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Conventional algorithms for solving Markov decision processes (MDPs) become intractable for a large �nite state and action
spaces. Several studies have been devoted to this issue, but most of them only treat in�nite-horizonMDPs.�is paper is one of the
�rst works to deal with non-stationary �nite-horizon MDPs by proposing a new decomposition approach, which consists in
partitioning the problem into smaller restricted �nite-horizon MDPs, each restricted MDP is solved independently, in a speci�c
order, using the proposed hierarchical backward induction (HBI) algorithm based on the backward induction (BI) algorithm.
Next, the sub-local solutions are combined to obtain a global solution. An example of racetrack problems shows the performance
of the proposal decomposition technique.

1. Introduction

Stochastic models have recently gained a lot of attention in
the arti�cial intelligent (AI) communities; it o�ers a suitable
framework for solving problems with uncertainties. MDPs
[1] are one such model that achieved promising results in
numerous applications[2–4]. Most real-world problems
have very large state spaces that require many mathematical
operations and substantial memory. It is intractable to solve
them with classicalMDPs algorithms [5]. Motivated by these
considerations, several recent types of research have used the
decomposition technique to overcome the computational
complexity. �e decomposition approach introduced by
Bather [6] divides the state space into strongly connected
components (SCCs) according to certain levels and solves
the small problems called restrictedMDPs separately at each
level to obtain the global solution of the original MDP by
combining the partial solutions. Subsequently, Ross and
Varadarajan [7] also proposed a similar decomposition
technique for solving constrained limiting average MDPs. It
is employed in various categories of MDPs (discounted,
average, and weighted MDPs) in diverse studies [8, 9]. �e
weakness point of these approaches is their polynomial
execution complexity. To accelerate the execution time

Cha�k and Daoui integrate the decomposition and paral-
lelism schemes [10], unfortunately, the decomposition al-
gorithm remains polynomial at runtime. Following, to
accelerate the convergence time of the decomposition,
Larach, and Daoui [11] investigated the state space de-
composition approach into SCCs according to some levels
based on Tarjan’s algorithm [12]. Subsequent work [13–15]
developed approaches to solve MDPs with factorization
methods that were introduced by [16].�e goal of factoring a
problem is to decompose it into smaller items. Factored
MDPs produce compact representations of complex and
uncertain systems allowing for an exponential reduction in
the complexity of the representation [17]. �ese factorized
approaches represent states as factorized states with an
internal structure and state transition matrices as dynamic
Bayesian networks (DBNs). However, methods for solving
representations based on factorized DBNs do not exploit
advances in tensor decomposition methods for representing
large atomicMDPs. More recently, research such as [17, 18]
exploits a similar idea to the thesis of Smart and [19] aims at
improving the e¤ciency of MDP solvers by using tensor
decomposition methods to compact state transition matri-
ces. �e solver uses the value iteration and policy iteration
algorithms to compute the solution compactly. �e authors
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try different ways to parallelize their proposed approaches,
but no improvement in the execution time is observed.(ese
methods are based on multiplications between small tensor
components. More recently, work has been carried out to
address this problem in the context of parallelism [20]
presenting a way to decompose an MDP into SCCs and find
dependency chains for these SCCs. (ey solve independent
chains of SCCs with a proposed variant of the topological
value iteration (TVI) algorithm, called parallel chained TVI
aimed at improving the execution time on GPUs. In this
context, research groups [21–23] have improved iterative
algorithms in parallel versions to accelerate their
convergence.

(e literature mentioned above focuses only on solving
different types ofMDPs under the infinite-horizon criterion.
It is difficult to find papers that focus on solving large non-
stationary finite-horizonMDPs.(is paper is oriented in this
underexplored direction, the main objective of this work is
to propose a new decomposition technique tackling the
challenges of reducing memory requirements and compu-
tational cost.

(e proposed technique consists in partitioning the
global problem into smaller restricted finite-horizon MDPs,
each restricted MDP is solved independently, in a specific
order, using the backward induction algorithm. Next, the
sub-local solutions are combined to obtain a global solution.

(ere are several problems modeled as MDPs with an
initial given state i0, then the optimal action f(i0), and the
optimal value VT(i0) are computed by solving just the re-
stricted MDP corresponding to the classes accessible from
the class containing i0 (one does not need to consider all
states). (is is also an advantage of this method, which
reduces memory consumption and speeds up the compu-
tation time.

