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In this article, we study the fundamental notions of digital Hopf and co-Hopf spaces based on pointed digital images. We show
that a digital Hopf space, a digital associative Hopf space, a digital Hopf group, and a digital commutative Hopf space are unique
up to digital homotopy type; that is, there is only one possible digital Hopf structure up to digital homotopy type on the underlying
digital image. We also establish an equivalent condition for a digital image to be a digital Hopf space and investigate the di�erence
between ordinary topological co-Hopf spaces and their digital counterparts by showing that any digital co-Hopf space is a digitally
contractible space focusing on deep-learning methods in imaging science.

1. Introduction

1.1. Hopf and Co-Hopf Spaces. In many cases in algebraic
topology, it is feasible to introduce a natural group structure
on some set whose elements consist of homotopy classes of
the base point preserving continuous functions from a
pointed topological space to another. It is well known that if
(X, x0) is a group-like space or if (W,w0) has a cogroup
structure, then we can construct a group structure on the set
[(W,w0), (X, x0)] of homotopy classes of continuous
functions from (W,w0) to (X, x0) as inherited from various
functors.

A Hopf space (X,mX) is a pointed topological space
(X, x0) along with a base point preserving continuous
functionmX: X ×X⟶ X, called amultiplication onX, for
which the constant map cx0: X⟶ X is a homotopy
identity.

It is well known that every topological group is a Hopf
space and that no even-dimensional sphere of nonnegative
dimension is a Hopf space except for the zero sphere S0.
What about the odd-dimensional spheres? �e answer to
this question is that the spheres in dimensions 1, 3, and 7 are
the only spheres that are Hopf spaces. In the general case, as
compared to a topological group, Hopf spaces may lack
associativity and inverses.

As the dual notion of a Hopf space, a pair (C,φC)
consisting of a pointed space C � (C, c0) and a continuous
function φC: C⟶ C∨C, called a comultiplication on C,
preserving the base point is called a co-Hopf space if π1 ∘φC
and π2 ∘φC are homotopic to the identity function 1C on C,
where π1 and π2 are the projections C∨C⟶ C onto the
�rst and second summands, respectively; see [1–11] for
further details on related topics. One of the reasons for the
importance of co-Hopf spaces is that we can obtain a (not
necessarily abelian) group structure on the set
[(C, c0), (Y, y0)] of pointed homotopy classes just like with
Hopf spaces.

1.2. Digital Homotopy Sets. Just like classical homotopy
theory in algebraic topology, in the realm of digital geometry
and computer science, we can construct a covariant functor
[(W,w0, kW), − ] and a contravariant functor [− , (X, x0, kX)]
from the category of pointed digital images to the category of
sets (resp., groups) and functions (resp., group homomor-
phisms), where (W,w0, kW) and (X, x0, kX) are pointed
digital images with kW-adjacency and kX-adjacency rela-
tions, respectively. We refer to the papers [12] (�eorem
4.14) and [13] as a special case of the sets of digital homotopy
classes from a digital image to another.
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*e digital fundamental groups and the digital homo-
topy groups allow us to have much more efficient homotopy
characterization of digital images. Indeed, we can handle the
fundamental properties of pointed digital images more easily
by using the group structure on the set
[(W, w0, kW), (X, x0, kX)] of digital homotopy classes of
base point preserving digital continuous functions from
(W, w0, kW) to (X, x0, kX) if the pointed digital image
(X, x0, kX) with kX-adjacency has the structure of a digital
Hopf group.

1.3. Motivations. Historically, a Hopf space was named after
Heinz Hopf [14] as the Eckmann–Hilton dual of a co-Hopf
space [15]. In the early 20th century, a lot of interesting results
on Lie groups as the particular case of Hopf spaces have been
widely developed by suitable methods for CW-complexes from
the homology and cohomology viewpoints in algebraic to-
pology. *e pointed Hopf spaces have been the direct out-
growth of compact Lie groups in classical homotopy theory; see
[15–17]. Recently, the digital version of a Hopf space has been
investigated by several authors; see [18–21].

*e aforementioned statements serve as some motiva-
tion for research on this topic.*erefore, we need to develop
and investigate the basic properties of digital Hopf spaces,
digital associative Hopf spaces, digital Hopf groups, digital
commutative Hopf spaces, and their duals from the digital
homotopy points of view as an application to computer
science, focusing on deep-learning methods in imaging
science. It is shown in [22] that the definition of a path in
algebraic topology is coherent with respect to the one used
for digital images with an adjacency relation.

In the same vein, digital counterparts of geometry or
topology deal with discrete sets, which are recognized to be
digitized images of the n-dimensional Euclidean space. For
application of the powerful digital homotopy-theoretical
tools, it is favorable to reformulate the digital counterparts of
Hopf spaces and co-Hopf spaces in the digital homotopy
categories as seen in the realms of digital geometry and
computer science, based on the deep-learning methods in
imaging science.

1.4. Organization of the Paper. *is article is organized as
follows. In Section 2, we introduce and explain the fundamental
notions of digital topology or digital images. In Section 3, we
show that a digital Hopf space, a digital associative Hopf space,
a digital Hopf group, and a digital commutative Hopf space are
unique up to digital homotopy type; that is, there is only one
possible digital Hopf structure up to digital homotopy type on
the underlying digital image. We also find an equivalent
condition for a digital image to be a digital Hopf space. In
Section 4, we investigate the differences between ordinary
topological co-Hopf spaces and digital co-Hopf spaces by
showing that any digital co-Hopf space is digitally contractible.
We also show that any strictly digital co-Hopf space is a set
having only one element as a base point in which the result is
exactly the same as the Eckmann–Hilton dual of a topological
group. A summary and further research direction will be given
at the end of this paper.

