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In light of a certain sort of fractional calculus, a generalized symmetric fractional differential operator based on Raina’s function is
built. The generalized operator is then used to create a formula for analytic functions of type normalized. We use the ideas of
subordination and superordination to show a collection of inequalities using the suggested differential operator. The new Raina’s
operator is also used to the generalized kinematic solutions (GKS). Using the concepts of subordination and superordination, we
provide analytic solutions for GKS. As a consequence, a certain hypergeometric function provides the answer. A fractional
coeflicient differential operator is also created. The geometric and analytic properties of the object are being addressed. The
symmetric differential operator in a complex domain is shown to be a generalized fractional differential operator. Finally, we

explore the characteristics of the Raina’s symmetric differential operator.

1. Introduction

Symmetry is both an abstract basis of attractiveness and an
applied tool for resolving convoluted problems. As a con-
sequence, symmetry is a well-known foundation in nu-
merous fields of physics. Despite a well-developed abstract
theory of analytic symmetry, symmetry in real-world
complex networks has established little attention [1]. Many
scientists in many domains of mathematical sciences have
been interested in learning more about the theory of sym-
metric operators. A special class of symmetric operators is
defined by using some special functions, which are satisfying
the symmetric behavior. The Mittag-Leftler function and its
extensions, including Raina’s functions, are solutions for all
categories of fractional differential equations (see [2-8]).
We examine how Raina’s function may utilize to expand
a symmetric fractional differential operator in a complex
domain in this research. A range of new normalized analytic

functions are explained using the fractional symmetric
operator. The idea of differential subordination and
superordination is applied to study a collection of differ-
ential inequalities. The geometric behavior of the generalized
kinematic solution (GKS), a family of analytic solutions, is
also studied. A variety of applications employ the new
convolution linear operator.

2. Methods and Techniques

We will go through the strategies we used in this part.

2.1. Geometric Concepts. We start by the following definition
[9]:

Concept 2.1. The analytic functions y,,y, in
U: ={& e C: |§| <1} are subordinated y,<y, or
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V1) <y, (5, el (1)

If for an analytic function v, |v| <|€| <1 owning

1) =y, (v(§), fel (2)

Concept 2.2. Consider the subclass of analytic functions
A by

(& =E+) 8" nel, 3)
n=2

satisfying ¥ (0) = 0,y' (0) = 1.
Furthermore, the functions v, y, € A are called con-
voluted (v, * y,) if they admin the operation [10]

(v1#v,)(§) = <§+Z¢n >*<€+Z(Pn€n>
n=2 (4)
=E+Z¢>n¢n<’”

Concept 2.3. The & class of star-like functions and the
€ class of convex univalent functions are both related
to the class of normalized analytic functions (A). In
addition, we require the class of analytic functions

P={oe@)=1+0¢+0,E+...,Ecl}. (5

2.2. Modified Special Function. Special functions include
integrals and the outputs of many different types of dif-
ferential equations. Therefore, most integral sets include
special duty descriptions, and these duties include the ele-
mentary integrals. Since symmetries are important in real
life, the philosophy of special functions is tightly linked to
various mathematical physics topics [11]. We will start with
a well-known special function, the Mittag-Leffler function.

Concept 2.4. The extended Mittag-Leftler function is
formulated by the series [12]

@, \&
wp (O = Z(m>m (6)

such that (v), =T (v+mn)/T'(v). Clearly, for v=1,
implies that

- g
T = Z—FW po 7)

After that, we will go through Raina’s function.

Concept 2.5. Raina’s function is determined by the
power series as follows [12]:

(o)

. -
T =y g

= T(an+P) el ®)
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such that
= {v(0),v(1),...,

complex numbers.

a € (0,00), € [1,00) and
v(n)} is a collection of real or

Notice 2.6. We have the following well-known special
cases:

M) v(n) =1— T4 (8)

(ii) v(n) = ((V),/n)) = T35 (8)
(iii) e = 1, =1, v(n) =

(%), (), (5),) =,0, (x, y;5;§) =
Yoo ((x),, (y)n/(S)n)(f”/l"(n +1))

Employing the functional Jg’ﬁ (§), we get the convo-
lution operator, for v € A

ﬂz,ﬁwa:(”“ ﬁ’)(faﬁw)m

(1

(T (a+1tB)
(5o

< (T (a+p) v(n)  \a o
+HZ;< v(1) ><1"(0m+[3)>f >*(£+V;an€)

B T(a+p) \[v(m)) ..
=&+ z(l“([)’+0m >< (1)) e

=8+ ) ga,d,
n=2
9)
such that
_( Ta+p) \[fvn
T\ B+am )\ o)
(EeUyeAac (0,00),p€[1,00),v={v(0),...,0m)}.
(10)

Clearly, 7 1//(5) € A. From the above structure, the
fractional d1fferent1al operator can be viewed geometrically.