(e remainder of the article is organized as follows: the
second section introduces the fundamentals of finite-hori-
zon MDPs. (e third section focuses on the decomposition
technique and describes the new finite-horizon restricted
MDP. (e fourth section presents the proposed hierarchical
backward induction algorithm. (e last section illustrates
the advantages of this decomposition technique by its ap-
plication to a racetrack problem. (e paper concludes with
conclusions and prospects for future work.

2. Markov Decision Process

Markov decision processes have been widely studied as an
elegant mathematical formalism for many decision-making
problems in a variety of fields of science and engineering
[24]. (e objective is to approximate the best decision
policies (action selection) to achieve maximum expected
rewards (minimum costs) in a given stochastic dynamic
environment satisfying the Markov property [1]. In this
section, we will present non-stationary finite-horizon MDP
with a finite state and action spaces.

Formally, a non-stationaryMDP with a finite-horizon is
defined by five-tuple (S, A, T, P, and R), where S and A are
the state and action spaces; T is the time horizon; P denotes
the state transition probability function, where

P(St+1 � j | St � i, At � a) � pt
iaj is the probability of tran-

sition from state i to state j by taking action a at time t; St (At)
is a random variable indicating the state (action) at time t; R
supplies the reward function defined on state transitions,
where rt

ia
indicates the reward gained if the action a is

executed in the state at t period. Most solvers of MDPs
attempt to find an optimal policy that specifies (optimal)
action should be taken for each agent at each state. If the
process will be considered a finite planning horizon T, an
optimal policy π∗ is given as the policy that maximizes the
expected reward. π∗ maximizes the value function of the
Bellman equation [24]: vT

i (π∗) � sup
π

vT
i (π), i ∈ E, where

vT
i (π) is the total expected reward in Tperiods, given that the
process starts from initial state i and the policy π is used.

v
T
i (π) � 

T

t�1

j∈E


a∈A(j)

Pπ Xt � j, Yt � a | X1 � i(  r
t

ja
, (1)

where Xt and Yt are the random variables representing,
respectively, the state and action at time t. Besides, we define
the optimal value vector VT:

V
T
i � sup

π
v

T
i (π), i ∈ E. (2)

It is well known that the backward induction algorithm is
one of the most common iterative methods used to find an
optimal policy. In the next section, we will discuss it in more
detail.

3. Backward Induction Algorithm

In this section, we compute an optimal policy as well as the
optimal value vector using the backward induction algo-
rithm, its iterative process starting at the end of the planning
horizon T, one computes the values for the previous periods.
(en, after T iterations an optimal policy is found.

(e following theorem introduced in [25] demonstrates
the validity of the BI algorithm:

Theorem 1. Let xT+1
i � 0, i ∈ S. Define recursively for t�T, T

- 1,. . ., 1, a deterministic decision rule ft and the vector xt as
follows:

(i)
r(ft) i + P(ft)xt+1 i �max

a∈A(i)
rt

ia
+ 

j

pt
iajx

t+1
j

⎧⎨

⎩

⎫⎬

⎭, i ∈ S,

(ii) xt � r(ft) + P(ft)xt+1,

then R∗� (f1, f2, . . ., fT) is an optimal policy and x1 is the
optimal value vector VT.

Proof (see [25]).
To accelerate the execution time of the classical BI-

algorithm, the authors used the proposal of [11], they
introduced for each action a the list of state-action suc-
cessors denoted by Γ+a(i), where Γ+a(i) � j ∈ E: Pt

iaj > 0,

t � 1, . . . , T}. (is allowed to reduce the time complexity
from O(T|A|E2) to O(T|Γ+a |E2) arithmetic operations,
where |Γ+a | denotes the average number of state-action
successors; T designs the horizon and E is the number of
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states. Algorithm 1 describes the ameliorated backward
induction algorithm (ABI) as follows: □

4. Hierarchical Backward Induction Algorithm

(e BI algorithm becomes quite impractical to compute an
optimal policy for finite-horizon MDPs with large state
space. For non-stationary finite-horizon MDPs, the com-
puting load can increase further. To overcome this issue, we
describe, in this section, a new decomposition technique for
improving the performance and reducing the time running.

