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In this paper, we investigate the long-time behavior for the nonautonomous semilinear second-order evolution equation
(z2u/zt2) − Δu − Δ(zu/zt) − Δ(z2u/zt2) � f(t, u(x, t − ρ(t))) + g(t, x), in(τ,∞) ×Ω with some hereditary characteristics,
where Ω is an open-bounded domain of RN(N≥ 3) with smooth boundary zΩ. Firstly, we establish the existence of solutions for
the second-order nonautonomous evolution equation by the standard Faedo–Galerkin method, but without the uniqueness of
solutions. en by proving the pullback asymptotic compactness for the multivalued process U(t, τ){ } on CH1

0(Ω),H
1
0(Ω)

, we obtain
the existence of pullback attractors in the Banach spaces CH1

0(Ω),H
1
0(Ω)

for the multivalued process generated by a class of second-
order nonautonomous evolution equations with hereditary characteristics and ill-posedness.

1. Introduction

e study of nonlinear dynamics is a fascinating question
which is at the very heart of understanding of many im-
portant problems of the natural sciences. e long-time
behavior of PDEs can be described in the terms of attractors
of the corresponding semigroups, such as Babin and Vishik

[1], Chepyzhov and Vishik [2], Chueshov and Lasiecka [3],
Hale [4], Ladyzhenskaya [5], or Temam [6], and the refer-
ences therein. e study of pullback attractor for in�nite
dimensional dynamical systems has attracted much atten-
tion and has made fast progress in recent decades [7–13].

In this paper, we consider the following nonautonomous
semilinear second-order evolution equation with delays:

z2u

zt2
− Δu − Δ

zu

zt
− ]Δ

z2u

zt2
� f(t, u(x, t − ρ(t))) + g(t, x), in(τ,∞) ×Ω,

u(t, x) � ϕ(t − τ, x), t ∈ [τ − h, τ], x ∈ Ω,

zu(t, x)
zt

�
zϕ(t − τ, x)

zt
, t ∈ [τ − h, τ], x ∈ Ω,

u(t, x) � 0, on(τ,∞) × zΩ,




(1)
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where Ω is an open-bounded domain of RN(N≥ 3) with
smooth boundary zΩ, τ is the initial time, and ϕ is the initial
data on the interval [τ − h, τ] with h> 0.

-e nonlinearity f(·) and the external force g(t, x)

satisfy the following conditions, respectively.
In(A1), there exist positive constants α1 and α2 such that

the functions f ∈ C(R × RN;R) and ρ ∈ C(R; [0, h])

satisfy

|f(t, v)|
2 ≤ α21 + α22|v|

2
, ∀t ∈ R, v ∈ RN

, (2)

|ρ′(t)|≤ ρ∗ < 1, ∀t ∈ R. (3)

In (A2), the external force g(t, x) belongs to the space
L2

loc(R, L2(Ω)) such that


τ

− ∞
e
λr

|g(r, ·)|
2
L2(Ω)dr<∞, ∀τ ∈ R, λ> 0. (4)

When ] � 0 and without variable delays, Equation (1)
becomes the usual strongly damped wave equation:

z
2
u

zt
2 − Δu − Δ

zu

zt
� f(u) + g(t, x). (5)

Its asymptotic behavior has been studied extensively in
terms of attractors [1,14–20] .-e long-time behavior for the
strongly damped wave equation with delays has been in-
vestigated in Refs. [7,12].

For each fixed ]> 0 and without variable delays,
Equation (1) becomes

z
2
u

zt
2 − Δu − Δ

zu

zt
− ]Δ

z
2
u

zt
2 � f(u) + g(t, x). (6)

It is a special form of the so-called improved Boussinesq
equation (see [21–24]) with damped term − Δut, which was
used to describe ion-sound waves in plasma by Makhankov
[22,25] and also known to represent other sorts of “prop-
agation problems” of, for example, lengthways waves in
nonlinear elastic rods and ion-sonic waves of space trans-
formations by a weak nonlinear effect [21]. Carvalho and
Cholewa [26] presented systematic results including the
existence-uniqueness and long-time behavior of Equation
(6) by using the semigroup approach. -e long-time be-
havior of, especially the global attractor, exponential
attractors has been extensively studied by several authors
[26–29] . For the nonautonomous semilinear second-order
evolution (6) with the memory term, we get

utt − Δu − Δut − 
∞

0
kε(s)Δut(t − s)ds − ]Δutt + f(u) � g(x, t).

(7)

Zhang et al. in Ref. [30] constructed the existence of
robust family of exponential attractors while the nonline-
arity is critical and the time-dependent external forcing term
is assumed to be only translation-bounded.

Indeed, for Equation (6), in all above results, we require
the solution operator given as follows:

S(t): u0↦u(t). (8)

To be well-defined and continuous in a proper phase
space. However, for many interesting problems, the well-
posedness of the solution operator S(t) is not known or does
not hold true [11–13, 31–33] .

