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Te construction of mathematical models for diferent phenomena, and developing their solutions, are critical issues in science
and engineering. Among many, the Buckmaster and Korteweg-de Vries (KdV) models are very important due to their ability of
capturing diferent physical situations such as thin flm fows and waves on shallow water surfaces. In this manuscript, a new
approach based on the generalized Taylor series and residual function is proposed to predict and analyze Buckmaster and KdV
type models. Tis algorithm estimates convergent series with an easy-to-use way of fnding solution components through
symbolic computation.Te proposed algorithm is tested against the Buckmaster and KdV equations, and the results are compared
with available solutions in the literature. At frst, proposed algorithm is applied to Buckmaster-type linear and nonlinear
equations, and attained the closed-form solutions. In the next phase, the proposed algorithm is applied to highly nonlinear KdV
equations (namely, classical, modifed, and generalized KdV) and approximate solutions are obtained. Simulations of the test
problems clearly reassert the dominance and capability of the proposed methodology in terms of accuracy. Analysis reveals that
the projected scheme is reliable, and hence, can be utilized for more complex problems in engineering and the sciences.

1. Introduction

Many real-world systems are translated into mathematical
models as diferential equations [1, 2]. For more accurate
analysis and predictions, it is recommended to use partial
diferential equations instead of ordinary diferential
equations for modeling various physical phenomena. Tese
equations are widely used for describing diferent complex
situations, such as fuid fow [3, 4], signal processing, control
and information theory [5, 6], entropy generations [7], and
waves on shallow water surfaces [8–10]. Examples include
radioactive decay, spring-mass systems, population growth,
and predator-prey models. As nonlinear model, KdV
equations has enormous efect on many aspects in theo-
retical and mathematical physics [11], quantum and string
theory [12, 13]. KdV equations are famous for capturing
nonlinear dispersive waves. For the solution of such complex
equations, scientist needs diferent methods and tools. In
literature, various analytical and numerical techniques are

available, such as the Darboux transformation [14], the tanh
method [15], the separation of variable [16], and
Sine–Cosine method [17], and Lie symmetry [18, 19] for the
solution of DEs, but these methods are limited to linear
problems only. Due to nonlinearity in most of the physical
phenomena, researchers have switched their attention to-
wards approximate solutions of DEs. Tese solutions can be
obtained through diferent numerical schemes like radial
basis function (RBF) methods [20], fnite element methods
(FEM) [21], and so on and seminumerical schemes include
the homotopy perturbation method (HPM) [22, 23] and its
diferent modifcations, the variational iteration method
(VIM) [24], and the Adomian decomposition method
(ADM) [25].

Every numerical scheme has its own restriction, such as
linearization, discretization, or perturbation. To overcome
these difculties, we propose RPSM, which can start working
with initial conditions and lead us to the convergent series
solutions of initial and boundary value problems (IBVPs). In
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this method, truncated series and residual function concepts
are essential for the solution process. Scientists have used
RPSM to solve various types of problems. At frst, RPSMwas
proposed by Arqub et al. for higher-order IVPs [26, 27].
Aqub also extended RPSM to fractional and fuzzy type DEs
in [28, 29]. Al-Smadi also applies RPSM to diferent classes
of IVPs in [30]. Later on, Kamoshynska utilize solved
coupled Burger equations through RPSM [31]. Zhang et al.
modify RPSM by mixing it with the least square method for
time fractional PDEs in [32]. El-Ajou et al. extend this
method to time fractional Burger-type equations in [33].
Alquran investigated the fractional drainage equation
through RPSM [34]. Qayyum and Fatema utilized RPSM for
the solution of stif systems in [35]. Qayyum et al. extended
this technique to higher order BVPs [36]. Other researchers
also used RPSM to various problems arise in science and
engineering [37–39].

Te objective of this paper is the application of RPSM to
Buckmaster and KdV type nonlinear PDEs for improved
results with less computational cost. In the rest of the paper,
the basic idea of RPSM for PDEs is given in Section 2.
Convergence analysis of RPSM is in Section 3 while ap-
plication of RPSM to the Buckmaster and KdV families are
in Sections 4 and 5, respectively. Section 6 contains a dis-
cussion of results while Section 7 presents a conclusion.

