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Let {Y (t); t = 0} be a supercritical continuous-time branching process with immigration; our focus is on the large deviation rates of
Y (t) and thus extending the results of the discrete-time Galton-Watson process to the continuous-time case. Firstly, we prove that
Z(#) = e ™Y () - ((e"TD —1)/(e™ - 1))e*™] is a submartingale and converges to a random variable Z. Then, we study the
decay rates of P(|Z(t) — Z| >¢)ast — oo and P(|(Y (¢t + v)/Y (t)) — ™| > e]Z > a) ast —> oo for a >0 and ¢ > 0 under various
moment conditions on {b;; k> 0} and {a iz 0}. We conclude that the rates are supergeometric under the assumption of finite

moment generation functions.

1. Introduction

Suppose that {Y (t);t>0} is a continuous-time branching
process with immigration. Its generating matrix
Q= (qjk; j-k € Z,) is defined as follows:

jbk—' +ak_-, lf]ZO,kZ],
Q= { A . (1)
0, otherwise,
where
a,20(k#0), 0< —ay= Zak<oo,
k#0
(2)
b20(k#1), 0<-b, =) b <co.
k#1

Throughout this paper, we always suppose that b, = 0,
m:= Y2 kb <00, and a = Y2 ka; < oo.
Set

Y(0) =1,

(3)
Y(t)=M(t)+K(t),

t>0,

where M (t) and K (t) separately represent the total number
of the original individual’s offspring and the offspring of the

individual from immigrants at the time ¢. If K (¢) = 0 for all
t>0 and Y (0) = 1, then the process degenerates to the
continuous-time branching process {?(t); t> 0}. It is
known from Athreya and Ney [1] or Harris [2] that
{e""t?(t); t> 0} is a martingale and converges to a r.v. W
w.p.l ast — o00. Therefore, Y (¢ + v)/Y (t) converges to e™"
w.p.l as t — oo for arbitrary fixed v>0, and hence

lim P(‘M—emv >£> =0,

t—00 Y )
em(t+1) -1 mm]
—— €

e -1

Ye>0. (4)

For {Y (t);t >0}, define

Z(t) = emt[Y(t) -
(5)

=U@)+1(t), t=0,
where U(t) = M(t)/e™ and
_(em(t+l) —1 (em _ 1))ea+m—mt.

In this paper, let a = m/(e™ — 1) < 0o, we will demon-
strate that Z (¢) is a submartingale and converges to a r.v. Z
almost surely since U (¢) converges to a r.v. U a.s. and I (¢)
converges to a r.v. I as.

I(t) = (K (8)/e™)


mailto:wangjuanrose@126.com
https://orcid.org/0000-0002-9040-2905
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8314977

The above discussion of the decay rates is not only of its
own meaning but also of some significance to the algorithm
tree structure in computer science (Karp and Zhang [3] and
Miller [4]). Heyde [5] discussed that there exists a constant
sequence {D,} which makes W, =Z,/D, converge to a
random variable W w.p.1. Athreya [6] considered similar
decay rates for the Galton-Watson process. Seneta [7]
researched the supercritical Galton-Watson process with
immigration, and Riotershtein [8] considered multitype
branching processes with immigration in a random envi-
ronment. Liu and Zhang [9] studied the decay rates of
P((Y,,1/Y,) —m]|>e¢) for the supercritical branching pro-
cesses with immigration. Recently, Sun and Zhang [10]
considered the convergence rates of harmonic moments for
supercritical branching processes with immigration. Chen
and He [11] investigated the lower deviation and moderate
deviation probabilities for maximum of a branching random
walk. Abraham et al. [12] analyzed the stationary continuous
state branching processes. The model considered in this
paper involves continuous-time and immigration, while the
models considered in the above references do not involve
continuous-time. Such change in conditions may affect the
large deviation rates and thus is mathematically interesting.
We need to find a new method to investigate the effect of
continuous-time and immigration.