To the best of our knowledge, the long-time dynamics of
Equation (1) with hereditary characteristics has not been
considered by predecessors. -ere are some barriers en-
countered. On the one hand, Equation (1) contains the term
− Δutt, and it is essentially different from the usual wave
equation in Refs. [1, 7, 12, 14–20]. For example, the wave
equation has some smoothing effect; for example, although
the initial data only belongs to a weaker topology space, the
solution will belong to a stronger topology space with higher
regularity. However, for Equation (1), if the initial data
ϕ ∈ CH1

0(Ω),H1
0(Ω), then the solution ut(·) is always in

CH1
0(Ω),H1

0(Ω) and has no higher regularity because of − Δutt,
and it will cause some difficulties [26–29]. On the other
hand, suppose that (A1) − (A2) hold true, then
g ∈ L2

loc(R; H) and ϕ ∈ CH1
0(Ω),H1

0(Ω), then the uniqueness of
the weak solutions for Equation (1) are lost; that is, we need
to overcome some difficulties brought by ill-posedness. In
addition, the delay term also causes some difficulties to
obtain the pullback attractors.

-is paper is organized as follows. In Section 1, we have
expounded on research progress regarding our research
problem and have given some assumptions. In Section 2, we
introduce some notations and functions spaces, and we
recall some useful results on nonautonomous multivalued
dynamical systems and pullback attractors. In Section 3, we
prove the existence of solutions for Equation (1) in
ϕ ∈ CH1

0(Ω),H1
0(Ω). -e existence of pullback attractor for the

multivalued process U(t, τ){ } corresponding to Equation (1)
is proved in Section 4.

2. Preliminaries

Next, we iterate some definitions and abstract results con-
cerning the multivalued dynamical systems and the pullback
attractor, which is necessary to obtain our main results
[7–13,34] .

Let X be a complete metric space with metric dX(·, ·),
and let P(X) be the class of nonempty subsets of X.
Denoted by Hsemi

X (·, ·) the Hausdorff semidistance between
two nonempty subsets of a complete metric space X can be
defined as

H
semi
X (A, B) � sup

a∈A
inf
b∈B

dX(a, b). (9)

Definition 1. A family of mappings U(t, τ): X⟶ P(X)

and t≥ τ, τ ∈ R is called to be a multivalued process if

U(τ, τ)x � x, ∀τ ∈ R, x ∈ X, (10)

U(t, r)U(r, τ)x � U(t, τ)xfor allτ ≤ r≤ t, x ∈ X. (11)

Let D be a nonempty class of parametrized sets
D � D(t){ }t∈R ⊂ P(X).

2 Journal of Mathematics



Definition 2. A collection D of some families of nonempty
closed subsets of X is said to be inclusion-closed if for each
D � D(t){ }t∈R ∈ D, we have

D(t): D(t)is a non empty subset ofD(t), ∀t ∈ R . (12)

which also belongs to D.

Definition 3. Let U(t, τ){ } be a multivalued process on X,
then we get those as follows:

(1) Q � Q(t){ }t∈R ∈ D is called a D-pullback absorbing
set for U(t, τ){ } if for any B � B(t){ }t∈R ∈ D and
each t ∈ R, there exists a t0 � t0(B, t) ∈ R+ such
that

U(t, t − s)B(t − s) ⊂ Q(t), ∀s≥ t0 (13)

(2) U(t, τ){ } is said to be D-pullback asymptotically
upper-semicompact in X with respect to B if for
each fixed t ∈ R, any sequence yn ∈ U(t, t − sn)xn

has a convergent subsequence in X whenever
sn⟶ +∞(n⟶∞) and xn ∈ B(t − sn) with
B � B(t){ }t∈R ∈ D

Theorem 1. A family of nonempty compact subsets A �

A(t){ }t∈R ∈ D of X is called to be a D-pullback attractor for
the multivalued process U(t, τ){ } if

(1) A � A(t){ }t∈R is an invariant, i.e.,

U(t, τ)A(τ) � A(t), ∀t≥ τ, τ ∈ R. (14)

(2) A attracts every member of D, i.e., for every B �

B(t){ }t∈R ∈ D and any fixed t ∈ R, we get

lim
s⟶+∞

H
semi
X (U(t, t − s)B, A(t)) � 0. (15)

Theorem 2. Let U(t, τ){ } be a multivalued process on
Banach space X, and let Q � Q(t){ }t∈R be a D− pullback
absorbing set for U(t, τ){ } inD. Suppose that U can be written
as

U(t, τ) � U1(t, τ) + U2(t, τ), ∀t≥ τ, (16)

and for any fixed t ∈ R, then we get those as follows:

(1) lims⟶∞‖U1(t, t − s)Q(t − s)‖X � 0
(2) For any fixed s> 0, every sequence

yn ∈ U2(t, t − s)Q(t − s) is a Cauchy sequence in X

9en U(t, τ){ } is D-pullback asymptotically upper-sem-
icompact in X.

Theorem 3. Let D be an inclusion-closed collection of some
families of nonempty closed subsets of X and U(t, τ){ } be a
multivalued process on X. Also, U has a closed values and let
U(t, τ)x be upper semicontinuous in x for fixed t≥ τ, τ ∈ R.
Suppose that U(t, τ){ } is D-pullback asymptotical upper-
semicompact in X, then U(t, τ){ } has aD-pullback absorbing

set Q � Q(t){ }t∈R ∈ D, and Q(t) is closed for every t ∈ R.
9en, the D-pullback attractor A � A(t){ }t∈R is unique for
each t ∈ R and is given by

A(t) � ∩
T∈R+
∪

s≥T
U(t, t − s)Q(t − s). (17)

Let H � L2(Ω) and V � H1
0(Ω), which are Hilbert

spaces for the usual inner products and associated norms.
Let Au � − Δu for any u ∈ D(A), where
D(A) � u ∈ V: Au ∈ H{ } � H1

0(Ω)∩H2(Ω). Note that
D(A) is also a Hilbert space for the norm ‖u‖D(A) � |Au|,
u ∈ D(A).