2. Preliminaries

Let Z be the set (or a topological space or the ring) of in-
tegers, and let X be a finite subset of Zn for n≥ 1. A binary
digital image (or digital image for short) is a pair (X, kX),
where kX indicates some adjacency relation. For a positive
integer u with 1≤ u≤ n, an adjacency relation of a digital
image in Zn is defined as follows.

Definition 1 (see [23]). Let u and n be positive integers with
u≤ n. *en, two distinct points a � (a1, a2, . . . , an) and b �

(b1, b2, . . . , bn) in Zn are lu-adjacent if

(i) there exist at most u distinct indices i such that
|ai − bi| � 1;

(ii) for all indices j, if |aj − bj|≠ 1, then aj � bj.

*e number lu is the cardinal number
kX � k(u, n), 1≤ u≤ n, of the set of elements b ofZn which is
adjacent to a given element a of X⊊Zn, and is called an
adjacency relation kX defined on Zn. A digital image X⊊Zn

with an adjacency relation kX onZn is sometimes denoted as
(X, kX) to designate the adjacency relation. For example,

(i) l1 � 2 � k(1, 1), in Z1;
(ii) l1 � 4 � k(1, 2), l2 � 8 � k(2, 2) in Z2;
(iii) l1 � 6 � k(1, 3), l2 � 18 � k(2, 3), l3 � 26 � k(3, 3)

in Z3;
(iv) l1 � 8 � k(1, 4), l2 � 32 � k(2, 4), l3 � 64 � k(3, 4),

l4 � 80 � k(4, 4) in Z4, and so on.

Definition 2 (see [24]). A digital image X ⊂ Zn with an
adjacency relation kX is called kX-connected if for any pair of
distinct elements a, b{ } of X, there is a set
A � a0, a1, . . . , as􏼈 􏼉 ⊂ X of s + 1 distinct points satisfying
that a � a0, as � b, and ai and ai+1 are kX-adjacent for i �

0, 1, 2, . . . , s − 1 for s≥ 1.

Definition 3 (see [12, 24]). Let X ⊂ Zn1 and Y ⊂ Zn2 be the
digital images with kX-adjacency and kY-adjacency rela-
tions, respectively. A map f: X⟶ Y between digital im-
ages is said to be (kX, kY)-continuous if, for any
kX-connected subset A of X, the image f(A) is also a
kY-connected subset of Y.

Definition 4 (see [25]). For the nonnegative integers c and d

with c<d, a digital interval is a set of the type

[c, d]Z � z ∈ Z|c≤ z≤d{ }, (1)

with the 2-adjacency relation in the set of all nonnegative
integers.

Definition 5 (see [12, 26]). Let X: � (X, kX) be a digital
image along with the kX-adjacency relation. *en, a (2
kX)-continuous function f: [0, m]Z⟶ X is called a digital
kX-path in X.
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Definition 6 (see [12, 23]). Let X: � (X, kX) and
Y: � (Y, kY) be digital images, and let f, g: X⟶ Y be
(kX, kY)-continuous functions. *en, f is said to be digital
(kX, kY)-homotopic to g if there exist an integer m and a
function H: X × [0, m]Z⟶ Y satisfying that

(i) H(x, 0) � f(x) and H(x, m) � g(x) for all x ∈ X;
(ii) the function Hx: [0, m]Z⟶ Y, x ∈ X, which is

given by Hx(t) � H(x, t) is (2, kY)-continuous for
all t ∈ [0, m]Z;

(iii) the function Ht: X⟶ Y, t ∈ [0, m]Z, which is
given by Ht(x) � H(x, t) is (kX, kY)-continuous
for all x ∈ X.

In this case, the function H is called a digital
(kX, kY)-homotopy between f and g, denoted by

H: f≃ kX,kY( )g. (2)

It is well known that the relation ≃ (kX,kY) is an equiv-
alence relation on the set of all (kX, kY)-continuous func-
tions from X to Y. For a (kX, kY)-continuous function
f: X⟶ Y, we denote [f] by

[f] � g: X⟶ Y|f≃ kX,kY( )g􏼚 􏼛, (3)

which is called the digital homotopy class represented by f.

Definition 7 (see [12, 26]). A pointed digital image with
kX-adjacency is a triple X: � (X, x0, kX). In this situation,
the element x0 of X is called the base point of (X, x0, kX). A
base point preserving digital continuous function
f: (X, x0, kX)⟶ (Y, y0, kY) is a (kX, kY)-continuous
function f: (X, kX)⟶ (Y, kY) with f(x0) � y0.

Definition 8 (see [25]). A digital image X: � (X, x0, kX) is
said to be digitally contractible if the identity function
1X: X⟶ X on X is digitally null-homotopic; that is, it is
digital (kX, kX)-homotopic to the constant function
cx0

: X⟶ X at x0.

Definition 9 (see [26]). Let X: � (X, kX) and Y: � (Y, kY)

be digital images. *en, a (kX, kY)-continuous function
f: X⟶ Y is said to be a (kX, kY)-homotopy equivalence if
there exists a (kX, kY)-continuous function g: Y⟶ X such
that

g ∘f≃ kX,kX( )1X,

f ∘g≃ kY,kY( )1Y.
(4)

In this case, we say that X and Y have the same digital
homotopy type which is denoted by

X≃ kX,kY( )Y. (5)

Convention: In this paper, we work on the pointed
digital categoryD∗ of pointed digital images and base point
preserving digital continuous functions. *us, any digital
image in this paper has a base point, and all maps (resp.,
homotopies) are base point preserving digital continuous

functions (resp., pointed digital homotopies) between
pointed digital images.