Based on the previous results, it is natural to develop the
large deviation rates for the continuous-time branching
processes with immigration. In this paper, we are aiming to
discuss the decay rates of

P(1Z(t) - Z| > ¢),
(6)

Y({t+v) .
P(l Yo °

>s|Z20c), ast — 00,

under various moment conditions on {b;;k>0} and
{a,; k> 0} for any & > 0 and & > 0. We conclude that the rates
of (6) are always supergeometric under the assumption of
finite moment generation functions. The specific conclu-
sions are presented in Section 3.

2. Preliminaries

Before the investigation, we present the generating functions
B(w) and A(w) of the known sequences {b;;k>0} and
{a; k>0} as

B(w) = i bkwk,

o (7)
A(w) = Z akwk.

k=0

Clearly, B(w) is well defined and finite at least on [-1, 1]
with B(1) =0, so 1 is the solution of B(w) = 0. Then, m =
B' (1) = Y22, kb, is the mean birth rate of M (t). Moreover,
A(w) is similar to B(w).

We present some preliminaries in this section.

Lemma 1. Let >0 and j,k>0. If
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Tim e"p (1) = 9,20, (8)

exists, then for arbitrary b >0,

t
tElnoo e—bt JO e(ﬂ+b)vpjk (V)dV =b 1¢jk~ (9)
Proof. Omitted. O

Lemma 2. lim, e &%) p . (t) = p; exists for any i>1,
and p<p, =1(k>0). Furthermore, Q(w)= Y2, pwr
satisfies the functional equation:

(b +a,)Q(w) = B(w)Q' (w) + A(w)Q(w),

O<w<l,
(10)
with condition Q(0) = 0.

Proof. By the Kolmogorov forward equation,

k
pi() = ZPn(t) (ib_ivs + i), k=1 (11)
i1

For k = 1,
Pii() = piy () (by + ap). (12)
That is,
pu (1) = (i), (13)
Hence,
pr = Jim e ()t (1) = 1. (14)
For k =2,
Pra(t) = pry (D (by + ay) + prp () (20, + ). (15)
So,

t
e_(ZbIWU)tPlz (t) = (bz + al) Jo Pu (V)e—(2b1+a0)vdv. (16)
By Lemma 1,

Py = tﬁnoo ei(blmo)tpu ®) = (b, +a,) rleoo e

: (Ora)_
J Pu(v)e_(zblm“)vdv -~ ; 4 <pr-
0 1
It follows from (11) that
o k-1
e 1Jrao)tlhk(t) = Z (iby_iv1 + ;)
i=1 (18)

t
. J pli (V)e_(kbl+an)vdv.
0

Hence,
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pre = Jim e Cre)p (1)
1 k-1 (19)
- W Z (ibk—iﬂ + ak—i)P,‘ <p:

1 i=1

Finally, we can obtain the following equality from (11):

i e (b1+uo)tpjlk (t)wk = B(w) i e‘(bl+“0)tpjk (t)wk_l

k=0 k=1

. (20)
+ AW Y e ) p (),
k=0

and moreover,
<Z e—(b1+au)tpjk (t)wk>r + (bl i ao) Z e—(b1+ao)tpjk (t)wk
k=0 ¢ k=0

- B(w) i e—(b]+a0)tpjk (t)kwk_l

p
+A(w) Z e_(b““")tpjk )",
k=0

(21)

E[Z(t+)|Z ()] = E[e"”“”)(y(t +v) - %e“““)

Y (1)

—m(t+v € L oatm
=e (t+ )E|:Z gt,j(v)-{—K(V)_emi_e *
=1

3

Taking the limit as t — o0, we have
(by +a,)Q(w) = B(w)Q (@) + A(w)Q(w). (22)
The proof is completed. O

Proposition 1. Let ¢, be the o-algebra generated by
{Y (£);t >0} and E[M (1) log M (1)] < co. Then, {Z(t);t >0}
is a submartingale and converges to a r.v. Z almost surely.