4.1. 8e Decomposition Technique. Let us consider an ori-
ented graph G� (S, U), associated with the original MDP,
where S is a set of nodes that represents a state space and
U � (i, j) ∈ S: ∃ a ∈ A(i)Piaj≻0  is a set of directed arcs.
(ere exists a unique partition S�C1∪C2. . .∪Cp of the state
space S into strongly connected classes. Note that the SCCs
are defined to be the classes with respect to the relation on G
defined by i is strongly connected to j if and only if i� j or
there exists a directed path from i to j and a directed path
from j to i. (ere are many good algorithms in graph theory
for the computation of such partition, e.g., see [11].

Now, we construct by induction the levels of the graphG.
(e level L0 is formed by all closed classes Ci, that is for all
i ∈ Ci; a ∈ A(i): Piaj � 0 for all j ∉ Ci. (e level Lp is formed
by all classes Ci such that the end of any arc emanating from
Ci is in some levels Lp−1, Lp−2,. . ., L0. After finding the SCCs
using Tarjan’s algorithm, their belonging levels are found by
using the following algorithm (algorithm 2) introduced in
[26].

For each level Ln, n� 0, 1, 2, ..., L. Let (Clk), k ∈ {1, 2, . . .,
K(l)} be the strongly connected classes corresponding to the

nodes in level l (see Figure 1). Each class Clk leads to a partial
MDPlk that is solved independently, the global solution is
obtained by combining these partial solutions.

(e hierarchical method used by several researchers for
several categories of MDPs, addresses the “curse of di-
mensionality” of largeMDPs, was described by [27] and later
further developed by [11, 26]. It consists of breaking up the
state space into small subsets, solving the restricted MDPs
problems corresponding to these subsets, and combining
these solutions to determine the solution of the global
problem. Based on the above decomposition technique, the
authors propose, a hierarchical backward induction (HBI)
algorithm by decomposing the original finite-horizonMDPs
into restricted MDPs corresponding to each SCC. (ese
restricted MDPs are solved independently and according to
their level.

(1) ABI (In MDP: E, P, A, R, T; Out (VT, R∗)

(2) t⟵T + 1;

(3) ∀j ∈ E Take vT+1
j ⟵0;

(4) Repeat
(5) t⟵t − 1:

(6) For each i ∈ E Do
(7) r(f t) i + P(f t)vt+1 i � max

a∈A(i)
rt

ia + 
j∈Γ+a (i)

pt
iajv

t+1
j

⎧⎨

⎩

⎫⎬

⎭ //(e Deterministic Decision Rule ft

(8) vt � r(f t) + P(f t)vt+1

(9) For each i ∈ E Do
(10) R∗ � (f1, f2, . . . , fT) is an optimal policy and v1 is the optimal value vector.
11 Return VT, R∗

ALGORITHM 1: Ameliorated backward induction.

(i) (Ω)⟵ E; n⟵ 0; Ln⟵{ Ci: Ci is closed }
(ii) If L0 �E Stop.
(iii) Otherwise, unless Ω ≠ ∅; do
(iv) Delete Ln (i.e., Ω⟵ Ω/Ln and eliminate all arcs coming into Ln);
(v) L n + 1⟵{ Ci: Ci is closed in the restricted MDP to Ω};
(vi) n⟵n+ 1.

ALGORITHM 2: Finding levels.

S3

S2 S0

S6

C01
C02

C11

L0

L1

L2

S8 S5 S7 S9

S1 S4
C10

C20

C00

Figure 1: Example of SCCs and their levels.
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(e performance of the proposed algorithm is exposed
after the search for the optimal policy of the known initial state,
the algorithm solves only the restrictedMDP corresponding to
the reachable classes of the initial state. For example, in Fig-
ure 1, the initial state S0 is in class C10. Only the restrictedMDPs
corresponding to the SCCs: C10, C00, and C01 are solved.

In the next section, we will define new MDPs called the
restricted finite-horizon MDPs.

4.2. 8e Restricted Finite-Horizon MDPs. In this work, we
consider non-stationary finite-horizon MDPs with large
finite state and action spaces. Now, we construct the re-
stricted MDPnk corresponding to each strongly connected
class Cnk, k ∈ {1, 2, . . ., K (n)} in level Ln as follows:

(i) et En � ⋃ iεCpk, p � 0, 1, . . . , n − 1 and kε
1, 2, . . . , k(p) }.