3. Digital Hopf Spaces

From now on, the base points and the adjacency relations of
digital images will sometimes be omitted for our notational
convenience unless we specifically state otherwise.

Definition 10 (see [27]). Let X: � (X, x0, kX) and
Y: � (Y, y0, kY) be the pointed digital images. *en, the
normal product adjacency NP(kX, kY) on the Cartesian
product,

X × Y: � X × Y, x0 × y0, NP kX, kY( 􏼁( 􏼁, (6)

is defined as follows: if x, x′ ∈ X and y, y′ ∈ Y, then the two
elements (x, y) and (x′, y′) of X × Y are NP(kX, kY)-ad-
jacent in X × Y if and only if

(i) x � x′, and y and y′ are kY-adjacent;
(ii) x and x′ are kX-adjacent, and y � y′; or
(iii) x and x′ are kX-adjacent, and y and y′ are

kY-adjacent.

Note that the normal product adjacency relation makes
the Cartesian product X × Y into a digital image with the
adjacency relation NP(kX, kY) whose base point is x0 × y0.

Let s and t be the integers with 1< s≤ t, and let
(Xi, kXi

)|i � 1, 2, . . . , t􏽮 􏽯 be a family of digital images
(Xi, kXi

) for i � 1, 2, . . . , t. *en, as a generalization of the
normal product adjacency, we define the following.

Definition 11 (see [28, 29]). Let xi, xi
′ ∈ Xi for i � 1, 2, . . . , t.

*en, the two elements x � (x1, x2, . . . , xt) and
x′ � (x1′, x2′, . . . , xt

′) of 􏽑
t
i�1 Xi are

NPs(kX1
, kX2

, . . . , kXt
)-adjacent if and only if

(i) for at least 1 and at most s indices i, xi, and xi
′ are

kXi
-adjacent;

(ii) for all other indices j, xj � xj
′.

*e adjacency relation NPs(kX1
, kX2

, . . . , kXt
) is said to

be the generalized normal product adjacency on the Car-
tesian product 􏽑

t
i�1 Xi.

3.1. Notation. We now fix the notations in this paper:

(i) cx0
: X⟶ X and cy0

: Y⟶ Y are the constant
functions whose values are x0 and y0, respectively.

(ii) kX×Y is the normal product adjacency on X × Y; that
is, kX×Y: � NP(kX, kY), and in particular
kX×X: � NP(kX, kX).

(iii) kX×Y×Z is the generalized normal product adjacency
on X × Y × Z; that is, kX×Y×Z: � NP3(kX, kY, kZ),
and in particular kX×X×X: � NP3(kX, kX, kX).

(iv) TX×Y: X × Y⟶ Y × X is the switching function
sending (x, y) to (y, x).
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(v) ΔX: X⟶ X × X is the diagonal function sending
x to x × x as a (kX, kX×X)-continuous function.

We now consider the digital versions of the Hopf space,
homotopy associativity, homotopy commutativity, and
Hopf group in algebraic topology as follows—see [15, 30, 31]
for the terminologies in classical homotopy theory.

Definition 12 (see [18]). A digital image X: � (X, x0, kX)

with a kX-adjacency relation is called a digital Hopf space if
there is a (kX×X, kX)-continuous function,

mX: X × X⟶ X, (7)

such that the diagram in Figure 1 is digital homotopy
commutative; that is,

mX ∘ cx0
× 1X􏼐 􏼑 ∘ ΔX ≃ kX,kX( )1X ≃ kX,kX( )mX ∘ 1X × cx0

􏼐 􏼑 ∘ ΔX. (8)

In this case, the (kX×X, kX)-continuous function

mX: X × X⟶ X (9)

is called a digital multiplication on (X, x0, kX), and the
constant function cx0

is said to be a digital homotopy
identity.

Definition 13 (see [21]). Let X: � (X, x0, kX) and
Y : � (Y, y0, kY) be pointed digital Hopf spaces. *en, a
(kX, kY)-continuous function f: X⟶ Y is said to be a
digital Hopf function if

f ∘mX ≃ kX×X,kY( )mY ∘ (f × f). (10)

Definition 14 (see [21]). A digital multiplication mX: X ×

X⟶ X on a pointed digital Hopf space X: � (X, x0, kX) is
said to be digital homotopy associative if the diagram in
Figure 2 commutes up to digital homotopy. A digital Hopf
space X � (X, x0, kX) with a digital homotopy associative
multiplication mX: X × X⟶ X is called a digital asso-
ciative Hopf space.

Definition 15 (see [21]). Let X: � (X, x0, kX) be a digital
Hopf space with a digital multiplication mX: X × X⟶ X.
A (kX, kX)-continuous function

]X: X⟶ X (11)

is called a digital homotopy inverse if the diagram in Figure 3
commutes up to digital homotopy.

Remark 1. We should be careful with the term ‘inverse’ at
this moment because an inverse is usually understood to be
an element of a group or more generally of a set with a binary
operation. *e inverse in Definition 15 is a function that
produces the homotopy inverse elements.

