Cordial and Total Cordial Labeling of Corona Product of Paths and Second Order of Lemniscate Graphs

Ashraf ELrokh (©), Mohammed M. Ali Al-Shamiri ${ }^{1}$ (${ }^{2,3}$ Shokry Nada ${ }^{\text {(}}$, ${ }^{1}$ and Atef Abd El-hay (1) ${ }^{1,4}$
${ }^{1}$ Mathematics and Computer Science Department, Faculty of Science Menoufia University, Menoufia, Egypt
${ }^{2}$ Department of Mathematics, Faculty of Science and Arts, Muhayl Asser King Khalid University, Abha, Saudi Arabia
${ }^{3}$ Department of Mathematics and Computer, Faculty of Science, Ibb University, Ibb, Yemen
${ }^{4}$ Faculty of Computer and Artificial Intelligence, Modern University for Technology and Information, Cairo, Egypt

Correspondence should be addressed to Atef Abd El-hay; atef_1992@yahoo.com
Received 19 October 2021; Revised 7 February 2022; Accepted 23 March 2022; Published 5 May 2022
Academic Editor: M. T. Rahim
Copyright © 2022 Ashraf ELrokh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A simple graph is called cordial if it admits 0-1 labeling that satisfies certain conditions. The second order of lemniscate graph is a graph of two second order of circles that have one vertex in common. In this paper, we introduce some new results on cordial labeling, total cordial, and present necessary and sufficient conditions of cordial and total cordial for corona product of paths and second order of lemniscate graphs.

1. Introduction

Labelling methods are used for a wide range of applications in different subjects including coding theory, computer science, and communication networks. Graph labeling is an assignment of positive integers on vertices or edges or both of them which fulfilled certain conditions. Hundreds of research studies have been working with different types of labeling graphs [1-11], and a reference for this purpose is the survey written by Gallian [7]. All graphs considered, in this theme, are finite, simple, and undirected. The original concept of cordial graphs is due to Cahit [2]. He proved the following: each tree is cordial; a complete graph K_{n} is cordial if and only if $n \leq 3$ and a complete bipartite graph $K_{n, m}$ is cordial for all positive integers n and m [3]. Let $G=(V, E)$ be a graph, and let $f: V \longrightarrow\{0,1\}$ be a labeling of its vertices, and let the induced edge labeling $f^{*} E \longrightarrow\{0,1\}$ be given by $f^{*}(u v)=(f(u)+f(v))(\bmod 2)$, where $e=u v(\in E)$ and $u, v \in V$. Let v_{0} and v_{1} be the numbers of vertices that are labeled by 0 and 1 , respectively, and let e_{0} and e_{1} be the corresponding numbers of edges. Such a labeling is called cordial if both $\left|v_{0}-v_{1}\right| \leq 1$ and $\left|e_{0}-e_{1}\right| \leq 1$ hold. A graph is called cordial if it admits a cordial labeling. As an extension
of the cordial labeling, we define a total cordial labeling of a graph G with vertex set and edge set as an cordial labeling such that number of vertices and edges labeled with 0 and the number of vertices and edges labeled with 1 differ by at most 1, i.e., $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right| \leq 1$. A graph with a total cordial labeling is called a total cordial graph. If the vertices of the graph are assigned values subject to certain conditions, it is known as graph labeling. Following three are the common features of any graph labeling problem: (1) a set of numbers from which vertex labels are assigned; (2) a rule that assigns a value to each edge; and (3) a condition that these values must satisfy.

A path with n vertices and $n-1$ edges is denoted by P_{n}, and a cycle with n vertices and n edges is denoted by C_{n} [12]. The second power of a lemniscate graph is defined as the union of two second power of cycles where both have a common vertex; it is denoted by $L_{n, m}^{2} \equiv C_{n}^{2} \sharp C_{m}^{2}$ [13]. Obviously, $L_{n, m}^{2}$ has $n+m-1$ vertices and $2 n+2 m-4$ edges. The corona product $G_{1} \odot G_{2}$ of two graphs G_{i} (with n_{i} vertices and m_{i} edges), $i=1,2$, is the graph obtained by taking one copy of G_{1} and n_{1} copies of G_{2} and then joining the $i^{\text {th }}$ vertex of G_{1} with an edge to every vertex in the $i^{\text {th }}$ copy of G_{2}. It is easy to show that $G_{1} \odot G_{2}$ has $n_{1}\left(1+n_{2}\right)$ vertices
and $m_{1}+n_{1} m_{2}+n_{1} n_{2}$ edges [$\left.7,14-18\right]$. In this paper, we study the cordial and total cordial of the corona product $P_{k} \odot L_{n, m}^{2}$ of paths and second power of lemniscate graphs and show that this is cordial and total cordial for all positive integers k, n, m. The rest of the paper is organized as follows. In Section 1, brief summary of definitions that are useful for the present investigations is presented. Terminologies and notations are introduced in Section 2. The main result is presented in Section 3. Finally, the conclusion of this paper is introduced.