Let X be a Banach space with norm ‖ · ‖X. Let h> 0 be a
given positive number, which will denote the delay time, and
let CX denote the Banach space C0([− h, 0]; X) with the sup-
norm, then we get

‖ψ‖CX
≔ � sup

s∈[− h,0]

‖ψ(s)‖X, forψ ∈ CX. (18)

We can denote by CX,X the Banach spaces
CX ∩C1([− h, 0]; X) with the norm ‖ · ‖CX,X

that is defined by

‖ψ‖
2
CX,X
≔ � ‖ψ‖

2
CX

+‖ψ′‖2CX
, forψ ∈ CX,X. (19)

Given τ ∈ R, T> τ and u: [τ − h, T⟶ )X, for each
t ∈ [τ, T), we can denote as

ut: [− h, 0]⟶ X. (20)

Denote the function defined on by

ut(s) � u(t + s), s ∈ [− h, 0]. (21)

Without the loss of generality, we assume that ] � 1 in
the following discussion.

3. Existence of Solutions

In this section, we want to prove the existence of solutions
which can be obtained by the standard Faedo–Galerkin
methods (see [1,6,35]), and the multivalued evolution
processes corresponding to Equation (1) will be constructed.
We only give the sketch of proof, and the details similar to
the proof of -eorem 4 in Ref. [2], Sec. XV.3 and the ar-
guments in [6] Sec. IV. 4.4.

Theorem 4. Suppose that (A1) − (A2) holds true,
g ∈ L2

loc(R; H) and ϕ ∈ CV,V, then there exist solutions u(t)

of Equation (1) such that

u ∈ C1
([τ − h, T]; V),

zu

zt
∈ C1

( τ[ − h; V), ∀T> τ.

(22)

Proof. (Sketch)
Let Au � − Δu for any u ∈ D(A), where

D(A) � u ∈ V: Au ∈ H{ } � H1
0(Ω)∩H2(Ω). Since A is

self-adjoint, positive operator and has a compact inverse,
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and there exists a complete set of eigenvectors ωi 
∞
i�1 in H,

and the corresponding eigenvalues λi 
∞
i�1 satisfy

Aωi � λiωi, 0< λ1 ≤ λ2 ≤ . . . ≤ λi ≤ . . .

⟶ +∞, i⟶ +∞.
(23)

Setting Vm � span ω1,ω2, . . . ,ωm  and Pm is the or-
thogonal projection onto Hm, then we get

Pmu � 
m

i�1
u,ωi( ωi, u ∈ H. (24)

We consider the approximate solutions of Equation (1)
in the form

um(t) � 
m

j�1
αjm(t)wj. (25)

-en um(t) satisfies

z
2
um

zt
2 − Δum − Δ

zum

zt
− ]Δ

z
2
um

zt
2

� f t, um(x, t − ρ(t))(  + Pmg(t, x),

um(t, x) � Pmϕ(t − τ, x), t ∈ [τ − h, τ],

zum(t, x)

zt
�

zPmϕ(t − τ, x)

zt
, t ∈ [τ − h, τ].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

Let vm � um
′ + ηum(0< η< 1), and we write Equation

(26) as

d
dt

vm − ηvm + η2um − 1 − η + η2 Δum

− Δ
d
dt

vm − (1 − η)Δvm

� f t, um(t − ρ(t))(  + Pmg(t).

(27)

Multiplying Equation (27) by vm in L2(Ω), we infer that
1
2
d
dt

vm

����
����
2

+ ∇vm

����
����
2

+ η2 um

����
����
2

+ 1 − η + η2  ∇um

����
����
2

 

− η vm

����
����
2

+ η3 um

����
����
2

+ η 1 − η + η2  ∇um

����
����
2

+(1 − η) ∇vm

����
����
2

� f t, um(t − ρ(t))( , vm(  + g(t), vm( .

(28)

Noting (2), using Young’s inequality, we get that

f t, um(t − ρ(t))( , vm( 


≤
η
2

vm

����
����
2

+
α22
2η

um(t − ρ(t))
����

����
2

+
α21|Ω|

2η
,

(29)

and

g(t), vm( 


≤
η
2

vm

����
����
2

+
1
2η

‖g(t)‖
2
. (30)

By the Poincáre inequality λ1‖u‖2 ≤ ‖∇u‖2, we get that

1
2
d
dt

vm

����
����
2

+ ∇vm

����
����
2

+ η2 um

����
����
2

+ 1 − η + η2  ∇um

����
����
2

 

+
λ1(1 − η)

2
− 2η  vm

����
����
2

+
1 − η
2
∇vm

����
����
2

+ η3 um

����
����
2

+ η 1 − η + η2  ∇um

����
����
2

≤
α22
2η

um(t − ρ(t))
����

����
2

+
1
2η

‖g(t)‖
2

+
α21|Ω|

2η
.