2. Basic Idea of Residual Power Series
Algorithm for Partial Differential Equations

To explain the proposed scheme, let us take the following
PDE

Φt(r, t) + LΦ(r, t) � f(r, t),

r ∈ Ω, t ∈ [0, T],
(1)

where f and L are source term and diferential operator,
respectively. Te initial and boundary conditions are

Φ(r, 0) � Φ0(r), r ∈ Ω,

Φ(r, t) � h(r, t), r ∈ zΩ , t ∈ [0, T].
(2)

Let the following power series as a solution of the
problem

Φ(r, t) � 
k

i�0
Ci(r)t

i
,

k � 0, 1, 2, 3, . . . ,

(3)

where Ci are unknowns to be computed. By using initial
condition

C0(r) � Φ0(r). (4)

Consider the kth truncated series as

Φ(r, t) � Φinitial + 
k

i�1
Ci(r)t

i
, (5)

where

Φinitial � C0(r) � Φ0(r). (6)

Next, we use (3) in (1) to obtain the following kth residual
function

Resk
(t) �

z

zt


k

i�1
Ci(r)t

i⎛⎝ ⎞⎠ + L 
k

i�0
Ci(r)t

i⎛⎝ ⎞⎠ − f(r, t). (7)

In next step of implementation, we use the following
fundamental concept with residual function to get coef-
cients of series solution.

d
k− n

dr
k−n

Resk
(0) � 0, (8)

where n represents the number of initial conditions. Tis it-
erative process is repeated for higher order solution. By com-
puting more coefcients improved accuracy can be achieved.

3. Convergence Analysis of Residual Power
Series Algorithm

In this section, we introduce necessary defnition and the-
orem of residual power series.

Defnition 1. [26] A power series (PS) aboutr � r0is defned
as



∞

i�0
βi r − r0( 

i
� β0 + β1x + β2r

2
+ β3r

3
+ . . . ; r0 ≤ r≤ r + 1,

(9)

where constants betai, i � 0, 1, 2, · · · are coefcients of power
series.

Theorem 1 (see [30]). let f have a power series represen-
tation at r � r0 of the form

f(x) � 
∞

i�0
βi r − R0( 

i
; R0 ≤R≤R0 + δ. (10)

If zi/zri
f(r), i � 0, 1, 2, · · · are continuous on (r0, r0 + δ),

then βi � zi/zri
f(r)/i! and δ is the radius of convergence.

Theorem 2. For residual power series 
∞
i�0 βi(r − r0)

i, there
are following three possibilities:

(1) If convergence radius is zero, then the series will
converge only for r � r0.

(2) If convergence radius is equal to ∞, then series will
converge for all r≥ r0.

(3) Te series converges for r ∈ [r0, r0 + δ], for some
positive real number δ and diverges for r> r0 + δ.
Where δ is the radius of convergence in this case.

Proof. Let we assume that Case (1) and (2) are not true.
Ten, there exist nonzero numbers δ1 and δ2 such that series
 βi(r − r0)

i converges for r � δ1 and diverges for r � δ2.
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Terefore, the convergence set S � x|  βi(r − r0)
i

  is not
empty. Tus using completeness axiom, S has at least upper
bound r0 + δ. If r> r0 + δ, then r does not belong to S, and
hence,  βi(r − r0)

i series diverges. If 0≤ r< r0 + δ, then, r is
not an upper bound for S and so there exists δ1 ∈ S such that
δ1 > r. Since δ1 ∈ S and  βi(r − r0)

i series converges, so
 βi(r − r0)

i converges, hence, proof of the theorem is
complete. □

4. Application and Simulations in Buckmaster
Family of Equations

4.1. Test Problem 1. Consider the following nonlinear and
nonhomogeneous Buckmaster equation

Φt(r, t) � Φ4r,r(r, t) +Φ3r(r, t) − 12r
2
e
4
t − 3r

2
e
3
t + re

t
.

(11)

With initial and boundary conditions

Φ(r, 0) � r,

r ∈ Ω � [0, 1],
(12)

Φ(0, t) � 0,

Φ(1, t) � e
t
,

r ∈ zΩ ,

t ∈ [0, T].