We note that, in general, there are many kinds of digital
homotopy inverses and that one of the digital homotopy
inverses ]X: X⟶ X can be constructed as a
(kX, kX)-continuous function so that the triangles in Defi-
nition 15 are digital homotopy commutative. More precisely,

we let [f] and [g] be digital homotopy classes represented
by (kW, kX)-continuous functions f, g: W⟶ X, respec-
tively. If W: � (W, w0, kW) is a pointed digital image, and if
X: � (X, x0, kX) is a pointed digital Hopf space with a
digital multiplication mX: X × X⟶ X, then we define a
binary operation “⊞” on the set [(W, w0), (X, x0)] of all
digital homotopy classes of base point preserving digital
continuous functions from W to X by the digital homotopy
class of the composite ([21], Definition 3.7):

f⊞g: W⟶
ΔW

W × W⟶
f

×g X × X⟶
mX

X. (12)

Let ]X: X⟶ X be a digital homotopy inverse on a
pointed digital Hopf space X: � (X, x0, kX). *en, every
element of the set [(W, w0), (X, x0)] with the binary op-
eration “⊞” is invertible, and the inverse [f]− 1 of [f] is given
by

[f]
− 1

� ]X ∘f􏼂 􏼃, (13)

where f: W⟶ X is any digital (kW, kX)-continuous
function; see [21] (*eorem 3.24) for more details.

Definition 16 (see [21]). A digital multiplication mX: X ×

X⟶ X on a pointed digital Hopf space X: � (X, x0, kX) is
said to be digital homotopy commutative if the diagram in
Figure 4 is digital homotopy commutative. Here,

TX×X: X × X⟶ X × X (14)

is the switching function. A digital Hopf space
X � (X, x0, kX) with a digital homotopy commutative
multiplication mX: X × X⟶ X is called a digital com-
mutative Hopf space.

A topological Hopf group [30] is a pointed homotopy
associative Hopf space with a homotopy inverse satisfying
the group axioms up to homotopy. We remark that any
topological group is a topological Hopf group.We consider a
digital version of a topological Hopf group as follows.

Definition 17. A digital Hopf group is a digital Hopf space
(X, x0, kX) furnished with an associative multiplication
mX: X × X⟶ X and an inverse ]X: X⟶ X up to digital
homotopy.

Example 1. Let e � (1, 0), a � (0, 1), b � (− 1, 0), and
c � (0, − 1) be the elements ofZ2, and letX: � e, a, b, c{ }⊊Z2

be a digital image with the l1-adjacency relation defined on
Z2. If we define a digital multiplication

mX � ⊙ : X × X⟶ X, (15)

by the rule of Table 1, then the pointed digital image (X, e, l1)

becomes a group as well as a digital Hopf group; see also [20]
(Example 3.8).

*e following results show that a digital Hopf space, a
digital associative Hopf space, a digital Hopf group, and a
digital commutative Hopf space are unique up to the digital
homotopy type; that is, there is only one possible digital
Hopf structure up to digital homotopy on the underlying
digital image.
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Theorem 1. Let X: � (X, x0, kX) be a digital Hopf group
with a multiplication mX: X × X⟶ X and an inverse
]X: X⟶ X up to digital homotopy, and let
Y: � (Y, y0, kY) be any digital image. If f: X⟶ Y is a
(kX, kY)-homotopy equivalence, then (Y, y0, kY) becomes a
digital Hopf group.

Proof. Since f: X⟶ Y is a (kX, kY)-homotopy equiva-
lence, there exists a (kY, kX)-continuous function
g: Y⟶ X such that

g ∘f≃ kX,kX( )1X,

f ∘g≃ kY,kY( )1Y.
(16)

If we define a function

mY: Y × Y⟶ Y (17)

to be the composite

mY: Y × Y⟶
g

×g X × X⟶
mX

X⟶
f

Y (18)

X × X
TX × X

mX

X × X

mX

X

Figure 4: A commutative diagram.

Table 1: A digital multiplication mX � ⊙ : X × X⟶ X.

Binary operation e a b c
e e a b c
a a b c e
b b c e a
c c e a b

X

1X

ΔX
X × X

cx0 × 1X
X × X

mX

X × X
1X × cx0

X
ΔX

1X

X

Figure 1: A commutative diagram.

X × X × X

1X × mX

mX × 1X X × X

mX

X × X
mX X

Figure 2: A commutative diagram.

X

cx0

ΔX X × X
νX × 1X X × X

mX

X × X
1X × νX

X
ΔX

cx0

X

Figure 3: A commutative diagram.
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of digital functions, then mY: Y × Y⟶ Y is a digital
multiplication on Y: � (Y, y0, kY). Indeed, since the dia-
gram in Figure 5 is digital homotopy commutative, we
obtain

mY ∘ cy0
× 1Y􏼐 􏼑 ∘ ΔY ≃ kY,kY( ) f ∘mX ∘ (g × g)( 􏼁 ∘ cy0

× 1Y􏼐 􏼑 ∘ ΔY

� f ∘mX ∘ cx0
× 1X􏼐 􏼑 ∘ ΔX ∘g

≃ kY,kY( )f ∘ 1X ∘g

≃ kY,kY( )f ∘g

≃ kY,kY( )1Y,

(19)

and similarly

mY ∘ 1Y × cy0
􏼐 􏼑 ∘ ΔY ≃ kY,kY( )1Y. (20)

*erefore, (Y, y0, kY) is a digital Hopf space.
Secondly, we show that the diagram in Figure 6 is digital

homotopy commutative. Indeed, we obtain

mY ∘ (f × f)≃ kX×X,kY( ) f ∘mX ∘ (g × g)( 􏼁 ∘ (f × f)

� f ∘mX ∘ (g ∘f × g ∘f)

≃ kX×X,kY( )f ∘mX ∘ 1X × 1X( 􏼁

� f ∘mX,

(21)

and similarly

mX ∘ (g × g)≃ kY×Y,kX( )g ∘mY. (22)

*us, f: X⟶ Y and g: Y⟶ X are digital Hopf
functions.