Note that the operator [ 1//(5) is a new type of the
convoluted Carlson-Shaffer operator [13] satisfying
a=p=1,and v(n) = ((1),(»),/(s),), Vn, with

°°< (D, (P

”Z,ﬁll/(f) = n;) M)%E"- (11)

Moreover, when v(n) = T'( + an) for all n> 1, we have

the Salagean operator [14]:

logv () =&+ na,g". (12)

n=2

2.3. Arguments. The following precursors are utilized to
develop the results of this inquiry into differential subor-
dination theory:
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Argument 2.7 (see [9]). Suppose that f; () and f, (§)
are convex univalent in U with f,(0) = f,(0). Then,
for a fixed value 7 #0,R () >0, the subordination

£ +(%)€f{(f)<f2(f), (13)
gives
F1(©)<f,(8). (14)

Argument 2.8 (see [9]). Consider the class of hol-
omorphic functions as follows:

[b,n] ={p: 9(&) =b+b,&" +b,, & +---},  (15)

where b € C and n € Z*. The condition 1 € R implies
R{p (&) +189' (5} >0=R (9(§)) > 0. (16)

In addition, if 1>0 and ¢ €II[1,n], then for
11> 1M, € (0,00) satistying

m My
§0(€)+15¢'(E)<<1+E> =>go(£><<”f) V)

1-¢ 1-¢&

Argument 2.9 (see [15]). Let h,¢ € II[b,n], where

9e®% and for w,,w,cC,w,#0. Then, the
subordination
wiTt (§) + wybh (§)<w, 9 (§) + wyée' (), (18)
yields
n(E)<e (8. (19)

Argument 2.10 (see [16]). Let ¢,¢ € II[b,n], where
¢ € € and the functional ¢ (£) + v€¢' () is univalent
for some positive fixed number v. Then the differential
inequality

¢ (5) + vEp' ()< (§) + végp' (§), (20)
implies

$ (<9 (). (21)

3. Consequences

The next class of normalized analytic functions is defined in
this paper, and its features are investigated employing dif-
ferential subordination and superordination theory.

Concept 3.1. A function y € A aims to be in the class
Q’;)ﬁ (A, p) if it fulfills the inequality

<%) [59 (O] + A0 (©)]'<p (©),

(£eU,A e (0,1],p(0) = 1, € (0,00), 8 € [1,00)),
(22)

3
whenever p € 6.
Eventually, the convexity of the univalent function
Aé+1
i Sl 23
P& =4 Fil (23)

implies that

peP:= \ipe[U:p(f):l+Zpi€"}. (24)

n=1

Consider the functional Z@: U — U, as in the following
structure:

-1
z, (8) = (IT) (150 ®] + 2w (&)

!

(25)

Consequently, in view of Concept 3.1, we get the next
inequality
AE+1

zg(fym, fel. (26)

We proceed to investigate the geometric possessions of
the suggested operators.

3.1. Results of Subordination Formula. We begin with the
following outcome.

Proposition 1. Assume that y € Qg’ﬁ N p). If
A
R{Z, (O} =R

1-2 v v i
()l wart o,

::m{ufgn}w,

n=1

then the upper bound of the coefficients g, is determined by the
probability measure dw:

M< Jzﬂ'e—inr
“Jo

5 dow (7). (28)

In addition, if

m(e"’zfp(f)) >0, ¢(eU,TeR, (29)
then y € Q’;’ﬁ(AE +1/BE+1) and
%, () = ‘ggi i Eel. (30)

Proof. Suppose that

R(Z),(6)) =2R<1+ZQHE”>>O. (31)
n=1

Continuously, the Carathéodory positivist lemma entails



2m X
ol <2 jo le”"|de (7), (32)

where dw is a probability measure. Besides, if

R(e72, (9)>0, EecUreR, (33)

then according to Theorem 1.6 in [10] and for a fixed
number 7 € R, we have

A
D=2 feu (34

Hence, y € O 5 (A, (A§ + 1/BE +1)).

