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�e investigation of new operators belonging to some speci�c classes has been quite fashionable since the beginning of the century,
and sometimes it is indeed relevant. In this study, we introduce and study a new class of operators called k-quasi-
(m, n)-isosymmetric operators on Hilbert spaces. �is new class of operators emerges as a generalization of the (m, n)-iso-
symmetric operators. We give a characterization for any operator to be k-quasi-(m, n)-isosymmetric operator. Using this
characterization, we prove that any power of an k-quasi-(m, n)-isosymmetric operator is also an k-quasi-(m, n)-isosymmetric
operator. Furthermore, we study the perturbation of an k-quasi-(m, n)-isosymmetric operator with a nilpotent operator. �e
product and tensor products of two k-quasi-(m, n)-isosymmetries are investigated.

1. Introduction

LetB(H) be the C∗-algebra of bounded linear operators on
a complex Hilbert space H and let

C[u, v] � P(u, v) � ∑
0≤k≤m
0≤l≤n

ck,lu
kvl, ck, l ∈ C







. (1)

For R ∈B(H), we will write ran(R), ker(R), and R∗ the
range, the kernel (or null space), and the adjoint of R, re-
spectively. Also, σp(R), σap(R), σ(R), and σs(R) denote the
point spectrum, the approximate spectrum, the spectrum,
and the surjective spectrum R.

�e hereditary functional calculus de�nes

P(R) � ∑
0≤k≤m
0≤l≤ n

ck,lR
∗lRk, forP ∈ C[u, v].

(2)

It is easy to check that for P ∈ C[u, v] and Q ∈ C[u, v],
we have

PQ(R) �∑
k,l

ck,lR
∗lQ(R)Rk �∑

k, l

dk, lR
∗lP(R)Rk. (3)

Recall that an operator R ∈B(H) is called a hereditary
root or simply root of P ∈ C[u, v] if P(R) � 0. For more
details on the hereditary functional calculus, we refer the
reader to [4, 5].

In recent years, the concepts of m-isometric operators
and the related classes of operators, namely, n-quasi-
m-isometries, (m,C)-isometries, and n-quasi-(m,C)-
isometries have received substantial attention. Several
authors have been introduced, and these classes of operators
are studied intensively in the papers [12–18], [20–23, 28, 32].
It has been proved that some products of m-isometries are
again m-isometry [8, 11], the powers of an m-isometry are
m- isometries, and the perturbation of m-isometries by
nilpotent operators has been studied in [6, 9, 10]. �e dy-
namics of m-isometries has been explored in [7]. Almost all
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of these properties have been extended to n-quasi-m-iso-
metric operators, (m, C)-isometries, and n-quasi-
(m, C)-isometries. &e reader can refer to the papers
[12–14, 17, 18, 20–23, 32] for more details.

Let R ∈B(H) and m, n, and k be positive integers.

(1) R is called m-isometry [1–3] if it is a root of
P(u, v) � (vu − 1)m, that is,


0≤k≤m

(− 1)
k

m

k
 R

∗k
R

k
� 0. (4)

(2) R is called m-symmetry [15, 27] if it is a root of
P(u, v) � (v − u)m, that is,


0≤k≤m

(− 1)
k

m

k
 R

∗(m− k)
R

k
� 0. (5)

(3) R is called k-quasi-m-isometry [19, 20, 31] if it is a
root of P(u, v) � vk(vu − 1)muk, that is,

R
∗k


0≤j≤m

(− 1)
j

m

j
 R

∗j
R

j⎛⎝ ⎞⎠R
k

� 0. (6)

(4) R is called k-quasi-n-symmetric [33] if it is a root of
P(u, v) � vk(v − u)muk, that is,

R
∗k


0≤j≤n

(− 1)
j

n

j
 R

∗n− j
R

j⎛⎝ ⎞⎠R
k

� 0. (7)

(5) R is called (m, n)-isosymmetric [29, 30] if it is a root
of

P(u, v) � (vu − 1)
m

(v − u)
n
, (8)

that is,


0≤j≤m

(− 1)
j

m

j
 R

∗(m− j)


0≤k≤n
(− 1)

k
n

k
 R

∗(n− k)
R

k⎛⎝ ⎞⎠R
m− j

.

� 
0≤k≤n

(− 1)
k

n

k
 R

∗(n− k)


0≤j≤m
(− 1)

j
m

j
 R

∗(m− j)
R

m− j⎛⎝ ⎞⎠R
k

� 0.

(9)

For n, m ∈ N, set αn(u, v) � (v − u)n, βm(u, v) �

(vu − 1)m, and

cm,n(u, v) � βm(u, v)αn(u, v) � αn(u, v)βm(u, v). (10)

For R ∈B(H), we have

αn(R) � 
0≤k≤n

(− 1)
k

n

k
 R

∗n− k
R

k
,

βm(R) � 
0≤k≤m

(− 1)
k

m

k
 R

∗m− k
R

m− k
,

cm,n(R) �


0≤k≤n

(− 1)
k

n

k
 R

∗n− kβm(R)R
k
,

or


0≤k≤m

(− 1)
k

m

k
 R

∗m− kαn(R)R
m− k

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(11)

It is easy to see that

cm+1,n(R) � R
∗
cm,n(R)R − cm,n(R),

cm,n+1(R) � R
∗
cm,n(R) − cm,n(R)R.

⎧⎨

⎩ (12)

It is well known that a common way to prepare a sci-
entific study is to introduce some new mathematical objects
and then state several results related to them. &e investi-
gation of new operators belonging to some specific classes
has been quite fashionable since the beginning of the

century, and sometimes it is indeed relevant. &e motivation
of this study is to introduce and study the concept of
k-Quasi-(m, n)-isosymmetric operators on Hilbert spaces.
&is new class of operators emerges as a generalization of the
(m, n)-isosymmetric operators. It is proved that there is an
operator which is a k-quasi-(n; m)-isosymmetric operator,
but not (n, m)-isosymmetric, and thus, the proposed new
class is larger than the class of (n, m)-isosymmetric oper-
ators. In section two, we give a matrix characterization of
k-quasi-(m, n)-isosymmetric operators in terms of
(m, n)-isosymmetric operators. We give some results related
to this class by using this matrix representation. In section
three, we investigate some spectral properties of k-quasi-
(m, n)-isosymmetric operators; in particular, we explore
conditions for k-quasi-(n, m)-isosymmetric operators to be
k-quasi-m-isometric operators or k-quasi-n-symmetric
operators. Finally, in section forth, we study the sum of an
k-quasi-(m, n)-isosymmetric operator with a nilpotent op-
erator. We also study the product and tensor product of two
k-quasi-(m, n)-isosymmetric operators.