*irdly, we note that five faces out of the six faces of the
hexahedron in Figure 7 are digital homotopy commutative, with
the exception of the front face colored in blue. Indeed, using the
homotopy relation (20), we can show that the left-hand face of
the hexahedron is digital homotopy commutative as follows.

1X × mX( 􏼁 ∘ (g × g × g) � g × mX ∘ (g × g)( 􏼁

≃ kY×Y×Y,kX×X( )g × g ∘mY( 􏼁

� (g × g) 1Y × mY( 􏼁,

(23)

and the same applies for the other four faces. For the back
face to be homotopy commutative, we need to be associative.
*e reader should be reminded that this is from Definition
17. For the right face, refer to the homotopy at (21). *e top
face is from the previous page and the homotopy between
f ∘g and 1Y. In addition, the bottom face is from the
definition of mY.

We now prove that the front face is also commutative up
to digital homotopy as follows:

mY ∘ mY × 1Y( 􏼁

≃ f ∘mX ∘ (g × g)( 􏼁 ∘ f ∘mX ∘ (g × g)( 􏼁 × 1Y( 􏼁

≃ f ∘mX ∘ (g × g)( 􏼁 ∘ f ∘mX ∘ (g × g)( 􏼁 ×(f ∘g)( 􏼁

� f ∘mX ∘ (g × g)( 􏼁 ∘ (f × f) ∘ mX × 1X( 􏼁 ∘ ((g × g) × g)( 􏼁

� f ∘mX ∘ ((g × g) ∘ (f × f)) ∘ mX × 1X( 􏼁 ∘ ((g × g) × g)( 􏼁

� f ∘mX ∘ (g ∘f × g ∘f)° mX × 1X( 􏼁 ∘ ((g × g) × g)( 􏼁

≃f ∘mX ∘ 1X × 1X( 􏼁 ∘ mX × 1X( 􏼁 ∘ ((g × g) × g)( 􏼁

� f ∘ mX ∘ mX × 1X( 􏼁( 􏼁 ∘ (g × g × g)

≃f ∘ mX ∘ 1X × mX( 􏼁( 􏼁 ∘ (g × g × g)

� f ∘ mX ∘ 1X × 1X( 􏼁 ∘ 1X × mX( 􏼁( 􏼁 ∘ (g × g × g)

≃f ∘ mX ∘ (g ∘f × g ∘f) ∘ 1X × mX( 􏼁( 􏼁 ∘ (g × g × g)

� f ∘mX ∘ ((g × g) ∘ (f × f)) ∘ 1X × mX( 􏼁 ∘ (g ×(g × g))( 􏼁

� f ∘mX ∘ (g × g)( 􏼁 ∘ (f × f) ∘ 1X × mX( 􏼁 ∘ (g ×(g × g))( 􏼁

� f ∘mX ∘ (g × g)( 􏼁 ∘ (f ∘g) × f ∘mX ∘ (g × g)( 􏼁( 􏼁

≃ f ∘mX ∘g × g( 􏼁 ∘ 1Y × f ∘mX ∘ (g × g)( 􏼁( 􏼁

≃mY ∘ 1Y × mY( 􏼁,

(24)

where ≃ means the digital (kY×Y×Y, kY)-homotopy. *us,
mY: Y × Y⟶ Y is an associative multiplication up to
digital homotopy.

We finally define a (kY, kY)-continuous function

]Y: Y⟶ Y, (25)

by the digital homotopy class of the compositions

]Y: Y ⟶
g

X⟶
]X

X⟶
f

Y, (26)

so that the diagram in Figure 8 commutes up to digital
homotopy. Indeed, since the diagram in Figure 9 is strictly
commutative, by using the digital homotopy inverse ]X, we
have

mY ∘ 1Y × ]Y( 􏼁 ∘ ΔY

≃ f ∘mX ∘ (g × g)( 􏼁 ∘ 1Y × f ∘ ]X ∘g( 􏼁 ∘ ΔY

� f ∘mX ∘ g × g ∘f ∘ ]X ∘g( 􏼁( 􏼁 ∘ ΔY

≃f ∘mX ∘ g × 1X ∘ ]X ∘g( 􏼁( 􏼁 ∘ ΔY

� f ∘mX ∘ g × ]X ∘g( 􏼁( 􏼁 ∘ ΔY

� f ∘mX ∘ 1X × ]X( 􏼁 ∘ (g × g) ∘ ΔY

� f ∘mX ∘ 1X × ]X( 􏼁 ∘ ΔX ∘g

≃f ∘ cx0
∘g

� cy0
,

(27)
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Y

g

ΔY Y × Y

g × g

cy0 × 1Y
Y × Y

g × g mY

X
ΔX

X × X
cx0 × 1X

X × X mX
X

f
Y

Figure 5: A commutative diagram.

X × X

f × f

mX X

f

Y × Y
mY Y

Figure 6: A commutative diagram.

X × X × X X × X

Y × Y × Y Y × Y

X × X X

Y×Y Y

mX × 1X

mY × 1Y

mX

mY

g × g × g

g × g

f × f

f

1Y × mY

1X × mX

mY

mX

Figure 7: A commutative diagram.

Y

cy0

ΔY Y × Y
νY × 1Y Y × Y

mY

Y × Y
1Y × νY

Y
ΔY

cy0

Y

Figure 8: A commutative diagram.