(13)

Exact solution of the problem is

Φ(r, t) � re
t
. (14)

To start solution process, let we assume the following kth

truncated series as

Φ(r, t) � 

k

i�0
Ci(r)t

i
, k � 0, 1, 2, · · · . (15)

Using (12) with (15) gives

Φinitial � Φ(r, 0) � C0(r) � r. (16)

Next, re-writing (11) as

Φt(r, t) −Φ4r, r(r, t) −Φ3r(r, t) + 12r
2
e
4
t + 3r

2
e
3
t − re

t
� 0.

(17)

And plug kth truncated series in (17) to get the following
residual function

Resk
(t) �

z

zt
r + 

k

i�1
Ci(r)t

i⎛⎝ ⎞⎠ +
z
2

zr
2 r + 

k

i�1
Ci(r)t

i⎛⎝ ⎞⎠

4

+
z

zr
r + 

k

i�1
Ci(r)t

i⎛⎝ ⎞⎠

3

+ 12r
2
e
4
t + 3r

2
e
3
t − re

t
.

(18)

Now, putting k � 1 in (18) provide

Res1(t) �
z

zt
r + 

1

i�1
Ci(r)t

i⎛⎝ ⎞⎠ +
z
2

zr
2 r + 

1

i�1
Ci(r)t

i⎛⎝ ⎞⎠

4

+
z

zr
r + 

1

i�1
Ci(r)t

i⎛⎝ ⎞⎠

3

+ 12r
2
e
4
t + 3r

2
e
3
t − re

t
.

(19)

Pluging (19) in (8) gives

C1(r) � r. (20)

Repeat the process by putting k � 2 in (8) and (18), we
get

z

zr
Res2(t) �

z

zr

z

zt
r + 

2

i�1
Ci(r)t

i⎛⎝ ⎞⎠⎛⎝ ⎞⎠

+
z
3

zr
3 r + 

2

i�1
Ci(r)t

i⎛⎝ ⎞⎠

4

+
z
2

zr
2 r + 

2

i�1
Ci(r)t

i⎛⎝ ⎞⎠

3

+
z

zr
12r

2
e
4
t + 3r

2
e
3
t − re

t
 ,

C2(r) �
r

2
.

(21)

Continuing the recursive process, the series solution is

Φ(r, t) � r + rt +
1
2

rt
2

+
1
6

rt
3

+
1
24

rt
4

+
1
120

rt
5

+ · · ·

Φ(r, t) � r 1 + t +
1
2
t
2

+
1
6
t
3

+
1
24

t
4

+
1
120

t
5

+ · · · 

Φ(r, t) � re
t
.

(22)

Which is closed form (exact) solution of Test Problem 1.

4.2. Test Problem 2. Consider the nonlinear and nonho-
mogeneous Buckmaster equation

Φt(r, t) � Φ4r,r(r, t) + Φ3r(r, t) − 12r
2cos4 t − 3r

2cos3 t + r sin t.

(23)

With IBCs

Φ(r, 0) � r, r ∈ Ω � [0, 1],

Φ(0, t) � 0, Φ(1, t) � e
t
, r ∈ zΩ , t ∈ [0, T].

(24)

Exact solution is

Φ(r, t) � r cos t. (25)

Using basic theory of RPSM recursively, following are
the unknown coefcients of the kth truncated series
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C0(r) � r,

C1(r) � 0,

C2(r) � −
1
2

r,

C3(r) � 0,

C4(r) �
1
24

r,

C5(r) � 0,

C6(r) � −
1
720

r, · · · .

(26)

Hence, series solution is

Φ(r, t) � r −
1
2

rt
2

+
1
24

rt
4

−
1
720

rt
6

+ · · ·

Φ(r, t) � r 1 −
1
2
t
2

+
1
24

t
4

−
1
720

t
6

+ · · · 

Φ(r, t) � r cos t.

(27)

Which is closed form solution of Test Problem 2.