2. Structure of k-Quasi-
(m, n)-Isosymmetric Operators

In the present section, we give the definition and basic
properties of k-quasi-(m, n)-isosymmetric operators. &e
obtained results improve and generalize some works on
m-isometries, n-quasi-m-isometric, n-symmetries, and
k-quasi-n-symmetric operators.
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Definition 1. An operator R ∈B(H) is said to be k-quasi-
(m, n)-isosymmetric operator if R is a root of the polynomial

Pm,n,k(u, v) � v
k
cm,n(u, v)u

k
, (13)

for some positive integers m, n, and k, or equivalently,

R
∗k


0≤j≤m

(− 1)
j

m

j
 R

∗(m− j)


0≤r≤n
(− 1)

r
n

r
 R

∗(n− r)
R

r⎛⎝ ⎞⎠R
m− j⎛⎝ ⎞⎠R

k

� R
∗k

· 
0≤r≤n

(− 1)
r

n

r
 R

∗(n− r)


0≤j≤m
(− 1)

j
m

j
 R

∗(m− j)
R

m− j⎛⎝ ⎞⎠R
r⎛⎝ ⎞⎠R

k

� 0.

(14)

Example 1

(i) Every m-isometric operator is an k-quasi-
(m, n)-isosymmetric, and every n-symmetric
operator is an k-quasi-(m, n)-isosymmetric
operator

(ii) Every (m, n)-isosymmetric operator is an k-quasi-
(m, n)-isosymmetric operator

(iii) Every k-quasi-m-isometric operator is an k-quasi-
(m, n)-isosymmetric operator

(iv) Every k-quasi-n-symmetric operator is an k-quasi-
(m, n)-isosymmetric operator

Remark 1. Since q≥ k, r≥m, and s≥ n, the polynomial
vk(vu − 1)m(v − u)nuk divides vq(vu − 1)r(v − u)suq; it fol-
lows that if r is a k-quasi-(m, n)-isosymmetric operator, then
it is a q-quasi-(r, s)-isosymmetric operator.

Remark 2

(1) If n � m � k � 1, 1-quasi-(1, 1)-isosymmetric oper-
ator is a quasi-isosymmetric, i.e., an operator R is
quasi-isosymmetric if and only if

R
∗

R
∗2

R − R
∗
R
2

− R
∗

+ R R � R
∗3

R
2

− R
∗2

R
3

− R
∗2

R + R
∗
R
2

� 0.

(15)

(2) An operator R is quasi-(2, 1)-isosymmetric if and
only if

R
∗

R
∗3

R
2

− R
∗2

R
3

− 2R
∗2

R + 2R
∗
R
2

+ R
∗

− R R � 0.

(16)

(3) An operator T is quasi-(1, 2)-isosymmetric if and
only if

R
∗

R
∗3

R − 2R
∗2

R
2

+ R
∗
R
3

− R
∗2

+ 2R
∗
R − R

2
 R � 0.

(17)

Remark 3. In the following example, we show that there is
an operator which is k-quasi-(m, n)-isosymmetric, but not
(m, n)-isosymmetric for some positive integers n, m, k≥ 1,
and therefore, the proposed new class is large than the class
of (n, m)-isosymmetric operators.

Example 2. Let R �

0 0 1
0 0 0
0 0 0

⎛⎜⎝ ⎞⎟⎠ ∈B(C3). &e direct cal-
culation shows that

R
∗

R
∗2

R − R
∗
R
2

− R
∗

+ R R � 0 andR
∗2

R − R
∗
R
2

− R
∗

+ R≠ 0.

(18)

&us, R is a quasi-isosymmetric but not isosymmetric
operator.

Example 3

(1) Let R �
I I

0 0  ∈B(H⊕H). A simple calculation
shows that

αn(R)≠ 0, βm(R)≠ 0, and cm, n, k(R) � 0. (19)

&us, R is a k-quasi-(m, n)-isosymmetric operator;
however, R is neither m-isometry nor n-symmetry.

(2) Let R �
0 I

0 0  ∈B(H⊕H). A simple calculation
shows that

R
∗

R
∗
R − I( R≠ 0, R

∗
R
∗

− R( R≠ 0 and

R
∗

R
∗2

R − R
∗
R
2

− R
∗

+ R R � 0.
(20)

&us, R is a quasi-isosymmetric operator; however, R
is neither quasi-isometry nor quasi-symmetry.
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Remark 4. &e following inclusions hold:

[m − isometry]⊈[k − quasi − m −  isometry]⊈[k − quasi − (m, n) − isosymmetry],

[n − symmetry]⊈[k − quasi − n − symmetry]⊈[k − quasi − (m, n) − isosymmetry],

[(m, n) − isosymmetry]⊈[k − quasi − (m, n) − isosymmetry].

(21)

Proposition 1. Let R ∈B(H), then the following state-
ments are equivalent:

(1) R is k-quasi-(m, n)-isosymmetric operator
(2) 〈cm,n(R)y |y〉 � 0, ∀y ∈ran(Rk)

Proof

R is a k − quasi − (m, n) − isosymmetric

⇔R
∗k

cm,n(R)R
k

� 0,

⇔〈R∗kcm,n(R)R
k
x | x〉 � 0, ∀x ∈H

⇔〈cm,n(R)R
k
x | R

k
x〉 � 0, ∀x ∈H

⇔〈cm,n(R)y | y〉 � 0, ∀y ∈ ran R
k

 .

(22)

□

Corollary 1. Let R ∈B(H) with k and q are two non-
negative integers such thatran(Rk) � ran(Rq), then R is
k-quasi-(m, n)-isosymmetric operator if and only if R is
q-quasi-(m, n)-isosymmetric operator.

Proof. Straightforward from Proposition 1. □

Theorem 1. Let R ∈B(H) be k -quasi- (m, n) -iso-
symmetric operator. If ker(R∗q) � ker(R∗(q+1)) for some
1≤ q≤ k − 1 , then R is q -quasi- (m, n) -isosymmetric.