X
ΔX X × X

Y

g
ΔY Y × Y

g × g

Figure 9: A commutative diagram.
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and similarly

mY ∘ ]Y × 1Y( 􏼁 ∘ ΔY ≃ cy0
, (28)

where ≃ means the digital (kY, kY)-homotopy. *erefore,

]Y: Y⟶ Y (29)

is a digital homotopy inverse.
Using the relations from (19) through (28), (Y, y0, kY) is

a digital Hopf group, as required.⃞ □

Example 2. Let X be the digital Hopf group in Example 1
and let

Y, e, l1( 􏼁 ≔ X∪ (2, 0) ∈ Z2
􏽮 􏽯, e, l1􏼐 􏼑. (30)

*en, we can show that

X≃ kX,kY( )Y (31)

and that the digital image (Y, e, l1) becomes a digital Hopf
group, where l1 � 4. Indeed, let f: X⟶ Y be an inclusion
and let g: Y⟶ X be a function given by

g(y) �
y, if y ∈ X,

e, if y � (2, 0).
􏼨 (32)

*en, it can be seen that f and g are (kX, kY)- and
(kY, kX)-continuous functions, respectively, and that

g ∘f � 1X: X⟶ X. (33)

Let H: Y × [0, 1]Z⟶ Y be the function given by

H(y, t) �
y, if t � 0,

f ∘g(y), if t � 1,
􏼨 (34)

for all y ∈ Y. *en, we see that H is a (kY×[0,1]Z
, kY)-con-

tinuous function and that

H: f ∘g≃
kY×[0,1]Z

,kY􏼐 􏼑
1Y, (35)

where

kY×[0,1]Z
� NP2 kY, l1( 􏼁 (36)

with l1 � 2. By (33) and (35), we have the result.
A binary operation is said to be commutative if changing

the order of the operands does not change the result. It is one
of the fundamental properties of many binary operations in
mathematics, and many mathematical proofs depend on it.
We now show that digital homotopy commutativity is digital
homotopy invariant.

Theorem 2. Let X: � (X, x0, kX) be a digital commutative
Hopf space with a multiplication mX: X × X⟶ X up to
digital homotopy, and let Y: � (Y, y0, kY) be any digital

image. If f: X⟶ Y is a (kX, kY)-homotopy equivalence,
then Y becomes a digital commutative Hopf space.

Proof. We need to show that the diagram in Figure 10 is
digital homotopy commutative. Since the diagram in Fig-
ure 11 is strictly commutative, using the digital homotopy
commutativity, we have

mY ∘TY×Y ≃ f ∘mX ∘ (g × g)( 􏼁 ∘TY×Y

� f ∘mX ∘TX×X ∘ (g × g)

≃f ∘mX ∘ (g × g)

≃mY,

(37)

where ≃ means the digital (kY×Y, kY)-homotopy. *us,
Y: � (Y, y0, kY) is a digital commutative Hopf space.

As usual, we define the digital projections as follows. □

Definition 18 (see [32]). *e first and second digital
projections

p1: X × Y⟶ X,

p2: X × Y⟶ Y
(38)

are defined by

p1(x, y) � x,

p2(x, y) � y
(39)

as the (kX×Y, kX)-continuous and (kX×Y, kY)-continuous
functions, respectively.

We note that the digital products have the following
property.

Remark 2. Let X: � (X, x0, kX) and Y: � (Y, y0, kY) be
digital images.*en, for every digital image Z: � (Z, z0, kZ)

with digital continuous functions

q1: Z⟶ X,

q2: Z⟶ Y,
(40)

there exists a unique (kZ, kX×Y)-continuous function
φ: Z⟶ X × Y given by

φ(z) � q1(z), q2(z)( 􏼁, (41)

such that the diagram in Figure 12 is commutative. *e
(kZ, kX×Y)-continuous function φ: Z⟶ X × Y is denoted
by [q1, q2]. In particular, if X � Y � Z, and q1 and q2 are the
identity function 1X on X, then

φ � 1X, 1X( 􏼁: X⟶ X × X (42)

is the digital diagonal function

ΔX: X⟶ X × X, (43)

sending x to x × x.
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Definition 19 (see [30, 33]). Let X: � (X, x0) and
Y: � (Y, y0) be the digital images with k(u, n)-adjacency
relations in Zn. *e digital wedge product X∨Y is given by

X∨Y � X × y0􏼈 􏼉∪ x0􏼈 􏼉 × Y ⊂ X × Y, (44)

with the k(u, 2n)-adjacency relation whose base point is
(x0, y0) in Z2n. Here, the normal product adjacency in
Definition 10 (or the Cartesian product in graph theory [34])
is assumed.

In particular, if p1: X × X⟶ X and p2: X × X⟶ X

are the digital projections in Definition 18, then we can
consider the projections p

⌣

1: X∨X⟶ X and
p
⌣

2: X∨X⟶ X defined by the restrictions p
⌣

1 � p1|X∨X and
p
⌣

2 � p2|X∨X; that is,

p
⌣

1 x, x0( 􏼁 � x � p
⌣

2 x0, x( 􏼁,

p
⌣

1 x0, x( 􏼁 � x0 � p
⌣

2 x, x0( 􏼁,
(45)

for all (x, x0) and (x0, x) in the digital wedge product X∨X.

Lemma 1. For every digital image X: � (X, x0), the
function

p
⌣

1, p
⌣

2􏽨 􏽩: X∨X⟶ X × X, (46)

is equal to the inclusion function

i: X∨X⟶ X × X, (47)

of X∨X into X × X.