5. Application and Simulations in KdV
Family of Equations

5.1. Test Problem 3 (Classical KdV). Consider the following
nonlinear and nonhomogeneous classical KdV equation
(25):

Φt(r, t) +ΦΦr(r, t) +Φr,r,r(r, t) � −e
r

− t
2
e
2r

. (28)

With initial condition

Φ(r, 0) � 1. (29)

Exact solution is

Φ(r, t) � 1 − te
r
. (30)

Using basic idea of RPSM recursively, unknown coef-
fcients of the required series are

C0(r) � 1,

C1(r) � −e
r
,

C2(r) � 0,

C3(r) � 0,

C4(r) � 0,

C5(r) � 0,

C6(r) � 0, · · · .

(31)

Hence, series solution is

Φ(r, t) � 1 − te
r

+ 0t
2

+ 0t
3

+ 0t
4

+ · · · . (32)

Which leads to a closed form solution of Test Problem 3.

5.2. Test Problem 4 (Classical KdV). Consider the following
nonlinear classical KdV equation [40]:

Φt(r, t) + 6Φ(r, t)Φr(r, t) +Φr,r,r(r, t) � 0. (33)

With initial condition

Φ(r, 0) �
6
r
2. (34)

Exact solution of this problem is

Φ(r, t) � 6r
r
3

− 24t

r
3

+ 122 
. (35)

After applying basic theory of RPSM recursively, third
order solution is obtained. Numerical results of Test
Problem 4 are shown in Table 1 and Figure 1.

5.3. Test Problem 5 (Classical KdV). Consider the following
nonlinear classical KdV equation [41]:

Φt(r, t) + 6Φ(r, t)Φr(r, t) +Φr,r,r(r, t) � 0. (36)

With initial condition

Φ(r, 0) �
1
2
sec h

2 1
2

 r. (37)

Exact solution is

Φ(r, t) �
1
2
sec h

2 1
2

 (r − t). (38)

Sixth order RPS solution is obtained. Numerical results
of Test Problem 5 are shown in Table 2 and Figure 2.

5.4. Test Problem 6 (Modifed KdV). Consider the following
nonlinear modifed KdV equation [40]:

Φt(r, t) + 6Φ2(r, t)Φr(r, t) +Φr,r,r(r, t) � 0,

t> 0, −∞< r< +∞.
(39)

With initial condition

Φ(r, 0) � 2 sec h(2r). −∞< r< +∞. (40)

Exact solution of the problem is

Φ(r, t) � 2 sec h(2r − 8t). (41)

Fourth order RPS solution is obtained whose results are
shown in Table 3 and Figure 3.

5.5. Test Problem 7 (Modifed KdV). Consider the following
nonlinear modifed KdV equation [40]:

Φt(r, t) + 6Φ2(r, t)Φr(r, t) +Φr,r,r(r, t) � 0, t> 0,

−∞< r< +∞.

(42)

4 Journal of Mathematics



0.06
0.04
0.02ϕ 

(r,
 t)

10
20

30
40

50
r

1.0

0.5

0.0

t

(a)

0.06
0.04
0.02ϕ 

(r,
 t)

10
20

30
40

50
r

1.0

0.5

0.0

t

(b)

10
20

30
40

50
r

1.0

0.5

0.0

t

0.00015
0.00010
0.00005
0.00000Er

ro
r

(c)

Figure 1: Graphical comparison of exact and RPS solutions along with error in Test Problem 4 where (a) Exact solution, (b) RPS solution
and (c) error.

Table 1: Comparison of exact and RPS solution at various t in Test Problem 4.