Proof. According to the definition of Z (t), we conclude the
following inequalities:

m(t+v+1)

Y(t)]

m(t+v+1) 1

1

Y(t):|

e" -1

em(t+v+1) 1
_ e—m(t+v) (eva (t) " e(u+m)v _ ea+m) (23)

av+m

= e’”f(Y(t) 45

[4

Ze"“t<Y(t) -

which implies {Z (¢); t > 0} is a submartingale. We know that
E[e=™Y ()] <oo if and only if E[M (1)log M (1)] < co.
Hence, E[Z(t)] <oo. Thus, Z(t) is an integrable sub-
martingale and converges to a r.v. Z almost surely.

Define G(w,t) = E[w'?|Y (0) = 1], w>0 with initial
condition G(w,0) = w, where Y () is a continuous-time
branching processes with immigration with Y (0) = 1. De-
note k(F(w)) = w and

G(w) = G(w,1) = E[w" VY (0) = 1]
= H(w,1)F (w, 1) = H(w)F (w).

(24)

m(t+1)

e’ -1

av mt+a+2m a+m—my
e +e )

e’ -1

B lea+m> _ Z(t),

We will study the properties of k(w) and G (w) in the
subsequent contents. Let @ = sup{w >0;G(w) <o0}. Ap-
parently, G(w) is strictly increasing with w € (0,®) and
® > 1. Furthermore, we have k(w)>w for 0<w<1 since
F(w)<w and k(w)<w for 1<w<® since F(w)=w.
Therefore, the iterates k(w,n) of k are nonincreasing with
w € [1,®] and nondecreasing with w € [0, 1] (with respect
to n). O

Proposition 2. Let v, > 1. If G (w,, v,) < 00 for some w > 1,
then for 1 <w < F(wy,vy), k(w,t)|1 as tToo and



R(w,t) = ™ (k(w,t) - 1)|R(w), astToo, (25)

where R(w) is the unique solution of

R(F(w,vy)) =™ R(w), forl<w<F(wy,vy), (26)

subject to
R(1) =0,
, (27)
R (1)=1,
0<R(w)<oo, forl<w<F(wy,vp) (28)

Proof. Note that F(w,t)>w for w>1, we know that
F(w,vy+t) = F(F(w,t),vy) 2F(w,v,) for w>1, t=0.
Hence, k (-, v, + t) is well defined on [0, F (w,, v,)] for t>0
and k(w, vy +t)>1 for w>1.

Since w = F(k(w,vy +1),vy+ t) = F(F(k(w, v, +1t),1),
vy) = F (k(w, vy +t),v,), we have k(w, v, +t) <k(w,v,) for
any 1 <w < F (w,, V), which implying k (w, t)| as v, <tT.On
the other hand,

F(k(w,vy +1t),vy) = k(w,1), (29)

that is,
k(w,vy+1) =k(k(w,t),vp). (30)
Denote ¢ :=lim, , k(w,t). Putting tToo vyields

¢ = k(c,v,). Thus, we obtain ¢ = 1, i.e., k(w,t)|1 as tToo.
Now, there exists a € (k(w,t),1) for v,t >0 such that
R(w,v+t) " (k(k(w,t),v)-1)
R(w,t) k(w,t) -1

(31)

emV
="k, (a,v) = ———<L
w(@7) F,.(a,v)

Hence, R(w) = lim,_, R(w,t) exists.
Furthermore, R(w) satisfies (26) and (27). For
we [F(w0> VO)) 1])

R(E (w, vy),t +vp) = €" () (k (F (w, vp), £+ vp) — 1)
=" (00 (k (k (F (w, %), vp), £) ~ 1)
= &™) (ke (w, 1) - 1).

(32)
Letting tToo yields
R(E (w,v,)) = " (") R(w). (33)
For another,
R(1) = lim R(L,t) =0,
e (34)

R(1)=1,

since R, (1,t) = 1 for t >v,. Thus, 0 < R(w) < 0o.
Finally, it is easily seen that the solution of (26) and (27)
is unique. a
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Proposition 3. Let [ = G(w,) <co for some w, = e > 1.
Then,

[t-1]

G (k(wp),t) <G (wy) [ | H(k(wy, 1)), t22, (35)

=1

where [t] is the round of t.