(31)

Choosing η � min 1/3, λ1/λ1 + 6 , we infer that

1
2
d
dt

vm

����
����
2

+ ∇vm

����
����
2

+ η2 um

����
����
2

+ 1 − η + η2  ∇um

����
����
2

 

+ η vm

����
����
2

+ ∇vm

����
����
2

+ η2 um

����
����
2

+ 1 − η + η2  ∇um

����
����
2

 

≤
α22
2η

um(t − ρ(t))
����

����
2

+
1
2η

‖g(t)‖
2

+
α21|Ω|

2η
.

(32)

Note that for any η> 0, we have

vm

����
����
2

+ ∇vm

����
����
2

+ η2 um

����
����
2

+ 1 − η + η2  ∇um

����
����
2

∼ vm

����
����
2

+ ∇vm

����
����
2

+ um

����
����
2

+ ∇um

����
����
2

∼ ∇vm

����
����
2

+ ∇um

����
����
2
.

(33)

Now integrating (32) from τ to t, we get

∇vm(t)
����

����
2

+ ∇um(t)
����

����
2

+ η
t

τ
∇vm(s)

����
����
2

+ ∇um(s)
����

����
2

 ds

≤ ∇vm(τ)
����

����
2

+ ∇um(τ)
����

����
2

+
α22
η


t

τ
um(s − ρ(s))

����
����
2ds

+
1
η


t

τ
‖g(s)‖

2ds +
α21|Ω|

η
(t − τ).

(34)

In view of ρ(s) ∈ [0, h] and the fact
1

1 − ρ′(s)
≤

1
1 − ρ∗

, (35)

for all s ∈ R, setting r � s − ρ(s), we arrive at
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α22
η


t

τ
um(s − ρ(s))

����
����
2ds

≤
α22

η 1 − ρ∗( 

τ

τ− h
um(s)

����
����
2ds + 

t

τ
um(s)

����
����
2ds 

≤
α22

ηλ1 1 − ρ∗( 
‖ϕ‖

2
V,V

+
α22

ηλ1 1 − ρ∗( 


t

τ
∇vm(s)

����
����
2

+ ∇um(s)
����

����
2

 ds.

(36)

-us, we obtain that

∇vm(t)
����

����
2

+ ∇um(t)
����

����
2

≤ ∇vm(τ)
����

����
2

+ ∇um(τ)
����

����
2

+
α22

ηλ1 1 − ρ∗( 
‖ϕ‖

2
V,V

+
1
η


t

τ
‖g(s)‖

2ds

+
α21|Ω|

η
(t − τ) +

α22
ηλ1 1 − ρ∗( 


t

τ
∇vm(s)

����
����
2

+ ∇um(s)
����

����
2

 ds.

(37)

By the integral form of Gronwall lemma, we infer that

∇vm(t)
����

����
2

+ ∇um(t)
����

����
2

≤Ce
C(t− τ)

‖ϕ‖
2
V,V +(t − τ) + 

t

τ
‖g(s)‖

2ds .
(38)

-en,

um, um
′ is a bounded set ofL∞(τ − h, T; V × V)asm⟶∞.

(39)

-us, we can extract a subsequence, still denoted as m, such
that

um⟶ uinL
∞

(τ − h, T; V)weak − star, asm⟶∞, (40)

and

um
′⟶ uinL

∞
(τ − h, T; V)weak − star, asm⟶∞. (41)

Furthermore,

um⟶ uinL
2
(Ω ×[τ − h, T])strongly, (42)

and

um⟶ ufor almost every(t, x) ∈ [τ − h, T] ×Ω. (43)

Note that f ∈ C(R × RN;R), then

f um( ⟶ f(u)inL
2
(τ − h, T; V)weakly. (44)

We then pass the limit in Equation (26), and we can find
that u is a solution of Equation (1) such that

u ∈ L
∞

(τ − h, T; V)andu′∈ L
∞

(τ − h, T; V). (45)

-e continuity properties

u ∈ C1
([τ − h, T]; V),

zu

zt
∈ C1

([τ − h, T]; V), ∀T> τ,

(46)

can be established with the methods indicated in Section II.3
and II.4 in the research by Temam [6] (e.g., -eorem 3.1 and
3.2).

-is completes the proof. □

Remark 1. According to -eorem 4, we can define a family
of multivalued mappings U(t, τ){ } on CV,V as

U(t, τ): CV,V⟶ CV,V, (47)

corresponding to Equation (1) by

U(t, τ)ϕ � ut(·; τ,ϕ)|u(·)are solutions of Equation(1)withϕ ∈ CV,V .

(48)

-en, U(t, τ){ } is multivalued process on CV,V.

4. Pullback Attractors in CV,V

We denote by R the set of all functions r: R⟶ (0, +∞)

such that

lim
t⟶− ∞

e
(δ/3)t

r
2
(t) � 0, (49)

where δ > 0 is defined in (50) and is denoted by DCV,V
in the

class of all families D � D(t){ }t∈R ⊂ P(CV,V) such that
D(t) ⊂N(0, rD(t)), for some rD ∈ R, where P(CV,V)

denotes the family of all nonempty subsets of CV,V, and
N(0, rD(t)) denotes the closed ball in CV,V centered at zero
with radius rD(t).