t r Exact solution RPS solution Absolute error

0.0001

10 0.06 0.06 2 × 10− 7

15 0.03 0.03 3 × 10− 8

20 0.015 0.015 9 × 10− 9

25 0.01 0.01 2 × 10− 9

30 0.007 0.007 1 × 10− 9

35 0.005 0.005 5 × 10− 10

40 0.004 0.004 2 × 10− 10

45 0.003 0.003 1 × 10− 10

50 0.0024 0.0024 9 × 10− 11

0.001

10 0.06 0.06 2 × 10− 6

15 0.03 0.03 3 × 10− 7

20 0.015 0.015 8 × 10− 8

25 0.015 0.01 2 × 10− 8

30 0.007 0.007 1 × 10− 8

35 0.005 0.005 5 × 10− 9

40 0.004 0.004 2 × 10− 9

45 0.003 0.003 1 × 10− 9

50 0.0024 0.0024 9 × 10− 10

0.1

10 0.06 0.06 2 × 10− 4

15 0.03 0.03 3 × 10− 5

20 0.015 0.015 8 × 10− 6

25 0.01 0.01 2 × 10− 6

30 0.007 0.007 1 × 10− 6

35 0.005 0.005 5 × 10− 7

40 0.004 0.004 2 × 10− 7

45 0.003 0.003 1 × 10− 7

50 0.0024 0.0024 9 × 10− 8
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Table 2: Comparison of exact and RPS solutions at various t in Test Problem 5.

t r Exact solution RPS solution Absolute error

0.001

0.1 0.5 0.5 2 × 10− 18

0.15 0.5 0.5 1 × 10− 16

0.2 0.5 0.5 2 × 10− 16

0.25 0.5 0.5 1 × 10− 17

0.3 0.5 0.5 1 × 10− 16

0.35 0.5 0.5 6 × 10− 17

0.4 0.5 0.5 2 × 10− 17

0.45 0.5 0.5 6 × 10− 17

0.5 0.5 0.5 6 × 10− 18

0.01

0.1 0.5 0.5 4 × 10− 17

0.15 0.5 0.5 1 × 10− 16

0.2 0.5 0.5 5 × 10− 18

0.25 0.5 0.5 5 × 10− 17

0.3 0.5 0.5 4 × 10− 18

0.35 0.5 0.5 1 × 10− 16

0.4 0.5 0.5 5 × 10− 18

0.45 0.5 0.5 5 × 10− 17

0.5 0.5 0.5 1 × 10− 16

0.1

0.1 0.5 0.5 2 × 10− 11

0.15 0.5 0.5 4 × 10− 11

0.2 0.5 0.5 5 × 10− 11

0.25 0.5 0.5 6 × 10− 11

0.3 0.5 0.5 7 × 10− 11

0.35 0.5 0.5 8 × 10− 11

0.4 0.5 0.5 8 × 10− 11

0.45 0.5 0.5 9 × 10− 11

0.5 0.5 0.5 9 × 10− 11
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Figure 2: Graphical comparison of exact and RPS solutions along with error in Test Problem 5 where (a) Exact solution, (b) RPS solution
and (c) error.
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With initial condition

Φ(r, 0) � −
4(cos h(2r)cos(2r) − sin(2r)sin h(2r))

cos h(2r)(cos h(2r) + sin(2r))
−∞< r< +∞. (43)

Te exact solution of the problem is

Φ(r, t) � −
4(cos h(2r − 16t)cos(2r + 16t) − sin h(2r − 16t)sin(2r))

cos h(2r + 16t)(cos h(2r + 16t) + sin(2r − 16t))
−∞< r< +∞. (44)

Fourth order RPS solution is obtained and results are
shown in Table 4 and Figure 4.

5.6. Test Problem 8 (Generalized KdV). Consider third-order
nonlinear generalized KdV equation [42]:

Φt(r, t) +Φp
(r, t)Φr(r, t) +Φr,r,r(r, t) � 0. (45)

With initial condition

Φ(r, t) � A sec h
2
(kr − z) 

1/p
, (46)

where 2≤p, K, m, and z are constants andA � 2(p + 1)(p +

2)/m2K2.
Exact solution of the problem is

Φ(r, t) � A sec h
2
(kr − ct − z) 

1/p
. (47)

To obtain solution we fxed p � 4 in generalized equa-
tion. Other values of p can also be used in this problem.
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Figure 3: Graphical comparison of exact and RPS solutions along with error in Test Problem 6 where (a) Exact solution, (b) RPS solution
and (c) error.

Table 3: Comparison of RPSM and HAM errors at t � 0.8 in Test Problem 6.

t r Exact solution RPS solution Absolute error HAM [40]

0.8

6 1 × 10− 3 1 × 10− 2 1 × 10− 2 1 × 10− 4

12 1 × 10− 8 9 × 10− 8 8 × 10− 8 1 × 10− 8

18 6 × 10− 14 5 × 10− 13 4 × 10− 13 6 × 10− 10

24 4 × 10− 19 3 × 10− 18 3 × 10− 18 6 × 10− 10
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Tird order RPS solution is obtained and results are
shown in Table 5 and Figure 5.