(ii) States space: Snk � Cnk ∪ jεEn|  iεCnk, a ∈ A(i);

pt
iaj > 0, t � 1, . . . , T};

(iii) Actions space: For iεSnk, Ank(i) �
A(i), ifiεCnk

θ,Otherwize ;

(iv) Transition probabilities: For t� 1,2, . . .,T,

(v) for i, jεSnk, p
t
nk(i, a, j) �

p
t
iaj if, iεCnk, a ∈ A(i)

1, if i � j, i ∉ Cnk

 ;

(vi) Reward function: For t� 1,2, . . .,T.
(vii) If i ϵCnk,rt

pk(i, a) � rt
ia;

(viii) If iε(Snk/Cnk), ∃mε 0, 1, . . . , n − 1{ },∃hε
1, 2, . . . , k(m){ } {: iεCmh,rt

nk(i, θ) � VT
mh(i)/N.

N is the horizon and VT
mh is the optimal value vector of

MDPmh calculated in the previous levels.
According to the definition of the restricted finite-ho-

rizon MDPs, we remark that.
(e restricted finite-horizonMDPs are solved according

to the ascending order of levels and in the same level Lp. (e
restricted finite-horizonMDPs are independent, so they can
be solved in parallel.

4.3. Hierarchical Backward Induction Algorithm. Based on
the above restricted finite-horizon MDPs, the authors
present in this section, a new algorithm called hierarchical
backward induction (HBI) algorithm (algorithm 3). (e
main contribution is to show that the optimal value in the
restrictedMDPpk is equal to the optimal value in the original
MDP ((eorem 2).

Now, the corresponding restricted finite-horizonMDPs are
constructed and immediately solved by using this procedure:

(e following theorem shows the validity of the HBI
algorithm.

Theorem 2. Let R∗� (f1, f2, . . ., fT) and VTare, respectively, an
optimal policy and the optimal value vector in the original
MDP. IfRpk � (f1

pk, f2
pk, . . . , fT

pk) andVT
pk are, respectively,

an optimal policy and the optimal value vector in the restricted
MDPpk, then for all i ϵ Cpk, for t� 1,2, . . .,T, f tpk (i)� ft (i) is an
optimal action in the original MDP and VT

pk(i) � VT(i).

Proof. (e proof is by induction. For p � 0 (level L0);
k ∈ 1, ..., K(0){ }. Let R0k � (f1

0k, f2
0k, . . . , fT

0k) and VT
0k are,

respectively, an optimal policy and the optimal value vector
in the restricted MDP0k.

According to (eorem 1, we have for t�T, T − 1,. . ., 1:

∀i ∈ S0k,f
t
0k(i) � argmax

a∈A0k(i)

r
t
0k(i, a) + 

j∈S0k

p
t
0k(i, a, j)x

t+1
j

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

x
t

� r f
t
0k  + P f

t
0k x

t+1
,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

from the definition of the restricted MDP0k, the state space
S0k �C0k, the action space A0k(i)�A(i) for i ∈ S0k, for t�T, T
− 1,. . ., 1 the transition probabilities pt

0k(i, a, j) � pt(i, a, j)

for all i, j ∈C0k, a ∈ A0k (i), the rewards rt
0k(i, a) � rt

ia.
Furthermore, the class C0k is closed then for t� 1, . . ., T.

From (3), we have

∀i ∈ C0k,f
t
0k(i) � argmax

a∈A(i)

r
t
ia + 

j∈E
p

t
(i, a, j)x

t+1
j

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

x
t

� r f
t
0k  + P f

t
0k x

t+1
,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

therefore, for all i ∈ C0k and t� 1, . . ., T, ft
0k(i) � f t(i) is an

optimal action for the global MDP and

V
T
0k(i) � x

1
i � V

T
(i). (5)

Suppose that the result is true until the level p-1. Now we
shall show that the result is still true in the level p.

(e state space of the restricted MDPpk is
Spk � Cpk⋃ j ∈ Ep: pt

iaj > 0 for all iεCpk, aεA(i) , where

Ep �  iεCmk, m � 0, 1, . . . , p − 1; kε 1, 2, . . . , K(m){ } . (6)

Let Rpk � (f1
pk, f2

pk, . . . , fT
pk) and VT

pk are, respectively,
an optimal policy and the optimal value vector in the re-
stricted MDPpk.