Lemma 1. (Existence of D-pullback absorbing set) Suppose
that (A1) − (A2) holds true, then g ∈ L2

loc(R; H) and
ϕ ∈ CV,V, and there exists a constant δ satisfying

0< δ∗ < δ < δ
∗ < 1, (50)

where δ∗ satisfies

δ4∗ �
9α22e

δ∗h/3

5 1 − ρ∗( 
. (51)

δ∗ � min
3
4
,

λ1
λ1 + 3

 . (52)

λ1 is the positive constant in the Poincáre inequality. 9en
the multivalued process U(t, τ){ } possesses a DCV,V

-pullback
absorbing set QCV,V

in DCV,V
.

Proof. Let v � u′ + δu, and we write Equation (1) as
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d
dt

v − δv + δ2u − 1 − δ + δ2 Δu − Δ
d
dt

v − (1 − δ)Δv

� f(t, u(t − ρ(t))) + g(t).

(53)

Multiplying Equation (1) by v in L2(Ω), we infer that

1
2
d
dt

‖v‖
2

+‖∇v‖
2

+ δ2‖u‖
2

+ 1 − δ + δ2 ‖∇u‖
2

 

− δ‖v‖
2

+ δ3‖u‖
2

+ δ 1 − δ + δ2 ‖∇u‖
2

+(1 − δ)‖∇v‖
2

� (f(t, u(t − ρ(t))), v) +(g(t), v).

(54)

Noting (2), using Young’s inequality, for ϵ1, ϵ2 > 0, we
infer that

|(f(t, u(t − ρ(t))), v)|≤
ε1
2

‖v‖
2

+
α22
2ε1

‖u(t − ρ(t))‖
2

+
α21|Ω|

2ε1
, (55)

and

|(g(t), v)|≤
ε2
2

‖v‖
2

+
1
2ε2

‖g(t)‖
2
. (56)

Applying the Poincáre inequality, we get that

1
2
d
dt

‖v‖
2

+‖∇v‖
2

+ δ2‖u‖
2

+ 1 − δ + δ2 ‖∇u‖
2

 

+
λ1(1 − δ)

2
− δ −

ε1
2

−
ε2
2

 ‖v‖
2

+
1 − δ
2

‖∇v‖
2

+ δ3‖u‖
2

+ δ 1 − δ + δ2 ‖∇u‖
2

≤
α22
2ε1

‖u(t − ρ(t))‖
2

+
α21|Ω|

2ε1
+

1
2ε2

‖g(t)‖
2
.

(57)

Let δ′ > 0 be determined later, then we infer that
d
dt

e
δ′t

‖v‖
2

+‖∇v‖
2

+ δ2‖u‖
2

+ 1 − δ + δ2 ‖∇u‖
2

  

� δ′e
δ′t ‖v‖

2
+‖∇v‖

2
+ δ2‖u‖

2
+ 1 − δ + δ2 ‖∇u‖

2
 

+ e
δ′t d
dt

‖v‖
2

+‖∇v‖
2

+ δ2‖u‖
2

+ 1 − δ + δ2 ‖∇u‖
2

 

≤ 2δ + ϵ1 + ϵ2 + δ′ − λ1(1 − δ)( e
δ′t

‖v‖
2

+ δ + δ′ − 1( e
δ′t

‖∇v‖
2

+ δ2δ′ − 2δ3 e
δ′t

‖u‖
2

+ δ′ − 2δ(  1 − δ + δ2 e
δ′t

‖∇u‖
2

+
α22
ϵ1

e
δ′t

‖u(t − ρ(t))‖
2

+
α21|Ω|

ϵ1
e
δ′t

+
1
ϵ2

e
δ′t

‖g(t)‖
2
.

(58)

Now integrating (58) from τ to t, we get

e
δ′t ‖v‖

2
+‖∇v‖

2
+ δ2‖u‖

2
+ 1 − δ + δ2 ‖∇u‖

2
 

≤ e
δ′τ ‖v(τ)‖

2
+‖∇v(τ)‖

2
+ δ2‖u(τ)‖

2
+ 1 − δ + δ2 ‖∇u(τ)‖

2
 

+ 2δ + ϵ1 + ϵ2 + δ′ − λ1(1 − δ)  
t

τ
e
δ′s‖v(s)‖

2ds

+(δ + δ′ − 1) 
t

τ
e
δ′s‖∇v(s)‖

2ds + δ2δ′ − 2δ3  
t

τ
e
δ′s‖u(s)‖

2ds

+(δ′ − 2δ) 1 − δ + δ2  
t

τ
e
δ′s‖∇u(s)‖

2ds

+
α22
ϵ1


t

τ
e
δ′s‖u(s − ρ(s))‖

2ds +
α21|Ω|

ϵ1


t

τ
e
δ′sds

+
1
ϵ2


t

τ
e
δ′s‖g(s)‖

2ds.

(59)

Note that ρ(s) ∈ [0, h] and the fact
1

1 − ρ′(s)
≤

1
1 − ρ∗

, (60)

for all s ∈ R.
Setting r � s − ρ(s), we arrive at

α22
ε1


t

τ
e
δ′s‖u(s − ρ(s))‖

2ds

≤
α22e

δ′h

ε1 1 − ρ∗( 

τ

τ− h
e
δ′r‖u(r)‖

2dr + 
t

τ
e
δ′r‖u(r)‖

2dr 

≤
α22e

δ′(h+τ)
h‖ϕ‖

2
V,V

ε1λ1 1 − ρ∗( 
+

α22e
δ′h

ε1 1 − ρ∗( 


t

τ
e
δ′r‖u(r)‖

2dr.