5.7. Test Problem 9 (Generalized KdV). Consider fourth-
order nonlinear generalized KdV equation [42]:

Φt(r, t) +(p + 1)Φp
(r, t)Φr(r, t) +Φr,r,r,r(r, t) � 0, (48)

where p> 2, A and k are constants.
With initial condition

Φ(r, 0) � A sec h
2
(kr) 

1/p
. (49)

Te exact solution of the problem is

Φ(r, t) � A sec h
2
(kr − ct) 

1/p
, (50)

where p> 2, A, k and c are constants.
Tird order RPS solution is obtained by applying basic

theory of RPSM and results are shown in Table 6 and
Figure 6.

 . Results and Discussion

In this article, a residual power series algorithm is proposed
for predicting and analyzing Buckmaster and KdV type
partial diferential equations.Te algorithm directly applies
to PDEs without linearization, discretization or perturba-
tion because it depends on the recursive diferentiation of
dispersal along with the use of given initial constraints to
calculate coefcients of the assumed power series using
nominal computations. Tis algorithm mainly based on
residual functions which will be obtained after applying the
generalized Taylor series. Initially, the proposed algorithm
is tested against linear and nonlinear Buckmaster and KdV
equations, and closed-form solutions are obtained. Tese
exact solutions are depicted in Figures 7–9 for reader
connivance. In the second stage of testing, RPSM is applied
to diferent nonlinear KdV type equations namely, classical,
modifed, and generalized KdVs, and approximate series
solutions are obtained. Numerical results related to these
problems are shown in Tables 1–6 and Figures 1–6. Tables 1
and 2 and Figures 1 and 2 depict the comparison of exact
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Figure 4: Graphical comparison of exact and RPS solutions along with error in Test Problem 7 where (a) Exact solution, (b) RPS solution
and (c) error.

Table 4: Comparison of RPSM and HAM errors at t � 0.04 in Test Problem 7.

t r Exact solution RPS solution Absolute error HAM [40]

0.04

15 4 × 10− 13 1 × 10− 13 2 × 10− 13 2 × 10− 13

20 2 × 10− 17 2 × 10− 17 2 × 10− 18 3 × 10− 18

25 8 × 10− 22 1 × 10− 21 3 × 10− 22 2 × 10− 22

30 1 × 10− 26 4 × 10− 26 3 × 10− 26 2 × 10− 26
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Table 5: Comparison of exact and RPS solutions at various t in Test Problem 8.

t r Exact solution RPS solution Absolute error

0.01

0.1 0.762028 0.762028 1 × 10− 17

0.15 0.761815 0.761815 2 × 10− 18

0.2 0.761515 0.761515 4 × 10− 17

0.25 0.761131 0.761131 1 × 10− 17

0.3 0.760662 0.760662 4 × 10− 17

0.35 0.760108 0.760108 9 × 10− 17

0.4 0.75947 0.75947 4 × 10− 17

0.45 0.758748 0.758748 5 × 10− 17

0.5 0.757943 0.757943 4 × 10− 17

0.1

0.1 0.762035 0.762035 1 × 10− 14

0.15 0.761825 0.761825 1 × 10− 14

0.2 0.761529 0.761529 1 × 10− 14

0.25 0.761148 0.761148 1 × 10− 14

0.3 0.760682 0.760682 1 × 10− 14

0.35 0.760132 0.760132 1 × 10− 14

0.4 0.759497 0.759497 1 × 10− 14

0.45 00.758779 0.758779 1 × 10− 14

0.5 0.757978 0.757978 1 × 10− 14

0.2

0.1 0.762043 0.762043 1 × 10− 13

0.15 0.761836 0.761836 1 × 10− 13

0.2 0.761544 0.761544 1 × 10− 13

0.25 0.761167 0.761167 1 × 10− 13

0.3 0.760705 0.760705 1 × 10− 13

0.35 0.760158 0.760158 1 × 10− 13

0.4 0.759528 0.759528 1 × 10− 13

0.45 0.758813 0.758813 1 × 10− 13

0.5 0.758016 0.758016 1 × 10− 13
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Figure 5: Graphical comparison of exact and RPS solutions along with error when, A � 0.3375, c � 0.00675, K � 0.3, p � 4, z � 0 in Test
Problem 8, where (a) Exact solution, (b) RPS solution and (c) error.
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Table 6: Comparison of exact and RPS solutions at various t in Test Problem 9.