Proof. From the assumptions ker(R∗q) � ker(R∗(q+1)) and
q≤ k − 1, it follows that ker(R∗q) � ker(R∗k). &us,
ran(Rk) � ran(Rq). Applying Corollary 1, we get the desired
conclusion. □

Proposition 2. Let M be a closed subspace of H which
reduces R . If R is k -quasi-(m,n)-isosymmetric, then R|M is k

-quasi- (m, n) -isosymmetric.

Proof. Let S � R|M be the restriction of R toM. On the one
hand, we have

cm,n(S) � cm,n(R)|M. (23)

On the other hand, we have ran(Sk)
M
⊂ ran(Rk), where

ran(Sk)
M

is the closer of ran(Sk) in M. &us,
〈cm,n(S)y|y〉 � 0, ∀y ∈ran(Sk) since 〈cm,n(R)y|y〉 � 0,

∀y ∈ran(Rk). &erefore, by statement (2) of Proposition 1,
S � R|M is k-quasi-(m, n)-isosymmetric on M. □

&e following theorem characterizes the members of
k-quasi-(m, n)-isosymmetric operators.

Theorem 2. Let R ∈B(H) such that H≠ ran(Rk) . <en,
the following properties are equivalent:

(1) Risk-quasi-(m, n)-isosymmetric operator

(2) R �
R1 R2
0 R3

 onH � ran(Rk)⊕ker(R∗k), where-

R1 � R|ran(Rk)
is an(m, n)-isosymmetric operator

andRk
3 � 0

Proof. (1)⇒(2). By taking into account the matrix repre-
sentation related to the decomposition H � ran(Rk)⊕

ker(R∗k) as R �
R1 R2
0 R3

 , we get

R1 0

0 0
  � RP

|ran Rk( )

� P
|ran Rk( )

RP
|ran Rk( )

,

(24)

where P
|ran(Rk)

is the orthogonal projection onto ran(Rk).
From the condition that R is k-quasi-(m, n)-iso-

symmetric operator, we have

P
|ran Rk( )


0≤ j≤m

(− 1)
j

m

k
 R

∗jαn(R)R
j⎛⎝ ⎞⎠P

|ran Rk( )
� 0,

(25)

or

P
|ran Rk( )


0≤ r≤ n

(− 1)
r

n

r
 R

∗(n− r)βm(R)R
r⎛⎝ ⎞⎠P

|ran Rk( )
� 0.

(26)

From this, we deduce that


0≤ j≤m

(− 1)
j

m

j
 R

∗ j
1 αn R1( R

j
1 � 0, (27)

or


0≤ r≤ n

(− 1)
r

n

r
 R

∗ (n− r)
1 βm R1( R

r
1 � 0. (28)

&erefore, R1 is (m, n)-an isosymmetric operator.
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On the other hand, let z � z1 + z2 ∈H � ran(Rk)⊕
ker(R∗k). &e direct calculation shows that

〈Rk
3z2|z2〉 �〈Rk

I − P
|ran Rk( )

 z, I − P
|ran Rk( )

 z〉

�〈 I − P
|ran Rk( )

 z, R
∗k

I − P
|ran Rk( )

 z〉

� 0.

(29)

So that, Rk
3 � 0.

(2)⇒(1) Assume that R �
R1 R2
0 R3

  onto H �

ran(Rk)⊕ker(R∗k), with

cm,n R1(  � 
0≤ r≤ n

(− 1)
r

n

r
 R

∗ n− r
1 βm R1( R

r
1

� 
0≤ j≤m

(− 1)
j

m

k
 R

∗m− j
1 αn R1( R

m− j
1

� 0,

(30)

and Rk
3 � 0.

Direct calculation shows that Rk �

R
k
1 

0≤j≤k− 1
R

j
1R2R

k− 1− j
3

0 R
k
3

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ �
R

k
1 wk

0 0
  and therefore,

R∗k �
R
∗ k
1 0

w
∗
k 0

 . Moreover,

R
k
R
∗k

�
R

k
1R
∗ k
1 + wkw

∗
k 0

0 0
⎛⎝ ⎞⎠ �

Ck 0

0 0
 , (31)

where Ck � Rk
1R
∗ k
1 + wkw∗k � C∗k .

R
k
R
∗k


0≤j≤m

(− 1)
j

m

j
 R

∗jαn(R)R
j⎛⎝ ⎞⎠R

k
R
∗k

�
Ck 0

0 0
 

αm,n R1(  A

B D
 

Ck 0

0 0
 

�
Ckαm,n R1( Ck 0

0 0
 

� 0.

(32)

&is means that

〈Rk
R
∗k


0≤j≤m

(− 1)
j

m

j
 R

∗jαn(R)R
j⎛⎝ ⎞⎠R

k
R
∗k

x|x〉 � 0

⇒〈R∗k 
0≤j≤m

(− 1)
j

m

j
 R

∗jαn(R)R
j⎛⎝ ⎞⎠R

k
R
∗k

x|R
∗k

x〉 � 0

⇒R
∗k


0≤j≤m

(− 1)
j

m

j
 R

∗jαn(R)R
j⎛⎝ ⎞⎠R

k
� 0 on ran R

∗k
  � ker R

k
 
⊥

.

(33)

Obviously, R∗k 0≤j≤m(− 1)j m

j
 R∗jαn(R)Rj Rk � 0

on ker(Rk), and consequently,

R
∗k


0≤ j≤m

(− 1)
j

m

j
 R

∗jαn(R)R
j⎛⎝ ⎞⎠R

k
� 0, (34)

on H � ker(Rk)⊕ker(Rk)⊥.
&erefore, R is a k-quasi-(m, n)-isosymmetric

operator. □

Corollary 2. If R ∈B(H) is an k -quasi- (m, n) -iso-
symmetric such that ran(Rk) is dense, then R is an (m, n)

-isosymmetric.

Proof. &is is a direct consequence of &eorem 2. □

Corollary 3. If R ∈B(H) is an invertible k -quasi- (m, n)

-isosymmetric operator, then R− 1 is a k -quasi- (m, n) -iso-
symmetric operator.

Proof. Under the assumption that R is an invertible k-quasi-
(m, n)-isosymmetric operator, it follows that R is an
(m, n)-isosymmetric operator, and so is R− 1 by&eorem 2.4
in [24]. &erefore, R− 1 is a k-quasi-(m, n)-isosymmetric
operator. □

Corollary 4. Let R ∈B(H) be a k -quasi- (m, n) -iso-
symmetric operator such that ran(Rk)≠H . If the restriction
R1 � R|ran(Rk)

is invertible, then R is similar to a direct sum of
an (m, n) -isosymmetric operator and a nilpotent operator
with an index of nilpotence less than or equal k .