Proof. Since both digital continuous functions [p
⌣

1, p
⌣

2] and i

make the two diagrams in Figures 13 and 14 commute, by
uniqueness, we have

p
⌣

1, p
⌣

2􏽨 􏽩 � i: X∨X⟶ X × X, (48)

as required. □

Definition 20. *e digital folding map

∇X: X∨X⟶ X, (49)

is a digital (kX∨X, kX)-continuous function defined by

∇X x, x0( 􏼁 � x � ∇X x0, x( 􏼁, (50)

for all (x, x0) and (x0, x) in X∨X.
We now find an equivalent condition for a digital image

to be a digital Hopf space as follows.

Lemma 2. A digital image X: � (X, x0, kX) is a digital Hopf
space with a digital multiplication

mX: X × X⟶ X, (51)

if and only if the diagram in Figure 15 is commutative up
to digital homotopy.

Proof. Let

j1, j2: X⟶ X∨X, (52)

be the digital continuous functions given by

j1(x) � x, x0( 􏼁,

j2(x) � x0, x( 􏼁,
(53)

respectively. *en, it can be shown that the diagram in
Figure 16 is a commutative diagram up to digital homotopy.
Indeed, we have

mX ∘ i ∘ j1(− ) � mX ∘ i − , x0( 􏼁

� mX − , x0( 􏼁

� mX ∘ 1X × cx0
􏼐 􏼑(− , − )

� mX ∘ 1X × cx0
􏼐 􏼑 ∘ ΔX(− )

≃ kX,kX( )1X(− ),

(54)

that is,

mX ∘ i − , x0( 􏼁≃ kX,kX( )1X(− ) � ∇X − , x0( 􏼁, (55)

and similarly

mX ∘ i x0, −( 􏼁≃ kX,kX( )1X(− ) � ∇X x0, −( 􏼁. (56)

Conversely, we have

1X � ∇X ∘ j1 ≃ kX,kX( )mX ∘ i ∘ j1 � mX ∘ 1X × cx0
􏼐 􏼑 ∘ ΔX,

1X � ∇X ∘ j2 ≃ kX,kX( )mX ∘ i ∘ j2 � mX ∘ cx0
× 1X􏼐 􏼑 ∘ ΔX,

(57)

Y × Y
TY × Y

mY

Y × Y

mY

Y

Figure 10: A commutative diagram.

X × X
TX × X X × X

Y × Y

g × g

TY × Y Y×Y

g × g

Figure 11: A commutative diagram.

Z

q1
∃!φ

q2

X X × Y
p1 p2 Y

Figure 12: A commutative diagram.
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that is,

mX: X × X⟶ X, (58)

is a digital multiplication as required. □
Let A: � (A, a0, kA), B: � (B, b0, kB), and

X: � (X, x0, kX) be the digital images, and let f: A⟶ X

and g: B⟶ X be (kA, kX)-continuous and (kB, kX)-con-
tinuous functions, respectively. *en, we have the
(kA∨B, kX∨X)-continuous function

f∨g: A∨B⟶ X∨X, (59)

defined by

(f∨g)(a, b) � (f(a), g(b)), (60)

where each ordered pair should contain at least one entry from
the base points a0, b0, and x0 of A, B, and X, respectively. □

Theorem 3. ?e digital image X: � (X, x0, kX) is a digital
Hopf space if and only if for any (kA, kX)-continuous function
f: A⟶ X and any (kB, kX)-continuous function
g: B⟶ X, there exists a (kA×B, kX)-continuous function
s: A × B⟶ X such that

∇X ∘ (f∨g)≃ kA∨B,kX( )s ∘ j, (61)

where j: A∨B⟶ A × B is the inclusion function of A∨B
into A × B.

Proof. Let mX: X × X⟶ X be the digital multiplication
on X: � (X, x0, kX). *en, we can define a
(kA×B, kX)-continuous function

s: A × B⟶ X, (62)

by

s � mX ∘ (f × g): A × B⟶
f

×g X × X⟶
mX

X. (63)

We thus have

s ∘ j − , b0( 􏼁≃ kA∨B,kX( )mX ∘ (f × g) ∘ j − , b0( 􏼁

� mX ∘ (f × g) − , b0( 􏼁

� mX ∘ f(− ), x0( 􏼁

� mX ∘ 1X × cx0
􏼐 􏼑(f(− ), f(− ))

� mX ∘ 1X × cx0
􏼐 􏼑 ∘ ΔX(f(− ))

≃ kX,kX( )1X(f(− ))

� f(− )

� ∇X ∘ f(− ), x0( 􏼁

� ∇X ∘ (f∨g) − , b0( 􏼁,

(64)

for all (− , b0) in A∨B, and similarly

s ∘ j a0, −( 􏼁≃ kA∨B,kX( )∇X ∘ (f∨g) a0, −( 􏼁, (65)

for all (a0, − ) in A∨B.
Conversely, for a digital folding map

∇X: X∨X⟶ X, (66)

there is a (kX×X, kX)-continuous function
mX: X × X⟶ X such that the diagram in Figure 17 is
digital homotopy commutative. By Lemma 2, (X, x0, kX)

becomes a digital Hopf space furnished with the digital
multiplication mX. □

4. A Difference between Ordinary Co-Hopf
Spaces and Digital Co-Hopf Spaces

We now consider the digital version of a co-Hopf space in
algebraic topology as follows; see [15, 30, 31] for the ter-
minology in classical homotopy theory.