(61)

-us, we obtain

e
δ′t ‖v‖

2
+‖∇v‖

2
+ δ2‖u‖

2
+ 1 − δ + δ2 ‖∇u‖

2
 

≤ e
δ′τ ‖v(τ)‖

2
+‖∇v(τ)‖

2
+ δ2‖u(τ)‖

2
+ 1 − δ + δ2 ‖∇u(τ)‖

2
 

+ 2δ + ϵ1 + ϵ2 + δ′ − λ1(1 − δ)  
t

τ
e
δ′s‖v(s)‖

2ds

+(δ + δ′ − 1) 
t

τ
e
δ′s‖∇v(s)‖

2ds

+ δ2δ′ − 2δ3 +
α22e

δ′h

ϵ1 1 − ρ∗( 
⎛⎝ ⎞⎠ 

t

τ
e
δ′s‖u(s)‖

2ds

+(δ′ − 2δ) 1 − δ + δ2  
t

τ
e
δ′s‖∇u(s)‖

2ds

+
α21|Ω|

ϵ1δ′
e
δ′t +

1
ϵ2


t

τ
e
δ′s‖g(s)‖

2ds +
α22e

δ′(h+τ)
h‖ϕ‖

2
V,V

ϵ1λ1 1 − ρ∗( 
.

(62)

Choosing ε1 � ε2 � δ′ � δ/3, and noting that
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δ∗ � min
3
4
,

λ1
λ1 + 3

 , δ < δ∗ < 1, (63)

we get

2δ + ε1 + ε2 + δ′ − λ1(1 − δ)< 0,

δ + δ′ − 1< 0.
(64)

Note that δ∗ satisfies δ4∗ � 9α22e(δ∗h/3)/5(1 − ρ∗) if
0< δ∗ < δ, then we have

δ4∗ >
9α22e

δ∗h/3( )

5 1 − ρ∗( 
. (65)

-en we have

δ2δ′ − 2δ3 +
α22e

δ′h

ε1 1 − ρ∗( 
< 0,

(δ′ − 2δ) 1 − δ + δ2 < 0.

(66)

-erefore,

e
(δ/3)t

‖v‖
2

+‖∇v‖
2

+ δ2‖u‖
2

+ 1 − δ + δ2 ‖∇u‖
2

 

≤ e
(δ/3)t

‖v(τ)‖
2

+‖∇v(τ)‖
2

+ δ2‖u(τ)‖
2

+ 1 − δ + δ2 ‖∇u(τ)‖
2

 

+
9α21|Ω|

δ2
e

(δ/3)t
+
δ
3


t

τ
e

(δ/3)s
‖g(s)‖

2ds +
3α22e

(δ/3)(h+τ)
h‖ϕ‖

2
V,V

δλ1 1 − ρ∗( 
.

(67)

Setting t + θ instead of t, where θ ∈ [− h, 0], and multi-
plying by e− (δ/3)(t+θ), we get

‖v(t + θ)‖
2

+‖∇v(t + θ)‖
2

+ δ2‖u(t + θ)‖
2

+ 1 − δ + δ2 ‖∇u(t + θ)‖
2

≤ e
− (δ/3)(t+θ)

e
(δ/3)τ

‖v(τ)‖
2

+‖∇v(τ)‖
2



+ δ2‖u(τ)‖
2

+ 1 − δ + δ2 ‖∇u(τ)‖
2


+
9α21|Ω|

δ2
+
δ
3
e

− (δ/3)(t+θ)


t+θ

τ
e

(δ/3)s
‖g(s)‖

2ds

+
3α22e

− (δ/3)t
e

(δ/3)(2h+τ)
h‖ϕ‖

2
V,V

δλ1 1 − ρ∗( 
.

(68)

Note that v � u′ + δu, and by (68), we infer that

ut

����
����
2
CV,V

� ut

����
����
2
CV

+ ut
′

����
����
2
CV

� sup
s∈[− h,0]

‖∇u(t + θ)‖
2

+ sup
s∈[− h,0]

‖∇u′(t + θ)‖
2

≤ sup
s∈[− h,0]

‖∇u(t + θ)‖
2

+ 2 sup
s∈[− h,0]

‖∇v(t + θ)‖
2

+ 2δ2‖∇u(t + θ)‖
2

≤ 1 + 2δ2  sup
s∈[− h,0]

‖∇u(t + θ)‖
2

+ 2 sup
s∈[− h,0]

‖∇v(t + θ)‖
2

≤Cδe
− (δ/3)t

e
(δ/3)(τ+h)

‖v(τ)‖
2

+‖∇v(τ)‖
2



+ δ2‖u(τ)‖
2

+ 1 − δ + δ2 ‖∇u(τ)‖
2


+ Cδ
9α21|Ω|

δ2
+ Cδ

δ
3
e

− (δ/3)t
e

(δ/3)h


t+θ

τ
e

(δ/3)s
‖g(s)‖

2ds

+
3Cδα

2
2e

− (δ/3)t
e

(δ/3)(2h+τ)
h‖ϕ‖

2
V,V

δλ1 1 − ρ∗( 

≤C1e
− (δ/3)t

+ C2 + C3e
− (δ/3)t


t

− ∞
e

(δ/3)s
‖g(s)‖

2ds,

(69)

where

C1 � Cδe
(δ/3)(τ+h)

