, n) be a structure of Y-type junction
with k≥ 2, n � 2k, m≥ 1 and Rα(Jm(n, n)) is the general
Randić index for Jm(n, n). 5en,

Rα Jm(n, n)( 􏼁 � 4α(6k) + 6α(12k) + 9α 9k
2

+ 3k + 36mk + 9􏼐 􏼑.

(88)

Theorem 20. Let Jm(n, n) be a structure of Y-second type
junction with k≥ 2, n � 2k, m≥ 1 and M1(I′Jm(n, n)) is the
first Zagreb index for I′Jm(n, n). 5en,

M1 I′Jm(n, n)( 􏼁 � 126k + 54k
2

+ 216mk + 54. (89)

Theorem 21. Let Jm(n, n) be a structure of Y-second type
junction with k≥ 2, n � 2k, m≥ 1 and M2(I′Jm(n, n)) is the
second Zagreb index for I′Jm(n, n). 5en,

M2 I′Jm(n, n)( 􏼁 � 157k + 81k
2

+ 324mk + 81. (90)

Theorem 22. Let Jm(n, n) be a structure of Y-second type
junction with k≥ 2, n � 2k, m≥ 1 and Rα(I′Jm(n, n)) is the
general Randić index for I′Jm(n, n). 5en,

Rα I′Jm(n, n)( 􏼁 � 3α(4k) + 22α(4k) + 6α(8k)

+ 32α 9k
2

+ 9k + 36mk + 9􏼐 􏼑.
(91)

Theorem 23. Let I′′Jm(n, n) be a structure of Y-third type
junction with k≥ 2, n � 2k, m≥ 1 and M1(I″Jm(n, n)) is the
first Zagreb index for I″Jm(n, n). 5en,

M1 I″Jm(n, n)( 􏼁 � 150k + 54k
2

+ 216mk + 54. (92)

Theorem 24. Let I″Jm(n, n) be a structure of Y-third type
junction with k≥ 2, n � 2k, m≥ 1 and M2(I″Jm(n, n)) is the
second Zagreb index for I″Jm(n, n). 5en,

M2 I″Jm(n, n)( 􏼁 � 191k + 81k
2

+ 324mk + 81. (93)

Theorem 25. Let I″Jm(n, n) be a structure of Y-third type
junction with k≥ 2, n � 2k, m≥ 1 and Rα(I″Jm(n, n)) is the
general Randić index for I″Jm(n, n). 5en,

Rα I″Jm(n, n)( 􏼁 � 3α(8k) + 4α(2k) + 6α(4k)

+ 9α 9k
2

+ 15k + 36mk + 9􏼐 􏼑.
(94)

Theorem 26. Let I‴Jm(n, n) be a structure of Y-fourth type
junction with k≥ 2, n � 2k, m≥ 1 and M1(I‴Jm(n, n)) is the
first Zagreb index for I‴Jm(n, n). 5en,
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M1 I
‴

Jm(n, n)􏼒 􏼓 � 174k + 54k
2

+ 216mk + 54. (95)

Theorem 27. Let I‴Jm(n, n) be a structure of Y-fourth type
junction with k≥ 2, n � 2k, m≥ 1 and M2(I‴Jm(n, n)) is the
second Zagreb index for I‴Jm(n, n). 5en,

M2 I
‴

Jm(n, n)􏼒 􏼓 � 225k + 81k
2

+ 324mk + 81. (96)

Theorem 28. Let I‴Jm(n, n) be a structure of Y-fourth type
junction with k≥ 2, n � 2k, m≥ 1 and Rα(I‴Jm(n, n)) is the
general Randić index for I‴Jm(n, n). 5en,

Rα I
‴

Jm(n, n)􏼒 􏼓 � 3α(12k) + 32α 9k
2

+ 15k + 36mk + 9􏼐 􏼑.

(97)

From the above discussion, the topological indices, given
in the [36], are found correct, and calculations are verified
here with M-polynomials methodology.

7. Conclusion

In this research work, vertex-degree-based M-polynomials
of Y-junctions and their variants are studied for the first
time.We determined general Randić first and second Zagreb
vertex-degree-based M-polynomials for four types of Y-
shaped carbon nanotube junctions Jm(n, n). By this method,
Y-junctions and their structures are elaborated in numerical
form, and the whole compound is described as a numeric
digit. Instead of a whole complex structure, it will be easy to
see as a numeric quantity. Furthermore, we verified the
results from literature given on the concept of the topo-
logical index from the method of vertex-degree-based
M-polynomials and concluded that the results are calculated
correctly in the literature.
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