Proof. For t =2, noting k(w,) > 1 yields

G (k(w),2) = G(F (k(wy)))H (k(wo))

- G ) H (k). o

Assume that inequality (35) holds for ¢ - 1, i.e,,

G (k(wp t - 2),t - 1) <G (wy) [ﬁ] H(k(wy ).  (37)

I=1

Then,

G(k(wpt —1),t) = G(f (k(wpt — 1)), t — 1)H

- (k(wpt 1))
= G(k(wyt - 2),t - VH (k(wy,t - 1))
[t-1]

<G (wp) [ | H(k(wp 1)),

=1
(38)

holds for all ¢ >2.
Therefore, (35) is proved. O

3. Main Results and Proofs

Theorem 1. Assume that B(6,) <oco and A(8,)<oo for
some 0> 0. Then, for arbitrary small €> 0,

lim e
t—00

~(ra)e p [YEEY)
P(l Yo ¢

>elY (0) = 1)

(39)

18

(p(V, l) E)Pl <00,

1

where ¢(v,1,e) = P(IM;(v) + (K(W)/I) — ™| >¢), M,
(v) = Xy (M (/D).

Proof. Note that Y (¢ + v) could be defined as

Y(t)
Y(t+v)= Y & ;(v)+K(), (40)
j=1

where {K(t);t>0} and {gt,j(v);tzo;jzl} are indepen-
dent and identical distributed, {£, ; (v); £ >0, j> 1} arei.i.d.
random variables with the same law as {Y(V);VZO}.
Hence,
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Y(t+v) L.
P(’ Yy °©

T8

I
Mg

I
—

Indeed, for any fixed v> 0,

1

l mv &
Sp<j=z1£t’j(1}) >l(e +§>> + P(

1
z Et,j (v)

<P| o7

=1, +1, + I,

where a € (1,6,) and € (0,1) are arbitrary constants.
Thus,

6= [ v D 1 [ (BT
(43)

where f(s,v) = Yo, pux (V)sE.

Since it is assumed that B(6,) < 0o and A(6,) < 0o, we
have f(«,v) < oo and it follows that there exist o, € (1, 0,)
and 8, € (0,1) such that

0< f(agv)a® " <1,
0< f(Bpv)B <1,

for any €€ (0,1) and v>0. Hence, there exist
cjsA; € (0,1)(j =1,3) such that I;<c;A;(v,¢)' for all [>1.
By Markov’s inequality, we can prove that there exist ¢, >0
and A, € (0,1) such that I,<c,A,(v,¢). Therefore, by
Lemma 2,

(44)

(R ke
>e|Y(0)—1)—P< e

P(Y(t) =1lY(0) = 1)-P<

!
Ez, (V)
S @) | P(K (v) e ) Z /

—e

>e|Y (0) = 1>

T ém+K»
| ! -

>£> (41)

P(Y (£) = [|Y (0) = 1) (v, 1, &).

1
>£> +P<2j=1 & <lv) KO _€>

K : v
;V)>§) +P<wa-(v)<l(e —e)>

j=1
(42)

>— |+ P| pi! > gl -9
)er| s f

I

tﬁnoo ef(ler“O)t . P(‘Y;t(-:)v) —e™|>¢€lY (0) = 1>
= lim Y e ()t p(y (1) = 1Y (0) = D¢ (v,1,¢)
=

o
= Z ¢ (v, 1, e)p; < 00.
(45)
The proof is completed. O
Theorem 2. Assume that for fixed € >0 and v > 0, there exist

constants C,(v) and r>0 such that mr> — (b; +a,) and
¢, 1,e)<I""C,(v) for all I = 1. Then, (39) holds.