‖v(τ)‖
2

+‖∇v(τ)‖
2

+ δ2‖u(τ)‖
2



+ 1 − δ + δ2 ‖∇u(τ)‖
2


+
3Cδα

2
2e

(δ/3)(2h+τ)
h‖ϕ‖

2
V,V

δλ1 1 − ρ∗( 
,

(70)

C2 � Cδ
9α21|Ω|

δ2
, (71)

and

C3 � Cδ
δ
3
e

(δ/3)h
. (72)

Now, we denote by R(t) the nonnegative number given
for each t ∈ R by

R
2
(t) � 2C2 + C3e

− (δ/3)t


t

− ∞
e

(δ/3)s
‖g(s)‖

2ds, (73)

and consider the family of closed bounded balls QCV,V
�

Q(t){ }t∈R in CV,V that is defined by
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Q(t) � φ ∈ CV,V: ‖φ‖CV,V
≤R(t) . (74)

Clearly, QCV,V
∈ DCV,V

, and moreover, according to (49)
and (69), the family ofQCV,V

isDCV,V
− pullback absorbing for

the multivalued process U(t, τ){ } on CV,V.
-is completes the proof. □

Lemma 2. Under the assumptions of Lemma 1, the multi-
valued process U(t, τ){ } on CV,V is DCV,V

− pullback asymp-
totically upper-semicompact.

Proof. Note that for any T≥ t − s with s≥ 0, we get

U(T, t − s)ϕ � uT(·; t − s, ϕ)|u(·)is a solution of Equation(1)withϕ ∈ Q(t − s) , (75)

whereQCV,V
� Q(t){ }t∈R isDCV,V

− pullback absorbing for the
multivalued process U(t, τ){ } on CV,V. Now, we decompose
Equation (1) as follows:

u(T, x) � w(T, x) + y(T, x), (76)

where w(T, x) and y(T, x) satisfy the following equations,
respectively:

z
2
w

zT
2 − Δw − Δ

zw

zT
− Δ

z
2
w

zT
2 � 0, T≥ t − s,

w(T, x) � ϕ(T − t + s, x), t − s − h≤T≤ t − s,

zw(T, x)

zT
�

zϕ(T − t + s, x)

zT
, t − s − h≤T≤ t − s,

w|zΩ � 0, T≥ t − s,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(77)

z
2
y

zT
2 − Δy − Δ

zy

zT
− Δ

z
2
y

zT
2 � f(T,u(x,T − ρ(T))) + g(T,x), T≥t − s,

y(T,x) � 0, t − s − h≤T≤t − s,

zy(t,x)

zT
� 0, t − s − h≤T≤t − s,

y|zΩ � 0, T≥t − s.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(78)

For Equation (77), similar to the proof of -eorem 4, we
can easily obtain

wt

����
����
2
CV,V

� wt

����
����
2
CV

+ wt
′

����
����
2
CV
≤Ce

− (δ/3)s
‖ϕ‖

2
CV,V

. (79)

-at is, we get

lim
s⟶∞

U1(t, t − s)Q(t − s)
����

����CV,V
� 0. (80)

Now, from-eorem 2, we only need to show that for any
fixed s> 0, every sequence yn ∈ U2(t, t − s)Q(t − s) is a
Cauchy sequence in CV,V.

We investigate two solutions of u1
T and u2

T for Equation
(1) corresponding to the initial data ϕ1 and ϕ2, respectively.
Let z(T) � y1(T) − y2(T), then z(T) satisfies

z
2
z

zT
2 − Δz − Δ

zz

zT
− Δ

z
2
z

zT
2 � f T, u

1
(x, T − ρ(T))  − f T, u

2
(x, T − ρ(T)) , T≥ t − s,

z(T, x) � 0, t − s − h≤T≤ t − s,

zz(t, x)

zT
� 0, t − s − h≤T≤ t − s,

z|zΩ � 0, T≥ t − s.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(81)
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Multiplying Equation (81) by z′ in L2(Ω), we infer
1
2

d
dT

‖∇z′(T)‖
2

+‖z′(T)‖
2

+‖∇z‖
2

  +‖∇z′(T)‖
2

� f T, u
1
(x, T − ρ(T))  − f T, u

2
(x, T − ρ(T)) , z′(T) .

(82)

Integrating from t − s to t + θ (where θ ∈ [− h, 0]), we
have

‖∇z′(t + θ)‖
2

+‖z′(t + θ)‖
2

+‖∇z(t + θ)‖
2

≤ 2
t+θ

t− s
f T, u

1
(x, T − ρ(T))  − f T, u

2
(x, T − ρ(T)) , z′(T) dT

≤ 2
t+θ

t− s

Ω

f T, u
1
(x, T − ρ(T))  − f T, u

2
(x, T − ρ(T)) ‖z′(T)



dxdT

≤ 2‖z′(T)‖L2(Ω×[t− s,t]) f T, u
1
(x, T − ρ(T))  − f T, u

2
(x, T − ρ(T) 

�����

�����L2(Ω×[t− s,t])
.