Proof. Consider the matrix decomposition of R as

T �
R1 R2

0 R3
  onH � ran R

k
 ⊕ ker R

∗k
 . (35)

&en, R1 is an (m, n)-isosymmetric operator by&eorem
2. Since R1 is invertible, we have 0 ∉ σ(R1), which implies
σ(R1)∩ σ(R3) � ∅. By Rosenblum’s corollary [26], it fol-
lows that there exists A ∈B(H) for which R1A − AR3 � R2.
&erefore, we have
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R �
I − A

0 I
 

R1 0

0 R3
 

I A

0 I
 

�
I A

0 I
 

− 1
R1 0

0 R3
 

I A

0 I
 

�
I A

0 I
 

− 1

R1 ⊕R3( 
I A

0 I
 .

(36)

□

It was proved that power of m-isometric (resp
m-symmetric) operator is again m-isometric (resp m-sym-
metric) operator. &e following corollary shows that the
same property holds for k-quasi-(m, n)-isosymmetric
operators.

Corollary 5. If R ∈B(H) is a k -quasi- (m, n) -iso-
symmetric operator, then Rq is also a k -quasi- (m, n) -iso-
symmetric operator for any positive integer q .

Proof. Let ran(Rk) � H, then R is an (m, n)-isosymmetric
and so is Rq for any q ∈ N by &eorem 2.4 in [24]. If
ran(Rk)≠H, we can use the decomposition of

R �
R1 R2
0 R3

  on H � ran(Rk)⊕ker(R∗k), where R1 is an

(m, n)-isosymmetric operator and so is R
q
1. On the other

hand, observing that

R
q

�

R
q
1 

0≤ j≤ q− 1
R

j
1R2R

q− 1− j
3

0 R
q
3

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠, (37)

it follows that Rq is k-quasi-(m, n)-isosymmetric operator by
applying &eorem 2. □

Theorem 3. Let R �
R1 R2
0 R3

  ∈B(H⊕H) . If R1 is a
surjective (m, n) -isosymmetric operator and Rk

3 � 0 , then R
is similar to an k -quasi- (m, n) -isosymmetric operator.

Proof. Under the assumptions on R1 and R3, we have
σs(R1)∩ σap(R3) � ∅. From the axiom (c) in &eorem 3.5.1
in [16], it follows that there exists some operator A ∈B(H)

such that R1A − AR3 � R2. Hence,

I A

0 I
 

R1 R2

0 R3
  �

R1 0

0 R3
 

I A

0 I
 . (38)

From this, we deduce that R is similar to

W �
R1 0
0 R3

 .

By using the facts that R1 is a (m, n)-isosymmetric and
Rk
3 � 0, we can obtain

W
∗k


0≤ j≤m

(− 1)
j

m

j
 W

∗jαn(W)W
j⎛⎝ ⎞⎠W

k

�
R
∗ k
1 

0≤ j≤m

(− 1)
j

m

j
 R

∗ j
1 αn R1( R

j
1

⎛⎝ ⎞⎠R
k
1 0

0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 0.

(39)

Consequently, R is similar to a k-quasi-(m, n)-iso-
symmetric operator. □

3. Spectral Properties

In this section, we investigate some spectral properties of
k-quasi-(m, n)-isosymmetric operators.

Let P ∈ C[u, v] and R ∈B(H). Let u, v ∈H and
λ, μ ∈ C be such that Ru � λu and Rv � μv, we get by a little
calculation that

〈P(R)u|v〉 � P(λ, μ)〈u|v〉. (40)

It follows from (40) that if R is a root of p and λ is a
spectrum point of R, then p(λ, λ) � 0.

We have the following theorem.

Theorem 4. Let P ∈ C[u, v] and R ∈B(H) . If λ, μ ∈
σap(R) and (un)n∈N, (vn)n∈N be two sequences of unit vectors
such that (R − λ)un⟶ 0 and (R − μ)vn⟶ 0 as n⟶∞ ,
then

〈P(R)un, vn〉 − p(λ, μ)〈un|vn〉⟶ 0 as n⟶∞. (41)

Proof. For u ∈H, α ∈ C, and r ∈ N, we have

R
r

− αr
( u � 

0≤ j≤ r− 1
R

jαr− j− 1⎛⎝ ⎞⎠(R − α)U. (42)

&us, we get

R
r

− αr
( u
����

����≤ 
0≤ j≤ r− 1

‖R‖
j
|α|

r− j− 1⎛⎝ ⎞⎠‖(R − α)u‖. (43)

Let m, n ∈ N. Set

wk,n � R
n
uk − λn

uk, zk,m � R
m

vk − μm
vk. (44)

Applying (43) to λ and μ, respectively, we obtain

wk,n

����
����≤ 

0≤ j≤ n− 1
‖R‖

j
|λ|

n− j− 1⎛⎝ ⎞⎠ Ruk − λuk

����
����,

zk,m

����
����≤ 

0≤ j≤m− 1
‖R‖

j
|μ|

m− j− 1⎛⎝ ⎞⎠ Rvk − μvk

����
����.

(45)
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&us, wk,n⟶ 0 and zk,m⟶ 0 as k⟶ 0.
On the other hand, it is easy to verify

〈R∗mR
n
uk, vk〉 − μmλn〈uk, vk〉

�〈wk,n, zk,m〉 +〈wk,n, μm
yk〉 +〈λn

uk, zk,m〉.
(46)

Since the right side of the previous equality tends to 0, we
obtain

〈R∗mR
n
uk, vk〉 − μmλn〈uk, vk〉⟶ 0. (47)

Taking linear combinations, we get

〈P(R)uk , vk〉 − P(λ, μ)〈uk, vk〉⟶ 0. (48)
□

Corollary 6. Let P ∈ C[u, v] and R ∈B(H). Let
λ, μ ∈ σap(R) and (uk)k∈N ⊂H and (vk)k∈N ⊂H such that
‖uk‖ � ‖vk‖ � 1, Ruk − λuk⟶ 0, and Rvk − μvk⟶ 0. If R

is a root of P, then one of the following statements holds:

(1) 〈uk|tvk〉⟶ 0 ask⟶∞
(2) P(λ, μ) � 0

Proof. Since R is a root of P, we have 〈P(R)uk , vk〉 � 0, ∀ k.
&is yields, from (41), the desired conclusion. □

Corollary 7. Let P ∈ C[u, v] and R ∈B(H) . Let u, v ∈H
be nonzero vectors and λ, μ ∈ C be such that Ru � λu and
Rv � μv . If R is a root of P, then one of the following two
statements holds:

(1) 〈u, v〉 � 0
(2) P(λ, μ) � 0

Proof. Take uk � u and vk � v in Corollary 6. □

As a consequence of &eorem 4, we have the following
two results due to Stankus [30].