Proof. Under the above assumptions, there exists another
C,>0suchthat ¢(v,l,e)<C,(I+1)"" foralll>0sincel " is



equivalent to (I + 1)"" as/ — co. In general, we denote the
positive constants C, by C,. Therefore,
¢l B
k(,t) = W-P(Y(t) =1)
e
(46)
C. PXYM®=D

ST GGy F G0

With a simple modification of the convergence theorem,
it can be proved that

lim i%(l,t): lim %E[(Y(t)ﬂ)"]mo, (47)
1=0

t—00 t—00 e (b|+ao)

since
e‘(bl+“o)t .p ‘Y(t +v) N
Y (t)
(48)
P LeP(Y (1) =1)
= Z (b1+u0)t .
I=1 e
For all Y >0,
-r1 _ 1 B Y11
£ ]‘ﬁjo E[e "] dr, (49)
and hence
Bl ) LRl T,
e(b1+tlo)t - I'(r) Jo e(b1+ao)t
(50)

dv.

1 Jl G(v,t) (~log v)"!
B F(r) 0 e(bl*“u)t
Since Q(1,t) = (G (v,t)/e®1*9))1Q(v), the proof shall

be completed if we prove

J-IQ(v)k(v)dv<oo, (51)
0

where k(v) = ((log v)"1. Indeed, for any fixed v, € (0, 1),
let v(t) be the inverse function of F (v, t) at v,, then we have
v(£)T1 as tToo. Note that H (v, 1)Q(F (v,1)) = e *%Q(v),
thus we can write

I - j Qmk(Vdv

_ J QEGDIEWD, (g,
v, 1t
v, -1 -1 ! '
:J Quupk(uy K b(iu))(F )
Voo k(w)e™ o
- J " Qw)k (w)D (w)dw,
(52)
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h(F~ (w))k(F~' (w))(F' (w))’

. (53)
k(w)e %

D(w) =

Sincelim,, , (F" ! (w))' =m™!

D (w) satistying

, it follows promptly that

lim D (w) = e (br+a*m), (54)

w—1

By hypothesis €”*%* >1 and hence for any

A€ (e- bitaotmn) 1) we can pick an n, such that D(w) <A
for all w>t, . Hence, for n>n,

I,<A, ., (55)
which implies
Y 1,<I, Y ¥<oo, (56)
n=n, j=0
and hence
1
J Q(W)k(v)dv < oo. (57)
t

no

Applying J; Q(W)k(v)dv < oo for 0<t <1 together with
(57) implies (51). O

Corollary 1. Assume that E[Y**°(1)] < oo for some r>1
and 8> 0 such that mr > — (by + a,). Then, (39) holds.

Proof. By Markov’s inequality, we have
K
o >£)

_E[VT (T, + (K - ™)
- £2rlr :

According to the assumption,

2r
C, = supE[\/l_(Yl(v)+K§V)—emv)] , (59)
I

(v,1,¢) = P(‘Yl(v) N

(58)

is finite, and then there exists C, s.t. ¢ (v,[,e) <C,I"" for all
I>1. Applying Theorem 2, the proof is completed. O

Theorem 3. Assume that E[e®%Y MY (0) = 1] < 0o for some
v>0 and 0,>0. Then, there exists 0, >0 satisfying

C, = su(}))E[ee‘Z(t)] < 00. (60)
t2

Proof. In general, we suppose that K = G(w,) <oo for
w, = e% > 1. Firstly, we prove that

L= ﬁh(k(wo,l))<oo. (61)
=1

Since Z?:l [h (k(w()) l)) - 1] <00 IS
[T;5, h(k(wy, 1)) < co, we have

equivalent to
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> k(D) -1 i (kw0 (k o) - 1)
' (k(wp)) - 020: [k(wg,]) = 1] = C5 < c0.
I=1
(62)

Hence, (61) is proved since k(wy,l) =1 ~ (R(wo)/eml).
By Proposition 3, note that for any > 1,

E [eezu)

and hence the above inequality becomes

E["“|Y (0) = 1] <KL, (66)

since 6 < e™log k(w,,t — 1). Hence, k (w,, t)| 1 as tToo since
w, > 1. Finally, by Proposition 2,
lim €™log k(wy,t - 1)
t—00 (67)
= lim ™ (k(wy,t —1) - 1) = e"R(w,),

t—00

which is positive and finite. Therefore, we can find 0, >0
such that

C = supE[eelz(t ] < 00. (68)
£20 0

B[t (e

G(v,t)<KL, if0<v<k(w,t-1). (63)

Indeed, if 0 <v<k(wy,t — 1), by Proposition 3,
G(n,t) <G (k(wy,t —1),t)
t-1] (64)
<G(wp) - [ ] h(k(w,1)) <KL.