(83)

Let unT ∈ U(T, t − s)ϕn be with ϕn ∈ Q(t − s). According
to (69), without of generality, we can assume that

un⟶ uweakly star inL
∞

(t − s − h, t; V), (84)

and

un
′ ⟶ uweakly star inL

∞
(t − s − h, t; V). (85)

-en, we infer that

un⟶ uinL
∞

(t − s − h, t; V), (86)

and

un(T, x)⟶ u(T, x)n⟶∞fora.e.(T, x) ∈ [t − s − h, t] ×Ω.

(87)

Note that when f ∈ C(R × RN;R), by (87), we have

f T, un(T, x)( ⟶ f(T, u(T, x))

n⟶∞fora.e.(T, x) ∈ [t − s − h, t] ×Ω.
(88)

Applying the Lebesgue dominated convergence theo-
rem, we infer that

lim
n⟶∞

lim
m⟶∞

f T, un(x, T − ρ(T))(  − f T, um(x, T − ρ(T)( 
����

����L2(Ω×[t− s,t])
� 0. (89)

It follows from (83) and 89 that

ynt − ymt

����
����
2
CV,V

� ynt − ymt

����
����
2
CV

+ ynt
′ − ymt
′

����
����
2
CV

� sup
s∈[− h,0]

∇yn(t + θ) − ∇ym(t + θ)
����

����
2

+ sup
s∈[− h,0]

∇yn
′(t + θ) − ∇ym

′(t + θ)
����

����
2

≤ 2 yn
′(T) − ym

′(T)
����

����L2(Ω×[t− s,t])

× f T, un(x, T − ρ(T))(  − f T, um(x, T − ρ(T))( 
����

����L2(Ω×[t− s,t])
.

(90)

Combining (89) with (90), we get

lim
n⟶∞

lim
m⟶∞

ynt − ymt

����
����
2
CV,V

� 0. (91)

-is completes the proof. □

Theorem 5. (Existence of DCV,V
pullback attractors) Under

the assumptions of Lemma 3.2, the multivalued process
U(t, τ){ } on CV,V possesses an unique pullback attractor
ACV,V

(t) 
t∈R

in DCV,V
.

Proof. By Lemma 2, we know that the multivalued process
U(t, τ){ } corresponding to Equation (1) is DCV,V

pullback
asymptotically upper-semicompact on CV,V. Furthermore,
according to Lemma 1, the multivalued process U(t, τ){ }

possesses a DCV,V
pullback absorbing set QCV,V

in DCV,V
. In

order to obtain the existence ofDCV,V
pullback attractors, we

only need to show the negative invariance of ACV,V
(t) 

t∈R
,

where

ACV,V
(t) � ωt QCV,V

  � ∩
T∈R+
∪

s≥T
U(t, t − s)Q(t − s), ∀t ∈ R,

(92)

and QCV,V
� Q(t){ }t∈R is the DCV,V

pullback absorbing set of
U(t, τ){ } in CV,V.
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Let y ∈ ACV,V
(t). -en there exist sequences sn ∈ R+,

sn⟶ +∞(n⟶∞), xn ∈ Q(t − sn), and
yn ∈ U(t, t − sn)xn such that

yn⟶ y ∈ CV,Vasn⟶∞. (93)

On the other hand, for n that is large enough, we get

yn ∈ U t, t − sn( xn � U(t, τ)U τ, t − sn( xn. (94)

Lemma 2 implies that the multivalued process U(t, τ){ }

corresponding to Equation (1) is DCV,V
pullback asymp-

totically upper-semicompact on CV,V, then there is a sub-
sequence of xn ∈ U(τ, t − sn)xn � U(t, τ − (τ + sn − t))xn,
which we still relabel as xn such that yn ∈ U(t, τ)xn and

xn⟶ x ∈ CV,Vasn⟶∞. (95)

Clearly, x ∈ ACV,V
(τ).

By slightly modifying the proof of the existence of so-
lutions -eorem 4, we can see that

yn(·)⇀u(· + t, τ, x)inL
2
(− h, 0; V)∩H

1
(− h, 0; V), (96)

where u(·) is a solution in -eorem 4. -is together with
9495, we can deduce that

y ∈ U(t, τ)x ⊂ U(t, τ)ACV,V
(τ). (97)

-is completes the proof. □

Remark 2. In this article, we showed the existence of
pullback attractors in the Banach spaces CH1

0(Ω),H1
0(Ω) for the

multivalued process generated by a class of second-order
nonautonomous evolution equations with hereditary char-
acteristics. Furthermore, it would be interesting to consider
the long-time behavior for the following nonautonomous
semilinear second-order evolution equation with the delay
term and critical exponent as

z
2
u

zt
2 − Δu − Δ

zu

zt
− Δ

z
2
u

zt
2 � h(u) + f(t, u(x, t − ρ(t)))

+ g(t, x), in(τ,∞) ×Ω,

(98)

where the nonlinearity h(·) fulfills the critical exponential
growth condition, and the nonlinearity f(·) and the external
force g(t, x) satisfy (A1) and (A2), respectively. Maybe we
can extend the results presented here in this case and can
possibly address them in forthcoming papers.
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