The following findings reveal the functional sandwich
theory’s required and adequate methodology. O

Proposition 2. Suppose that
ML @) + [ O <F, (D +EF3 B, (35)

%, (§) +E(2 () =M1y (®)]
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where F,(0) =1 and convex in U. Moreover, let Z?V(f) be
univalent in U with Z, € II[F, (0), 1] N D, where D indicates
the class of all univalent analytic functions F having the limit
limgop F # 00 and

Fy (&) + EF{ (§)<AE[ 1 gy ()] + [V pw (©)]'. (36)

Then
Fy(§) <2y (©)<F, (&), (37)

and F, (&) is the best subdominant and F, (§) is the best
dominant.

Proof. Putting
iy} ,
%, (&) =<1£>[ﬂz,ﬁw(f>] AL ©],  (38)

a calculation yields

EAE[0 gy (®)]" - A= D159 (O)]") + A= D[12,v (9]

+

§
(39)
(1-D)[15v (9]
+ - S -
§
= AE[l gy (®)]" + [l v (D]
As a consequence, the double inequality produced is as ~ Proposition 3. Assume that
follows: 1 (1-1) '
Fy () + EF] (§)<Z, (8) +&(Z, (D) <, (§) + EF3().  (40) O = [y @] ALy ®). @y
Finally, Arguments 2.9 and 2.10 provide the required Then this leads to
outcome. O O
ls¥ (O] v v " n
(%)81 + [Ua,ﬁV/(f)] [e) +3e,] + ng[ﬂa,ﬁV/(f)] <(11%§)
1+&\" (42)
f>2$<5><(1 - s) ,

(y1>0,9,>0,6g =1-1,&, =1>0).

Proof. A calculation gives that
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-A)
5

%, () +§(2, (D) =

[ aﬂV/(f)] +/1[UapW(£)]

+ g(@ (12 5y (9)] +A[u;ﬁy/(f)]’>

_ < [y ®]

1+&\"
< d .
<1 - ¢ )
In view of Argument 2.8, we obtain

Y2
=) (§)< (”‘;) . (44)
O

3.2. Fractional Differential Equation with Kinematic
Solutions. We will use the generalized differential operator
to continue our research in this section. A generalized
formula for the kinematic solutions (GKS) is presented using
the suggested operator. Kinematic behaviors describe the
motion of an item with constant acceleration in a dynamic
system.

We aim to utilize the class Q” (/1 (1+&/1-9)) to ex-
tend GKSs. We deal with the upper bound solution, for the
fractional differential equation

1-M\ v )AL+
(T)[ua,ﬁw(f)] ALy O] =5

([u;ﬁy/(O)] =0,c€ [0,1],E € ).

(45)

The outcome of (45) is formulated as follows.

Proposition 4. Let ¢ € Q“ﬁ (¢, (1 +&/1 = §&)). Then (45) has
a solution expressed by

v 28 ,0.(L1+1/4;2+1/4;8)
(005w ()] =tV + T
(46)
LM
A+1 A+1

where c is a constant and ,0, (x, y, s; §) is the hypergeometric
function.
Proof. Let £ € Q) ﬁ(c, (1+¢&/1-§&)). Thus, we obtain

( )[Ua;sllf(ﬁ)] + A1y (8)] = ‘P(f) J(ré )

where |y| <€ <1 and y(0) = 0. As a result, we get the in-
tegral formula

4
v _yo-on [0 voa-nf x(p)+1
1w (O] =€ JO n (Ai(x(n)—l))dn' (48)

F >$1 +[g; + 3¢, [[I;)ﬁw(f)] + szf[ﬂz)ﬁw(f)]"

(43)

In view of Schwarz lemma, we get x (§) = wé, |w| = 1 (see
Theorem 5.34 in [17]). Therefore, by assuming y (§) = &, we
obtain the differential equation

(15 )[aﬁw(f)]m[uﬂv/(f)] 1+§ (49)

If we reorganize the previous equation, we conclude that

(1559 (®)] + M M o] = ()(1—f§) (50)

Then multiplying by the functional

T(¢) = eXp(J W dg) 51/ - 1) (51)
we obtain
e ;v @] - g
&I @) - ;
gl/(/\f 1) 1 +£ (52)
(o))
As a result, we receive the solution
v N 282 ,0.(L1+1/4;2+ 1/A4;8)
12,(0)] - ok Ral
g g (53)
)t /\ a