I=1

But, by definition of Z(t),

Y (0) = 1] _ E[eee‘m’[Y(t)((e"‘(t+1))1)/€ml)eam]‘y(o) - 1] gG(eee_W,t), (65)

Theorem 4. Assume that E[e%Y Y (0) = 1] < co for some
v>0 and 0,>0. Then, there exist constants C, and A>0
satisfying

_ )23 emtl3

P(Z(t) - Z|>e)<Cye (69)

Proof. According to Theorem 3 and the construction of
Z(t), we know that there exists 6, >0 such that ¢(0) =
E[e%?] = E[eW+D] < oo for all 0 < 0, which implies ¢, (0) =
E[e"]<00,¢,(0) = E[e®] <co for all 0<6,. If {UD;i>1}
are i.i.d. copies of Uand S, = Y7, [U®” - 1], T and IV have
the identical distribution, then for any 0<6,,

[ (Zh o= st

_ 0\ @)
(o))

E[eG(I“)Jre”*m/\/n_)]

(70)

_<1 %sbl(@/f e O -19> [/ )]

Note that
wHo M %Var(U)<oo, (71)
we write
‘1 m (91 (w)e -1) (w)e;w — 1)‘26,
v v (72)

E[eg(l(l)ﬂewm)/\/n— ] < E[eg (I(l)+eu+m) ] —C.

(92/n)

Now, let 8, = min(6,, 1), then

0 —<6/v7>]” ¢
su — e <e'=L< oo, (73)
|e|sgz [(pl(\/ﬁ)

since (1 + x/n)" <e* for x > 0. Therefore,
E[eG( (Sn+I(1)+e’“m)/\/ﬁ):| < CL=Q < 00. (74)

Observe that
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| Y (E+) ] . 1 1
- - i " a+m
Z-Z(H) = lim (Z(t+v)-Z(®) = lim e [ Y1) —e (em+em+...+em+w+m)
: | Y (£ + 1
+etm 4. = lim ™ (va)+ea+m .
eM(v+1) y—00 ¢ em(v+l)
1 1 1 )
i -mt a+m
o [_Y(t)_e (e_m+e2_’”+”’+ew+m+.:)] (75)
Y
= lim e ™ ZJ‘:(f) Et,j(")+K(v)_e“+m(em<v+1)_1)
V—>00 emV evm (em _ 1)

. ea+m ea+mem . Y(t) G i~ o
+e -Y(t)-—; 1+—m I =e g UV +I1" =Y (t)+e™),
e - e -

j=1

where &, ; (v) is the population size at time s+t of the jth However,

particle among the Y (t) particles, U/ is the limit random

variable in the descent line of the j th original parent at time p( S+ 7D 4 gttm s r) = p(
t, and I and I are identically distributed. Putting the

conditional independence into consideration,

P(1Z -zt zelE,) = y(Y (1),e™e), (76) <E

SZ+I(1)+e“+m>L
VI Y3
r

-6
eez((sk+1<1)+eﬂ+m)/x/1_)]e—az(r/x/l_)Scse NN T

where (78)

1
w(l’ r) = P< (U(]) _ 1) + I(l) + eﬂ+m Zr) (77) ’ThU.S)
j=1

P(Z-Z(t)2e) = E[y(Y (t),e™e)]

t mt/2)e t)+edtm em e2M ) 4. 1/eM (79)
SCSE[‘{@Z (em e /_Y(t))] _ C5E|:eeze( 12) (1/\/2() (1417 1/e2m ) 441/ ))):|.
For arbitrary 1> 0,
B[tz <t>+e“*m<1%1/eM)+<1/e2*")+~-+<1/em>>)] =1 JOO VP 1 <y |dy
0 \/Z(t) +e™ (14 (1/e™) +(1/e™) + -+ + (1/e™))
© 1 1 1 -
=)LJO e A}'P(Z(t)+e“+m(1 +e_m+ez_m+m+et_’")2y 2>dy