According to (eorem 1, we have for t � T, T − 1,. . ., 1:

∀i ∈ Spk,f
t
pk(i) � argmax

a∈Apk(i)

r
t
pk(i, a) + 

j∈Cpk

p
t
pk(i, a, j)x

t+1
j

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

x
t

� r f
t
pk  + P f

t
pk x

t+1
,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

,

(7)

Based on the definition of the restricted MDPpk, for
i ∈ Spk, if i ∈Cpk, Apk(i)�A(i), for a ∈ Apk(i), the rewards
rt

pk(i, a) � rt
ia and the transition probabilities pt

pk(i, a, j) �

pt(i, a, j) for all j ∈ Spk.
In fact, that and since pt

pk(i, a, j) � 0,∀i ∈ Spk,

∀jε(E/Spk), then for t� 1, . . ., T,ft
pk verifies

∀i ∈ Cpk,f
t
pk(i) � argmax

a∈A(i)

r
t
ia + 

j∈E
p

t
(i, a, j)x

t+1
j

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

x
t

� r f
t
pk  + P f

t
pk x

t+1
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(8)
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By consequence, for i ∈ Cpk and t� 1, . . ., T, ft
pk(i) �

ft(i) is an optimal action for the global MDP, and,
VT

pk(i) � x1
i � VT(i).

Now, It remains to see the case where i ∈ (Spk/
Cpk), m ∈ 0, 1, . . . , p − 1 ,

 h ∈ 1, 2, . . . , K(m){ }: i ∈ Cmh and rt
pk(i, θ) � Vt

mh(i)/N.
From the recurrence hypothesis ft

mh(i) � ft(i) is an
optimal action for the global MDP, calculated in previous
levels, it remains to verify that VT

pk(i) � VT(i).
Since for i ∈ (Spk/Cpk) and t� 1, . . ., T, ft

pk(i) � θ then
P(ft

pk)ii � 1 and r(ft
pk)i � Vt

mh(i)/N.
It follows from (5):

V
T
pk(i) � x

1
i � . . . � 

N

s�1
P f

1
pk P f

2
pk  . . . P f

s−1
pk r f

s
pk  

� 

N

s�1

V
t
mh(i)

N
� V

T
(i).

(9)

□

Remark 1. If the initial state i0 is known, its optimal action
f(i0) and its optimal value VT(i0) are computed by solving just
few restrictedMDPs: one does not need to consider all states.
(e following algorithm (algorithm 4) explains this issue.

It is clear that, f(i0) and VT(i0) are obtained by solving
only MDPmk. ◆

To demonstrate the benefit of the proposed HBI algo-
rithm, we consider a case study of the racetrack problem
described in the following section.

5. Case Study and Experimental Results

To show the advantage of the proposed HBI algorithm, we
consider a standard control racetrack problem described by

Martin Gardner [28] and Barto [29]. (e goal is to control
the movement of a race car along a predefined racetrack so
that the racer can get to the finish line from starting the line
in the minimum amount of time.

At each time step, the state of the racer is given by the
tuples (Xt, Yt, Vx(t), Vy(t)) that represent the position and
speed of the car in the x, y dimensions at time t. (e actions
are pairs a � (ax, ay) of instantaneous accelerations, where ax,
ay ϵ {−1, 0, 1}. We assume that the road is ‘slippery’ and the
car may fail to accelerate. An action a � (ax, ay) has its
intended effect 90% of the time; 10% of the time the action
effects correspond to those of the action a0 �(0; 0). Also, when
the car hits a wall, its velocity is set to zero and its position is
left intact. When the car is state (Xt, Yt, Vx(t), Vy(t)) and the
action taken is a � (ax, ay), it transit with 90% probability to a
state (Xt +Vx(t)+ax, Yt +Vy(t) +ay, Vx(t)+ax, Vy(t)+ay).