Example 1. Let v € Q) l;(/l (1+¢&/1-¢)), where A =1/2
and ¢ = 0. According to Proposition 5, we have

v 28,0, (1,14 (1/4),2 + (1/A), f)
[”u,ﬁll/(f)] = ( 2 T+ 1 1>,

C:O:g(w_l_l)’

)t:%:f+52+f3+54+“'+o(57)’ <1

(54)



Let w(§) = (§/1 - &). Then
; ~ T(a+p) \[v(n)
125w (&)] = u;(r(ﬁm))(U (1))5 (55)

Comparing the right sides of the above equations, we
obtain that v (n) = T (B + an), Va. But w (&) = (&/1 - &) is the
optimal convex function in the open unit disk; thus, the

/%2 [ﬂz,ﬁllf(f)] = [UZ,ﬂV/(f)]
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operator [I]Z)ﬁl//(f)] is convex whenever y is convex (see
Figure 1).

3.3. Symmetric Differential Operator. The Raina’s convo-
luted operator is assumed to present an extended symmetric
differential operator.

My [V 59 (9)] = €[l gu (8)]' = (1 - O&[1; 5w (-6)]'

= €<f+ Z nancnf”> -(1- €)<—€+ Z n(—l)”ancn€">
n=2

n=2

:g+Z[ (¢~ 1 -0 (-1"]a,c.¢"

n=2

M [Vogy (9] = oty [y [V g (D]

(56)

:g+z[ (-1 -0 D" a6,

n=2

/I'E["Z,ﬁw(f)] = -/%é [ﬂ?I [”Z,ﬁll’(f)]]

=&+ ) [n(e-(1-0(-1"]",a,8"

n=2

When ¢, =1,Vn, we have the symmetric operator in
[18]. Moreover, when ¢, =1 and ¢ =1, we receive the
Salagean integral operator [14].

The following classes will be studied:

Concept. Let ¢ € A. Then, we define the subclass of
star-like functions:

(i) y e S*“k (f) if and only if there occurs a convex
functlon h € € satisfying the subordination

(g1 5y (©)])
/%I; [”Z,ﬁ‘l’(f)]
(i) v € J} (A, B,k) if and only if

n(8). (57)

1 2005 12 5y (8)) 1+ AE
T kv kv < ,
W\ Ay [V py (8)] - Ay [Ny (-O)] ) 1+BE

((elU,-1<B<A<1L,k=1,2,...,§ € C~N{0}, € € [0,1)).

(58)

Proposition 5. Consider y € S;j;f‘g(h). Then

(h(y(2)) - I/Z)dZ)
/”k+1[”aﬁw(f)]<fe<J , 59

where y (&) is analytic in U with y(0) =
Additionally, for |&| =
inequality

k+1 v
eXp<Ll) HyCN)- 1>dN ) I/le [I]g)ﬁq,(g)]i

Th(y(R) -1
s o [0

0 and |y (&)< 1.
N, MK [lepv (§)] satisfies the

(60)

Proof. Because y € S (h) then we conclude that

< (/%’e‘“["u,ﬁw@)])

M1 g ()]

><h(f), Eell (61)

This leads to the existence of a Schwarz function with
y(0) =0 and |y ()| <1 such that

(s 1t 5y (8)])'

Eel, (62)
My [”Z,/ﬂ/’(f)]

=n(y (&),
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(@ ()

(©

05 0.0 05
(e) ()

F1GUrEe 1: Plots of GKS of equation (45). (a) w (&) = &/(1 - &). (b) 1 +&)/(1-¢). (¢) [I]Z’ﬁl//(f)], when A = 0.5,¢ = 0. (d) [ﬂg)pl//(f)], when
A=0.25,¢=0. (e) [I55y ()], when A = 0.5,c = 1. (f) [Izy ()], when 1 = 0.25,c¢ = L.

which implies that

(" Gy @) 1 npy@E-1
M gy ®)] 8 ¢

Sh(y(z) -1
0 z

tog .4£4"' [159/(®)] - log £ = | de.  (64)

(63) A computation brings

k+1[pv £ _
log</m [ﬂgﬁw(f)]>=joh(y(z)) L )