Corollary 8 (Proposition 21 [30]).
LetR ∈B(H)andP ∈ C[u, v]. <en,

σap(R) ⊂ λ ∈ C, P(λ, λ) ∈W(P(R)) . (49)

Corollary 9 (Corollary 22 in [30]).
LetR ∈B(H)andP ∈ C[u, v]. IfRis a root of P, then

σap(R) ⊂ λ ∈ C, P(λ, λ) � 0 . (50)

Let H and K be two Hilbert spaces, R ∈B(H) and
S ∈B(K) and

P(u, v) � 
k,l≥ 0

ck,lv
l
u

k ∈ C[u, v]. (51)

Consider the bounded linear transformation

ΦR,S,P: B(H,K)⟶B(H,K), (52)

defined by

ΦR, S, P(X) � 
k,l≥ 0

ck,lS
l
XR

k for X ∈B(H,K). (53)

We also define the maps AR, LS : B(H,K)⟶
B(H,K) by

AR(X) � XR, LS(X) � SX forX ∈B(H,K). (54)

AR and LS commute. Indeed, for X ∈B(H,K), we have

ARLS(x) � AR(SX)

� SXR

� LS(XA)

� LS AR(X)( 

� LSAR(X),

(55)

Lemma 1. Let H , K , S , R , AT , LS, and P be as above.
<en,

ΦR,S,P � P AR, LS( . (56)

Proof. It is easy to check that for m ∈ N, we have

A
m
R � ARm and L

m
S � LSm . (57)

&us, for n, m ∈ N, we have

A
m
R L

n
S(X) � S

n
XR

m
, X ∈B(H,K). (58)

&is yields

ΦR,S,P(X) � 
m,n≥ 0

cm,nA
m
R L

n
S(X)

� P AR, LS( (X) for X ∈B(H).

(59)

&erefore, ΦR,S,P � P(AR, LS). □

We need the following lemmas.

Lemma 2 (Lemma 0.11 in [25]). If A and B are commuting
operators on the Banach spaceX, thenσ(P(A, B)) ⊂
P(σ(A), σ(B)) � P(λ, μ), λ ∈ σ(A), μ ∈ σ(B) for every
polynomialP ∈ C[x, y].

Lemma 3 (Lemma 27 in [30]). Let R ∈B(H), P(u, v) �

m,n≥0cm,nvnum ∈ C[u, v], Q ∈ C[u, v], then PQ(R) �

m,n≥0cm,nR∗nQ(R)Rm.

Remark 5. From (57), Lemma 3 is equivalent to

ΦR,R∗,P(Q(R)) � P AR, LR∗( (Q(R)) � PQ(R). (60)

Remark 6. It is easy to verify that if R is an isomorphism,
then LR and AR are also isomorphisms and we have L− 1

R �

LR− 1 and A− 1
R � AR− 1 . Since, for λ ∈ C, LR− λ � LR − λ, and

AR− λ � AR − λ, we get σ(LR) ⊂ σ(R) and σ(AR) ⊂ σ(R).
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Proposition 3. Let S , R ∈B(H), andP ∈ C[u, v], then

σ ΦR,S,P  ⊂ P(σ(R), σ(S)) � P(λ, μ), λ ∈ σ(R), μ ∈ σ(S) .

(61)

Proof. From (57), we have σ(ΦR,S,P) � σ(P(AR, LS)). &us,
by Lemma 2, we obtain σ(ΦR,S,P) ⊂ P(σ(AR), σ(LS)). &is
yields, from Remark 6,

σ ΦR,S,P  ⊂ P(σ(R), σ(S)). (62)
□

Corollary 10. Let R ∈B(H) and P ∈ C[u, v] , then

σ ΦR,R∗ ,P  ⊂ P(λ, μ), λ, μ ∈ σ(R) . (63)

Proof. Apply Proposition 3 by taking S � R∗. □

Proposition 4. Let R ∈B(H) and P, Q ∈ C[u, v] . If
PQ(R) � 0 , then either 0 ∈ σ(ΦR,R∗,P) or Q(R) � 0 .

Proof. Suppose that 0 ∉ σ(ΦR,R∗,p). &is means that ΦR,R∗,P

is invertible. &us, from (60), we obtain Q(R) � 0. □

From the following, we give a sufficient condition for a
k-quasi-(m, n)-isosymmetric operator to be k-quasi
m-isometric operator or k-quasi-n-symmetric operator.

Theorem 5. Let R ∈B(H) be a k -quasi- (m, n) -iso-
symmetric operator. <e following statements hold:

(1) If σ(R)∩ σ(R∗) � ∅, then R is ak-quasi-m-isometry
(2) If 0 ∉ λμ − 1, λ, μ ∈ σ(R) , then R is ak-quasi-

n-symmetric operator

Proof

(1) Set Pm,n,k � PQ, where P(u, v) � (v − u)n and
Q(u, v) � vk(vu − 1)muk. Since σ(R)∩ σ(R∗) � ∅,

we have 0 ∉ P(λ, μ), λ, μ ∈ σ(R) . &us, from (63),
we get 0 ∉ σ(ΦR,R∗,P). &is yields, by Proposition 4,
Q(R) � 0. &erefore, R is a k-quasi--misometry.

(2) Set Pm,n,k � PQ, where P(u, v) � (vu − 1)m and
Q(u, v) � vk(v − u)nuk. Since 0 ∉ λμ − 1,λμ ∈ σ(R) ,
similarly, as in (1), we obtain that 0 ∉ σ(ΦR,R∗,P).
Applying again Proposition 4, we obtain Q(R) � 0.
&us, R is a k-quasi-n-symmetric operator. □

Theorem 6. Let R ∈B(H) be k -quasi- (m, n) -iso-
symmetric operator, then R has the single-valued extension
property (SEVP).