t r Exact solution RPS solution Absolute error

0.01

0.1 0.199995 0.199995 8 × 10− 7

0.15 0.199989 0.199988 1 × 10− 6

0.2 0.199981 0.19998 1 × 10− 6

0.25 0.19997 0.199968 1 × 10− 6

0.3 0.199956 0.199955 1 × 10− 6

0.35 0.199941 0.199938 2 × 10− 6

0.4 0.199922 0.19992 2 × 10− 6

0.45 0.199901 0.199898 2 × 10− 6

0.5 0.199878 0.199875 2 × 10− 6

0.1

0.1 0.199999 0.199992 7 × 10− 6

0.15 0.199995 0.199985 9 × 10− 6

0.2 0.199989 0.199977 1 × 10− 5

0.25 0.19998 0.199965 1 × 10− 5

0.3 0.199969 0.199952 1 × 10− 5

0.35 0.199955 0.199936 1 × 10− 5

0.4 0.199939 0.199917 2 × 10− 5

0.45 0.19992 0.199896 2 × 10− 5

0.5 0.199899 0.199872 2 × 10− 5

0.2

0.1 0.2 0.199988 1 × 10− 5

0.15 0.199999 0.199982 1 × 10− 5

0.2 0.199995 0.199973 2 × 10− 5

0.25 0.199989 0.199962 2 × 10− 5

0.3 0.19998 0.199949 3 × 10− 5

0.35 0.199969 0.199932 3 × 10− 5

0.4 0.199955 0.199914 4 × 10− 5

0.45 0.199939 0.199893 4 × 10− 5

0.5 0.19992 0.199869 5 × 10− 5
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Figure 6: Graphical comparison of exact and RPS solutions along with error when, A � 0.2, c � 0.05, k � 0.1, p � 4 in Test Problem 9,
where (a) Exact solution, (b) RPS solution and (c) error.
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and RPS solutions along with corresponding error in Test
Problem 4 and 5 (classical KdV equations). Analysis of
tables and fgures indicate that the obtained solution is
accurate and consistent. Tables 3 and 4 and Figures 3 and 4

present the comparison of RPS and HAM solutions at fxed
time in Test Problem 6 and 7 (modifed KdV equations). An
analysis of tables and fgures shows that obtained RPS
solutions are consistent and reliable. Tables 5 and 6 and
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Figures 5 and 6 present the comparison of exact and RPS in
Test Problem 8 and 9 (generalized KdV equations). Ob-
servation shows that obtained RPS solutions are accurate
and acceptable. Overall, analysis endorse that the proposed
algorithm is easy to use, and hence, can also be used for
other families of PDEs.

7. Conclusions

In this article, a residual power series algorithm is proposed
for predicting and analyzing Buckmaster and KdV type
partial diferential equations. Tis algorithm mainly based
on residual functions, which will be obtained after applying
the generalized Taylor series. Te algorithm is directly ap-
plies to PDEs without linearization, discretization, or per-
turbation because it depends on the recursive diferentiation
of dispersal along with the use of given initial constraints to
calculate coefcients of the assumed power series using
nominal computations. In the frst phase of simulations, the
proposed algorithm is tested against linear and nonlinear
Buckmaster equations, and closed-form solutions are ob-
tained. In the second stage of simulations, proposed
methodology is applied to diferent nonlinear KdV type
equations (classical, modifed, and generalized), and ap-
proximate series solutions are obtained. For validity pur-
pose, results are compared with exact and available solutions
from literature. Analysis endorse that the proposed algo-
rithm surpasses the other traditional methods in terms of
naivety, speediness, and constraints. Hence, this algorithm
can also be extended to other families of diferential
equations arise in diferent scientifc phenomena.
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