Integration implies that
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The subordination yields Moreover, the disk is mapped by % (£). When we apply
En(y(2) -1 0<|é] <X <1 to an area that is convex and symmetric with
/ﬂ’e‘“ [”Z,/;‘//(f)]<f exp( Jo%dz) (66) respect to the real axis, we get

n(=RIE) <R (2 (y (RE)) <k (R[], Ne (0,1),

which brings

h(=R)<h(=R[E]), R (RE])<n(N),

L (y (-RIED) - 1 h(y(R) - 1 Ly (RIED) - 1
Jo#dz\zsmOonN) = jofd&

Employing equation (65), we obtain

dN.

th()/(—lel))— L4

" Vv ®]] th(y(lel))—l
0 N

NSlogl 3 |_ . R

As a result, we get the inequality

k+1[qv
Xp( I; h(y(—lizlfl)) -1 dN) _ I-/%e [ﬂg,/ﬂ/’(f)]} _ eXp( j;mymlfm -1 dN)_

Hence, we receive

k+1 v
exp(J; h(y(_;:)) — 1)dN§ I/%e [Dg’ﬁw(f)]I < exp< J; 7““1:2)) — 1>dN.

1
Proposition 6. Suppose that y € J} (A, B,k) then the odd 2@ = P [y(©@-y(=OL Sel,

function
fulfills the inequality

Y EC N LT IGI R AL
AN L5 163) 1+ B¢

RO\ 1-f
m(sz(f))me’ =<1,

((elU,-1<B<A<1L,k=1,2,...,§ € C~N{0}, € € [0,1)).

Proof. By the condition y € J]E (A, B, k), we obtain the ex-
istence of a function G € J(A, B) such that

(67)

(68)

(69)

(70)

(71)

(73)
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24057 |0y ()]

1GE -1 =| —
MgV gy ()] - ./%e[ a,;;‘/’(—f)]
(74)
—Zﬂkﬂ []U _
h(G(-¢)-1) :< — ¢ [ zxﬁlll:( vf)] >
My [ gy (8)] = Ay [ 1, gy (<0)]
This leads to
k+1
m(M 1>=M_ 75)
M 152 (8)] 2
Also, because
1+A£
GOz 6

where (1 + A&/1 + B¢) is univalent, then the above subor-
dination yields

M1 52(9)] 1+ A
+ﬂ</%"[aﬁ2(f)] 1><1+BE' (77)

Additionally, the function 8 () is star-like in U, which
gives the inequality

B 1-¢
2@ 147

As a consequence, we confirm the existence of Schwarz

(78)

function g € U, [p (§)| < €] < 1,0(0) = 0 such that
59(5) @(5)2
)= — (79)
YO="gm +p(£)
which vyields that there is &, |§| = <1 such that
2 1=Y(E)
© (f)_1+Y(E)’ el (80)
By rearranging the above inequality, we receive
1-Y(§)| 22
TY® =lp " <& (81)
Hence, we have the following conclusion:
L+Ef g
Y (§) - < , 82
’ 11| (1- 1)’ (8
or
L+ 21
Y (&) - - (83)
I T8 = (1-1e)
This yields
1- 112
R(Y ()= 5 El=n<1 (84)
1+7n
As a result, we obtain the next outcomes. O

Corollary 1 (see [18]). Let yu(n) = I'(an + ) in Proposition

6. Then
e 12 O] 1>=1+1<ﬂ’z*1[2<m_1>
M0 R (D] AN/AIE)

1
1+-
h <

1 + A&
1 + B¢
(85)
Corollary 2 (see [19]). Let £=1 and v(n) =TI (an+f) in

Theorem 3.9. Then

k+1 Kl
Ll w AIRTRY IO
b\ (1,2 AZATIG)

1+A§
1+B£

(86)

Corollary 3 (see [20]).
B) in Theorem 3.9. Then

Lett=1,k=1and v(n) =TI (an+

L altg@] ) YALIG)
Nl o] ‘” VG
1 + A&
1 1+BE
Corollary 4. Let k=0,£=1 and v(n)=I(an+p) in
Theorem 3.9. Then
1[qv
- 4|12 O) p|irAd (88)
[152(O)] 1+ B¢

4. Conclusion

The preceding study used symmetric derivative and Jack-
son’s calculus to generalize Raina’s transformations in U. We
used the suggested linear convolution operator on the
normalized subclass. The operator is utilized to analyze the
outcome of a specific form of GKS, which is utilized as an
application. The hypergeometric function was used to de-
termine the behavior of solutions. We further stressed that
the answer belongs to the normalized analytic functions
category.
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