Proof. If H � ran(Rk), then R is an (m, n)-isosymmetric
operator, and therefore R has SVEP by&eorem 2.20 in [24].
If H≠R(Rk), we use the matrix decomposition of R as

R �
R1 R2

0 R3
  onH � ran R

k
 ⊕ker R

∗k
 . (64)

From &eorem 2, R1 is a (m, n)-isosymmetric operator
and R3 is a nilpotent operator. Hence, R1 and R3 have SVEP;
then, by simple calculations, we see that R has SVEP as
required. □

Rachid [24] showed that if R is (m, n)-isosymmetric
operator, then σ(R) ⊂ zD∪R, where zD is the unit circle.
Now, we extend this result to k-quasi-(m, n)-isosymmetric
operators.

Theorem 7. Let R be n -quasi- (m, n) -isosymmetric oper-
ator, then σap(R) ⊂ zD∪R .

Proof. Let c ∈ σap(R), then there exists a sequence
(wr)r≥1 ⊂H, with ‖wr‖ � 1 such that (R − cI)wr⟶ 0 as
p⟶∞. We have (Rj − cjI)wr⟶ 0 as r⟶∞ for all
positive integersj. From the condition that R is an k-quasi-
(m, n)-isosymmetric operator, one has
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0 � R
∗k


0≤ j≤m

(− 1)
j m

j
 R

∗m− jαn(R)R
m− j⎛⎝ ⎞⎠R

k
wr|wr

�  
0≤ j≤m

(− 1)
j m

j
 αn(R)R

m+k− j
wr|R

m+k− j
wr

�  
0≤ j≤m

(− 1)
j m

j
 αn(R) R

m+k− j
− c

m+k− j
 wr + c

m+k− j
wr | R

m+k− j
− c

m+k− j
 wr + c

m+k− j
wr

� |c|
2k

|c|
2

− 1 
m
〈αnwr|wr〉 (r⟶∞)

� |c|
2k

|c|
2

− 1 
m

 
0≤ j≤ n

(− 1)
j m

j
 R

∗n− j
R

j
wr|wr (r⟶∞)

� |c|
2k

|c|
2

− 1 
m

 
0≤ j≤ n

(− 1)
j m

j
 R

j
wr|R

n− j
wr (r⟶∞)

� |c|
2k

|c|
2

− 1 
m

 
0≤ j≤ n

(− 1)
j m

j
  R

j
− c

j
+ c

j
 wr| R

n− j
− c

n− j
+ c

n− j
 wr (r⟶∞)

� |c|
2k

|c|
2

− 1 
m

(c − c)
n

wr

����
����
2

� |c|
2k

|c|
2

− 1 
m

(2Im(c))
n
.

(65)

Consequently, c � 0 or |c| � 1 or c ∈ R. &is completes
the proof. □

Proposition 5. Let R be k -quasi- (m, n) -isosymmetric
operator. If c � a + ib with b≠ 0 is an approximate eigenvalue
of R , then c is an approximate eigenvalue of R∗ .

Proof. Assume that c � a + ib ∈ σap(R) with b≠ 0, then
there exists (wr)r ∈H : ‖wr‖ � 1 such that (R − c)wr⟶
as r⟶∞. By taking into account that R is a k-quasi-
(m, n)-isosymmetric operator, it follows that

0 � R
∗k


0≤ j≤m

(− 1)
j

m

j
 R

∗m− jαn(R)R
m− j⎛⎝ ⎞⎠R

k
wr

� R
∗k


0≤ j≤m

(− 1)
j

m

j
 R

∗m− jαn(R) R
m+k− j

− c
m+k− j

+ c
m+k− j

 wr
⎛⎝ ⎞⎠

� R
∗k


0≤ j≤m

(− 1)
j

m

j
 R

∗m− jαn(R) R
m+k− j

− c
m+k− j

 wr
⎛⎝ ⎞⎠ + R

∗k


0≤ j≤m

(− 1)
j

m

j
 R

∗m− jαn(R)c
m+k− j

wr
⎛⎝ ⎞⎠

� R
∗k


0≤ j≤m

(− 1)
j

m

j
 R

∗m− jαn(R) S
m+k− j

− c
m+k− j

 wr
⎛⎝ ⎞⎠ + c

n
R
∗k

I − cR
∗

( 
mαn(R)wr.

(66)

By observing that

αn(R)wr � 
0≤ j≤ n

(− 1)
j

n

j
 R

n− j
R

j
wr

� 
0≤ j≤ n

(− )
j

n

j
 R

n− j
R

j
− c

j
+ c

j
 wr

� 
0≤ j≤ n

(− )
j

n

j
 R

n− j
R

j
− c

j
 wr

+ c − R
∗

( 
n
wr,

(67)

and limr⟶∞(Rs − cs)wr � 0 for all positive integers s, we
get from the above relations that

c
k
R
∗k

I − cR
∗

( 
m

c − R
∗

( 
n
wr⟶ 0, as r⟶∞. (68)

If (I − cR∗) is bounded from below, then so is
(I − cR∗)m and therefore there exists a positive constant
K> 0 such that

I − cR
∗

( 
m

w
����

����≥K‖w‖, ∀w ∈H. (69)

From this, we deduce that
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‖ I − cR
∗

( 
m

R
∗k

c − R
∗

( 
n
wr|≥K R

∗k
c − R
∗

( 
n
wr

�����

�����. (70)

Consequently, ‖R∗k(c − R∗)nwr‖⟶ 0, as r⟶∞.
So, we have

0 � lim
r⟶∞
〈R∗k c − R

∗
( 

n
wr | wr〉

� lim
r⟶∞
〈wr|(c − R)

n
R

k
wr〉

� lim
r⟶∞
〈wr |(c − R)

n
R

k
− c

k
 wr〉

+ lim
r⟶∞
〈wr| c

k
(c − R)

n
wr〉

� c
k lim

r⟶∞
〈wr |(c − R)

n
wr〉

� c
k
(c − c)

n
.

(71)

&us, cn � 0 or c − c � 0, which are a contradiction.
Hence, I − cR∗ is not bounded from below. In view of
&eorem 7, we have |c| � 1 and so I − cR∗ � c(c − R∗),
which implies that c − R∗ is not bounded from below. &is
proves the statement of the proposition. □

4. Products andPerturbationofk-Quasi-(N,m)-
Isosymmetric Operators

In this section, we study the perturbation of an k-quasi-
(m, n)-isosymmetric operator by a nilpotent operator and
we study the product and tensor product of two k-quasi-
(m, n)-isosymmetric operators.