Definition 21. A digital image C: � (C, c0, kC) with a
kC-adjacency relation is called a digital co-Hopf space if
there is a (kC, kC∨C)-continuous function

φC: C⟶ C∨C, (67)

such that the two triangles in Figure 18 are digital
homotopy commutative, where 1C is the identity function on
C, and

π1, π2: C∨C⟶ C, (68)

are the first projection and the second projection, respec-
tively. In this case, the (kC, kC∨C)-continuous function
φC: C⟶ C∨C above is called a digital comultiplication on
(C, c0, kC).

Let [f] and [g] be digital homotopy classes represented
by (kC, kY)-continuous functions f, g: C⟶ Y, respec-
tively. If C: � (C, c0, kC) is a pointed digital co-Hopf space
with a digital comultiplication φC: C⟶ C∨C, and if Y: �

(Y, y0, kY) is a digital image, then we also define a binary
operation “⊛” on the set [(C, c0), (Y, y0)] of all digital
homotopy classes of base point preserving digital continuous
functions from C to Y by the digital homotopy class of the
composite

f⊛g: C⟶
φ

C C∨C⟶
f
∨g Y∨Y⟶∇ Y Y, (69)

that is,

[f]⊛ [g] � [f⊛g] � ∇Y ∘ (f∨g) ∘φC􏼂 􏼃, (70)

where ∇Y: Y∨Y⟶ Y is the digital folding map. We note
that the binary operation “⊛ ” makes the set [(C, c0), (Y, y0)]

into an algebraic set just like the aforementioned binary
operation “⊞” in Section 3. Note that there are many kinds of
homotopy comultiplications with many distinctive prop-
erties in classical homotopy theory; see [2], and [3] (Defi-
nitions 3.1, 3.5, and 3.12) for further details.

We note that a topological co-Hopf space needs not be
contractible even though it is a finite dimensional space.
Take the spheres and the finite wedge products of spheres as
examples.

*e following theorem shows that there is a disparity or a
difference between ordinary topological co-Hopf spaces and
digital co-Hopf spaces.
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p̆1 [p̆1, p̆2] p̆2

X X × X
p1 p2 X

X ∨ X

Figure 13: A commutative diagram.

X ∨ X

i

X X

p̆1 p̆2

p1 p2X × X

Figure 14: A commutative diagram.

∇Xi

X × X
mX X

X ∨ X

Figure 15: A commutative diagram.

i

X

j1

1X

ΔX X × X
1X × cx0 X × X

mX

X × X
cx0 × 1X XΔX

1X

j2

X

X ∨ X

Figure 16: A commutative diagram.

X ∨ X

i

X × X
mX X

∇X

Figure 17: A commutative diagram.

C

1C

φC

π1 π2

C
φC

1C

C

C ∨ C

Figure 18: A commutative diagram.
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Theorem 4. Any digital co-Hopf space is digitally
contractible.

Proof. Let C: � (C, c0, kC) be a digital co-Hopf space to-
gether with a digital comultiplication.

φC: C⟶ C∨C. (71)

If x is any element of C, then

φC(x) � (c, d), (72)

where either c or d is the base point c0 of C. We thus have

1C(− )≃ kC,kC( )π1 ∘φC(− )

� π1(c, d)

� c,

1C(− )≃ kC,kC( )π2 ∘φC(− )

� π2(c, d)

� d,

(73)

in the digital co-Hopf space C: � (C, c0, kC). If c � c0, then

1C(− )≃ kC,kC( )cc0
(− ) � c0, (74)

where cc0
: C⟶ C is the constant function at c0. Similarly, if

d � c0, then

1C(− )≃ kC,kC( )cc0
(− ). (75)

*us, C is a contractible digital image. □
*eorem 4 asserts that the set S of all digital homotopy

classes of digital comultiplications φC: C⟶ C∨C is the set
consisting of a single element; that is, |S| � 1.

A topological group is a group G together with a to-
pology on G such that the binary operation and the inverse
function are continuous functions with respect to the to-
pology on G. A Hopf group is a generalization of the to-
pological group which is obtained by replacing the strict
equality by the classical homotopy relation.

We now replace the digital homotopy “≃ (kC,kC)” in
Definition 21 by the strict equality “�” as follows. □

Definition 22. A digital image C: � (C, c0, kC) along with
kC-adjacency relation is called a strictly digital co-Hopf
space if there is a (kC, kC∨C)-continuous function
φC: C⟶ C∨C such that π1°φC � 1C and π2°φC � 1C.

Remark 3. By *eorem 4 and by restricting the digital
homotopy to the strict equality, we can see that any strictly
digital co-Hopf space is a set consisting of a single element as
the base point; see also [35] (Lemma 3.8).

5. Summary

We have investigated the fundamental notions of digital
Hopf spaces, digital Hopf groups, digital co-Hopf spaces,
and digital co-Hopf groups based on digital images. We have
proven that digital Hopf spaces, digital associative Hopf

spaces, digital Hopf groups, and digital commutative Hopf
spaces are unique up to the digital homotopy type; that is,
there is only one possible digital Hopf structure up to digital
homotopy on the underlying digital image.

We have established a necessary and sufficient condition
for a digital image to be a digital Hopf space and investigated
the relationship or the difference between ordinary topo-
logical co-Hopf spaces and digital co-Hopf spaces by
showing that any digital co-Hopf space is digitally con-
tractible. We have also noticed that any strictly digital co-
Hopf space is a set having only one element as a base point in
which the result is exactly the same as the Eckmann–Hilton
dual of a topological group as an application in computer
science focusing on the deep-learning methods in imaging
science.
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