(80)

) JOO e’“’P(eel [Z (£ te i (14(1/em)+(1/e> ) +-4(1/e™)) | 2e91y72>dy
0
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Hence,
P(Z-Z()>€) <CsC J ¢ Ie Yy, (81)
0
where A, = 0,e¢™2. But, for any 1 >0,

Q) = j ey
0

(A
= J ( )e*yefizy’zdy n JOO e*ye*izy’zdy (82)
0 )

Se—(xz/lu)) +e ™
Now, choose I(1) =A%, we have I(A)<2e*"”
Therefore,

mt/2] @r3)
P(I1Z - Z(1)] &) <2CCge” (VO 0" (83)

_ C767 AS(Z/S)E("'”Z) i
where A = (1/8; 6,)*®. Similar arguments still hold for
P(Z-Z(t)<e).
Under the condition Z > & (a > 0), the following theorem
proves that the decay rate of P (|(Y (¢t + v)/Y (t)) — ™| > ¢) is
also supergeometric. O

Theorem 5. Assume that E[e%Y WY (0) = 1] < 0o for some
v>0and 0, > 0. Then, there exist constants A >0 and C5 such
that for any a>0, £>0, we have 0<1(g) < co satisfying

Y(t+v) .
P(‘ O

>elZ> oc) < Cye (@
(84)

1 (2/3)e(mt/3)

+ Cye Mt ,

B Y(E+v)
DA G

Y é,W+Km)
< p —e

| !

o SP(‘Y;t(-:)V) - >s,Z(t)2(x;1)
B Y(t+v) .
‘;P( IO

>e 1> ane™

9
for0<y<1.
In particular, when n = 1/2,
Y(t+ _ mt,
P(’ ;(t)v)—e”” >s|Zza>sC4e Ma2)e = g
Proof. Note that
Y(t+
P ’ ( V)—emv >elZ>a
Y (1)
1 (86)

P(Z>a)

B Y({t+v) .
_PO O

>e 72 oc) .
= (“tl + “tz)sz’

where 0<y<l, P = (1/P(Z=a)),
ay =P(Y +v)/Y () -e™|>e,Z(t)<an,Z>a), and
a, =P(Y +v)IY () -e™|>e Z(t)zan, Z=a).
Clearly, as shown in Theorem 4,

4y <P(Z - Z(t)>a(l - ) <Cye Mal-m®e™ - (g7)

On the other hand,

>e,Z(t)zan|Y (1) = l) CP(Y(t) =)

em(t+1) _

f+m1e“*m).P(Y(t) =)
e —1

>s> -P(Y(t)=1])
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The existence of Cg and I, (¢) follows from Chernoff type
bounds since E[e?Y ] < co. Moreover,

I

Therefore, we can choose I(¢) and constant Cy,
satistying

a4y <Crpe” MO, (90)
Hence,
Y (t+
p ’M—emv >elZ>a
Y (1)
(91)

_ — 1)](2/3) 5 (mt/3) _ mt
SP,X<C76 AMa(1-7)]" e +C10€ anl (e)e )

In particular, for n = (1/2), there exists C, such that

p(’Y(t+v)_ o

_A(alz)(z/s)em:/z
————¢ |>¢lZza |<C,e , 92
YO I ) 4 (92)

since the first term «,; tends to 0 faster than a,,. O

4. Concluding Remarks

In this paper, we studied the evolutionary structure of a
supercritical branching process with immigration through
the behavior of conditional limits under various notions of
“information” about the current population size. A natural
next question concerns the large deviation rates of high-
dimensional branching processes under other “information”
notions. These and other related issues will be investigated in
subsequent papers.
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