Lemma 4. For p, m, n ∈ N , the following identity holds:

v
p
u

p
− 1( 

m
v

p
− u

p
( 

n
� 

0≤ r≤m(p− 1)


0≤ j≤ n(p− 1)

λrμjv
(m+n)(p− 1)− (r+j)

(vu − 1)
m

(v − u)
n
u

j+m(p− 1)− r
, (72)

whereλrandμjare some constants.

Proof. See the proof of statement (ii) in &eorem 3.3 in
[14]. □

&e following theorem shows that the power of a
k-quasi-(m, n)-isosymmetric operator is again a k-quasi-
(m, n)-isosymmetric which is similar to that of Corollary 5
but with another proof.

Theorem 8. If R is k -quasi- (m, n) -isosymmetric, then Rp is
k -quasi - (m, n) -isosymmetric for any p ∈ N0 .

Proof. Two different proofs of this statement will be given.

First Proof. We need to prove that (Rp)∗ kcm,n(Rp)(Rp)k � 0
for any p ∈ N.

In fact, from Lemma 4, we obtain that

R
p

( 
∗ k

cm,n R
p

(  R
p

( 
k

� R
p

( 
∗ k


0≤ r≤m(p− 1)


0≤ j≤ n(p− 1)

λrμj R
∗p

( 
(m+n)(p− 1)− (r+j)

cmn(R) R
p

( 
j+m(p− 1)− r⎛⎝ ⎞⎠ R

p
( 

k

� 
0≤ r≤m(p− 1)


0≤ j≤ n(p− 1)

λrμj R
∗p

( ⎛⎝ ⎞⎠

(m+n)(p− 1)− (r+j)

R
p

( 
∗ k

cmn(R) R
p

( 
k

  R
p

( 
j+m(p− 1)− r

.

(73)

Since R is k-quasi-(m, n)-isosymmetric, we have
R∗kcm, n(R)Rk � 0 and therefore

R
p

( 
∗ k

cm, n R
p

(  R
p

( 
k

� 0. (74)

&is means that Rp is k-quasi-(m, n)-isosymmetric for
any positive integer p.

Second Proof. Let P(u, v) � Pm,n,k(up, vp). It is easy to verify
that Pm,n,k(Rp) � P(R). A little calculation shows that there
exists a polynomial Q such that P � QPm,n,k. &us, by (60),
we get

Pm,n,k R
p

(  � P(R) � ΦR,R∗,Q Pm,n,k(R) , (75)

which yields Pm,n,k(Rp) � 0 since Pm,n,k(R) � 0. &erefore,
Rp is k-quasi-(m, n)-isosymmetric operator. □

Lemma 5. Let R, S ∈B(H) such that [R, S] � [R∗, S] � 0 .
<en, the following identity holds:

cm,n(RS) � 
0≤ k≤m


0≤ j≤ n

m

k
 

n

j
 R

∗j+k
cm− k, n− j

· (R)ck, j(S)R
k
S

n− j
.

(76)

Proof. In view of the following identity (see [14]),
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(cdab − 1)
m

(cd − ab)
n

� 
0≤k≤m


0≤j≤n

m

k
 

n

j
 c

j+k

· (ca − 1)
m− k

(c − a)
n− j

(ad − 1)
k

· (d − b)
j
a

k
b

n− k
,

(77)

it follows by taking a � R, c � R∗, b � S, and d � S∗ with
RS � SR and RS∗ � S∗R that

cm, n(RS) � 
0≤ k≤m


0≤ j≤ n

m

k
 

n

j
 R

∗j+k
cm− k, n− j

· (R)ck, j(S)R
k
S

n− j
.

(78)

□

Theorem 9. Let R ∈B(H) and S ∈B(H) such that
[R, S] � [R, S∗] � 0 . If R is an k -quasi- (m, n) -isosymmetric
and S is an k′ -quasi- m′ -isometric and n′ -symmetric, then
RS is an k0 � max k, k′  -quasi- (m + m′ − 1, n + n′ − 1) -
isosymmetric.

Proof. We prove that (RS)∗k0cm+m′− 1,n+n′− 1(RS)(RS)k0 � 0.
In fact, by taking into account Lemma 5, we get

(RS)
∗k0cm+m′− 1,n+n′

− 1(RS)(RS)
k0 � (RS)

∗k0 
0≤ k≤m+m′

− 1


0≤ j≤ n+n′

− 1

m + m′
− 1

k
 

n + n′
− 1

j
 R

∗j+k
cm+m′

− 1− k,n+n′
− 1− j

⎛⎜⎜⎜⎜⎜⎜⎝

·(R)ck, j(S)R
k
S

n+n′ − 1− j
(RS)

k0

� 
0≤ k≤m+m′

− 1


0≤ j≤ n+n′

− 1

m + m′
− 1

k
 

n + n′
− 1

j
 R

∗j+k
R
∗k0cm+m′

− 1− k,n+n′
− 1− j

· (R)R
k0 × S
∗k0ck,j(S)R

k
S

n+n′
− 1− j

S
k0 .

(79)

We have the following observations:

(i) If k≥m′ or j≥ n′, then S∗k0ck, j(S)Sk0 � 0.
(ii) If k≤m′ − 1 and j≤ n′ − 1, then m + m′ − 1 − k≥m

and n + n′ − 1 − j≥ n. So that

R
∗k0cm+m′− 1− k, n+n′− 1− j(R)R

k0 � 0. (80)

&erefore,

(RS)
∗k0cm+m′− 1,n+n′− 1(RS)(RS)

k0 � 0. (81)

Hence, RS is an k0 � max k, k′ -quasi-(m + m′ − 1,

n + n′ − 1)-isosymmetric. □

Corollary 11. Let R ∈B(H) and S ∈B(H) such that
[R, S] � [R, S∗] � 0 . If R is an k -quasi- (m, n) -isosymmetric
and S is an k′ -quasi- m′ -isometric and n′ -symmetric, then
RpSq is an k0 � max k, k′  -quasi- (m + m′ − 1, n + n′ − 1) -
isosymmetric for any positive integers p and q .

Proof. In view of &eorem 8, we have Rp as k-quasi-
(m, n)-isosymmetric for any positive integer p. Similarly,
from&eorem 12 in [18] and corollary 3.1 in [27], we have Sq

is k′-quasi-m′-isometric and n′-symmetric for any positive
integer q.