Let s � (Xt, Yt, Vx(t), Vy(t)), a � (ax, ay) and s″�
(Xt +Vx(t)+ax, Yt +Vy(t)+ay, Vx(t)+ax, Vy(t)+ay), the tran-
sition probability is defined as follows:

P s′|s, a(  �

1,

0.9,

0.1,

0,

if s′ � s and s � s″ ,

if s≠ s′ and s′ � s″,

if s � s′ and s′ ≠ s″,

otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

To complete the formulation of the finite-horizon MDP
problem, we need to define the reward function and the
horizon. Independently of the action taken, the immediate
reward for all non-goal states is equal to −1, i.e., Ri � − 1 and
it is equal to zero for any goal state reached, i.e., Rg � 0. (e
horizon is determined after the decomposition into levels;
indeed, during this decomposition, the maximum level
obtained will be considered as the horizon.

(1) HBI (In MDP: E, P, A, R, T, Out (VT, R∗)
(2) Find SCCs and their belonging levels using Tarjan’s algorithm
(3) For each level Lp, p � 0,. . ., Lp Do
(4) For each class Clpk, in level Lp
(5) Construct the restricted finite-horizon MDPpk
(6) End For
(7) End For
(8) For each level Lp,p � 0,. . ., Lp Do
(9) For each class Cpk, in level Lp over planning horizon T, Do
(10) ABI (MDPpk)
(11) End For
(12) End For
(13) Return VT, R∗

ALGORITHM 3: Hierarchical backward induction.

Step 1. Determine the class Cmk such that i0 ∈Cmk.
Step 2. Determine the classes Cnh, n∈{0, 1, . . ., m}; h ∈{1, 2,.., k(n)} such that the end of any arc emanating from Cmk is in the classes

Cnh
Step 3. Solve the restricted MDPnh found in Step 2.

ALGORITHM 4: Accelerated HBI algorithm.
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Racetrack-1 Racetrack-2 Racetrack-3

Figure 2: Racetrack’s example.

Table 1: Characteristics of the three racetracks.

MDP’s horizon Number of possible states Number of SCCs
Race-1 31 132750 5120
Race-2 18 106200 5103
Race-3 48 123300 3554
Note. (e value iteration (VI) algorithm under the infinite-horizon discounted MDP is used in [30] in order to solve racetrack problems. presents the
comparison between VI, BI, and HBI algorithms. As it can be seen, the BI algorithm outperforms the VI algorithm, but the proposed HBI algorithm is more
efficient than the BI algorithm.

Table 2: Performance of the HBI algorithm.

Execution time (s)
VI algorithm BI algorithm HBI algorithm

Race-1 9, 7 4, 4 3
Race-2 6, 7 3, 6 2, 6
Race-3 8, 4 3, 9 2, 8

Value Iteration Backward Induction Hierarchical Backward Induction

Figure 3: Road generated by VI, BI, and HBI algorithms for the racetrack-1.
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To restrict the possible infinite state space, we assume
that the speed of the car in the x, y dimensions are bounded
in the range [− 7, + 7], i.e., Vx(t), Vy(t) ϵ [−7, +7]. (e speed
will not change if the agent attempts to accelerate beyond
these limits.

(e proposed algorithms are tested using Intel(R)
Core(TM) i7-6500U (2.6GHz), C++ implementation,
Windows 10 operating system (64 bits).

Figure 2 presents the three racetracks considered, blues
cells represent the initial states, and green cells represent the
goal states.

Table 1 presents the horizon, the number of SCCs, and
the number of possible states obtained with the decompo-
sition algorithm into levels for the three considered racetrack
problems. As it can be seen, the number of states is reduced.
Table 2.

Figures 3–5 show the policy obtained with VI, BI, and
HBI algorithms for the three racetracks problems. As it can
be seen, we obtain the same policy with the three algorithms.

6. Conclusion

In this paper, we have presented a new hierarchical back-
ward induction algorithm for finite-horizon non-stationary
MDP that is successful for large state spaces. It consists in

decomposing the original problem into smaller restricted
MDPs; indeed in each level and for each SCC a restricted
finite-horizonMDP is constructed and solved independently
from the other restricted MDPs of the same level. (is
proposed method accelerated the calculation time and re-
duces the memory requirement.

To show the advantage of the proposed HBI algorithm,
we applied it to racetrack problems.(e experimental results
show that the HBI algorithm outperforms better the stan-
dard BI and value iteration algorithm. From a perspective,
the use of parallelism techniques could further accelerate the
convergence of the hierarchical finite-horizon MDPs.
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