Applying &eorem 9, we get RpSq is an k0 � max k, k′ -
quasi-(m + m′ − 1, n + n′ − 1)-isosymmetric for any positive
integers p and q. □

Corollary 12. Let R ∈B(H) and S ∈B(H) . If R is an k1
-quasi- (m1, n1) -isosymmetric and S is an k2 -quasi- m2
-isometric and n2 -symmetric, then R⊗ S is k0 � max k1, k2}

-quasi- (m + m1 − 1, n + n1 − 1) -isosymmetric.

Proof. It is well known that R⊗ S � (R⊗ I)(I⊗ S) and
moreover

[R⊗ I, I⊗ S] � (R⊗ I)
∗
, I⊗ S  � 0. (82)

On the other hand, R is an k1-quasi-(m1, n1)-iso-
symmetric if and only if R⊗ I is an k1-quasi-(m1, n1)-iso-
symmetric and S is an k2-quasi-m2-isometric and
n2-symmetric if and only if I⊗ S is an k2-quasi-m2-isometric
and n2-symmetric. From&eorem 9, it follows that R⊗ S is a
k0-quasi-(m + m1 − 1, n + n1 − 1)-isosymmetric. □

Lemma 6. Let R, S ∈B(H) such that [R, S] � [R∗, S] � 0 ,
then the following identity holds:

cm, n(R + Q) � 
0≤ j≤ n


i+l+k�m

m

i, l, k
 

n

j
 

× R
∗

+ Q
∗

( 
i
Q
∗l

ck, n− j(R)αj(Q)R
l
Q

i
.

(83)

Proof. By the equation (see [14]),
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((c + d)(a + b) − 1)
m

((c + d) − (a + d))
n

�, 
0≤ j≤ n


i+l+k�m

n

j
 

m

i, l, k
 (c + d)

i
d

l
(ca − 1)

h
(c − a)

n− j
(d − b)

j
a

l
b

i
. (84)

If a � R, C � R∗, B � S, and d � S∗ with
[R, S] � [R∗, S] � 0, we get

cm, n(R + Q) � 
0≤ j≤ n


i+l+k�m

m

i, l, k
 

n

j
  × R

∗
+ Q
∗

( 
i
Q
∗l

ck, n− j(R)αj(Q)R
l
Q

i
. (85)

□
Theorem 10. Let R, Q ∈B(H) be doubly commuting. If R

is an k -quasi- (m, n) -isosymmetric and Q is a nilpotent
operator of order q , then R + Q is a (k + q) -quasi- (m +

2q − 2, n + 2q − 1) -isosymmetric operator.

Proof. We need to show that (R + Q)∗k+qcm+2q− 2, n+2q− 2
(R + Q)(R + Q)k+q � 0.

Note that by Lemma 6, we have

cm+2q− 2, n+2q− 1(R + Q) � 
i+l+k�m+2q− 2


0≤ j≤ n+2q− 1

m + 2q − 2

i, l, k
 

n + 2q − 1

j
  × R

∗
+ Q
∗

( 
i
Q
∗l

ck, n+2q− 1− j(R)αj(Q)R
l
Q

i
. (86)

However,

(R + Q)
∗k+q

cm+2q− 2, n+2q− 2(R + Q)(R + Q)
k+q

� 
0≤ r≤ k+q

k + q

r
 R

∗(k+q− r)
Q
∗r⎛⎝ ⎞⎠ 

i+l+k�m+2q− 2


0≤ j≤ n+2q− 1

m + 2q − 2

i, l, k
 

n + 2q − 1

j
 ⎛⎝

× R
∗

+ Q
∗

( 
i
Q
∗l

ck, n+2q− 1− j(R)αj(Q)R
l
Q

i
 × 

0≤ r≤ k+q

k + q

r
 R

k+q− r
Q

r⎛⎝ ⎞⎠.

(87)

Now, observe that if j≥ 2q or i≥ q or l≥ q, then αj(Q) �

0 or Qi � 0 or Q∗l � 0 and hence

R
∗

+ Q
∗

( 
i
Q
∗l

ck, n+2q− 1− j(R)αj(Q)R
l
Q

i
� 0. (88)

However, if j≤ 2q − 1, i≤ q − 1, and l≤ q − 1, we obtain

k � m + 2q − 1 − i − l≥m − 2q − 1 − q + 1 − q + 1

≥m and n + 2q − 1 − j≥ n.
(89)

From the fact that R is a k-quasi-n-(m, n)-isosymmetric,
we get

R
∗(k+q− r)

ck,n+2q− 1(R)R
k+q− r

� 0 forr � 0, . . . ,q,

R
∗(k+q− r)

Q
∗r

ck,n+2q− 1− j(R)R
k+q− r

Q
r

� 0 forr � q +1, . . . ,k + q.

(90)

Consequently, we obtain (R + Q)∗k+qcm+2q− 2, n+2q− 2(R +

Q)(R + Q)k+q � 0.
&erefore, R + Q is (k + q)-quasi-(m + 2q − 2, n +

2q − 1)-isosymmetric operator. □

Corollary 13. Let M, N ∈B(H) such that
[M, N] � [M∗, N] � 0 . If M is an k -quasi- (m, n) -iso-

symmetric, then the operator S �
M N

0 M
  ∈B(H⊕H) is

(k + 2) -quasi- (m + 2, n + 3) -isosymmetric.

Proof. Consider R �
M 0
0 M

  and Q �
0 N

0 0 . Clearly,

R is k-quasi-(m, n)-isosymmetric and Q2 � 0 (i.e., Q is 2-

nilpotent). On the other hand, since

[M, N] � M
∗
, N  � 0, (91)

it follows that [R, Q] � [R∗, Q] � 0. In view of &eorem 10,
we deduce that S � R + Q is (k + 2)-quasi-(m + 2, n + 3)-
isosymmetric. □

Corollary 14. Let R ∈B(H) be k -quasi- (m, n) -iso-
symmetric and Q ∈B(H) be q -nilpotent. <en,
R⊗ I + I⊗Qis(k + q)-quasi-
(m + 2q − 2, n + 2q − 1)-isosymmetric.

Proof. Observe that R⊗ I ∈B(H ⊗H) is k-quasi-
(m, n)-isosymmetric and I⊗Q ∈B(H ⊗H) is q-nilpotent.
Moreover,

[R⊗ I, I⊗Q] � (R⊗ I)
∗
, I⊗Q  � 0. (92)

Applying &eorem 10, we deduce that R⊗ I + I⊗Q is
(k + q)-quasi-(m + 2q − 2, n + 2q − 1)-isosymmetric. □
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