2. Terminology and Notation

Given a path or a cycle with $4 r$ vertices, let $L_{4 r}$ denote the labeling 0011... 0011 (repeated r-times) and let $L_{4 r}^{\prime}$ denote the labeling 1100... 1100 (repeated r times). The labeling 1001 1001... 1001 (repeated r times) and 0110... 0110 (repeated r times) is denoted by $S_{4 r}$ and $S_{4 r}^{\prime}$. Let $M_{2 r}$ denote the labeling $0101 \ldots 01$, zero-one repeated r-times if r is even and $0101 \ldots 010$ if r is odd. Sometimes, we modify labeling by adding symbols at one end or the other (or both). If G and H are two graphs, where G has n vertices, the labeling of the corona $G \odot H$ is often denoted by $\left[A: B_{1}, B_{2}, B_{3}\right.$, \ldots, B_{n}], where A is the labeling of the n vertices of G, and B_{i}, $1 \leq i \leq n$, is the labeling of the vertices of the copy of H that is connected to the $i^{\text {th }}$ vertex of G. For a given labeling of the corona $G \odot H$, we denote v_{i} and $e_{i}(i=0,1)$ to represent the numbers of vertices and edges, respectively, labeled by i. Let us denote x_{i} and a_{i} to be the numbers of vertices and edges labeled by i for the graph G. Also, we let y_{i} and b_{i} be those for H, which are connected to the vertices labeled 0 of G. Likewise, let y_{i}^{\prime} and b_{i}^{\prime} be those for H, which are connected to the vertices labeled 1 of G. It is easily to verify that $v_{0}=x_{0}+x_{0} y_{0}+x_{1} y_{0}^{\prime}, v_{1}=x_{1}+x_{0} y_{1}+x_{1} y_{1}^{\prime}, e_{0}=a_{0}+x_{0} b_{0}$ $+x_{1} b_{0}^{\prime}+x_{0} y_{1}+x_{1} y_{0}^{\prime}$, and $e_{1}=a_{1}+x_{0} b_{1}+x_{1} b_{1}^{\prime}+x_{0} y_{0}$ $+x_{1} y_{1}^{\prime}$. Thus, $v_{0}-v_{1}=\left(x_{0}-x_{1}\right)+x_{0}\left(y_{0}-y_{1}\right)+x_{1}\left(y_{0}^{\prime}-y_{1}^{\prime}\right)$ and $e_{0}-e_{1}=\left(a_{0}-a_{1}\right)+x_{0}\left(b_{0}-b_{1}\right)+x_{1}\left(b_{0}^{\prime}-b_{1}^{\prime}\right)+x_{0}\left(y_{0}-\right.$ $\left.y_{1}\right)-x_{1}\left(y_{0}^{\prime}-y_{1}^{\prime}\right)$. In particular, if we have only one labeling for all copies of H, i.e., $y_{i}=y_{i}^{\prime}$ and $b_{i}=b_{i}^{\prime}$, then $v_{0}=x_{0}+n y_{0}, \quad v_{1}=x_{1}+n y_{1}, \quad e_{0}=a_{0}+n b_{0}+x_{0} y_{1}+x_{1} y_{0}$, and $e_{1}=a_{1}+n b_{1}+x_{0} y_{0}+x_{1} y_{1}$. Thus, $v_{0}-v_{1}=\left(x_{0}-x_{1}\right)+$ $n\left(y_{0}-y_{1}\right)$ and $e_{0}-e_{1}=\left(a_{0}-a_{1}\right)+n\left(b_{0}-b_{1}\right)+\left(x_{1}-x_{0}\right)$ $\left(y_{0}-y_{1}\right)$, where n is the order of G. Figure 1 illustrates the condition cordial and total cordial labeling of $P_{3} \odot L_{3,7}$.

3. Results and Discussion

In this section, we show that the corona product of paths and second power of lemniscate graphs, $P_{k} \odot L_{n, m}^{2}$, is cordial and also total cordial for all $k \geq 1, n, m \geq 3$.

Throughout our proofs, the way of labeling $L_{n, m}^{2}$ starts always from a vertex that next the common vertex and go further opposite to this common vertex. Before considering the general form of the final result, let us first prove it in the following specific case. Our main theorem is as follows.

Theorem 1. The corona product of paths and second power of lemniscate graphs, $P_{k} \odot L_{n, m}^{2}$, is cordial and also total cordial for all $k \geq 1, n, m \geq 3$.

In order to prove this theorem, we will introduce a number of lemmas as follows.

Lemma 1. $P_{k} \odot L_{3, m}^{2}$ is cordial and total cordial for all $k \geq 1$ and $m \geq 3$.

Proof

Case 1. When $m \geq 3$ and $k=2 r, r \geq 1$, one can choose the labeling $\left[M_{2 r} ; 00100,11011, \ldots,(r\right.$-times $\left.)\right]$ for $P_{2 r} \odot L_{3,3}^{2}$. Therefore, $x_{0}=x_{1}=r, a_{0}=0, a_{1}=2 r-1$, $y_{0}=4, y_{1}=1, b_{0}=2, b_{1}=4, y_{0}^{\prime}=1, y_{1}^{\prime}=4, b_{0}^{\prime}=2$, and $b_{1}^{\prime}=4$. Hence, $\quad\left|v_{0}-v_{1}\right|=0, \quad\left|e_{0}-e_{1}\right|=1$ and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=1$. Thus, $P_{2 r} \odot L_{3,3}^{2}, r \geq 1$, is cordial and total cordial.
Case 2. When $m \geq 3$ and $k=2 r+1, r \geq 0$, one can choose the labeling $\left[M_{2 r+1} ; 00100,11011,00100,11011\right.$, $\ldots,(\mathrm{r}-$ times $), 11100]$ for $P_{2 r+1} \odot L_{3,3}^{2}$. Therefore, $x_{0}=$ $r+1, x_{1}=r, a_{0}=0, a_{1}=2 r, y_{0}=4, y_{1}=1, b_{0}=2, b_{1}=$ $4, y_{0}^{\prime}=1, y_{1}^{\prime}=4, b_{0}^{\prime}=2, b_{1}^{\prime}=4, y_{0}^{*}=2, y_{1}^{*}=3, b_{0}^{*}=4$,
and $b_{1}^{*}=2$, where y_{i}^{*} and b_{i}^{*} are the numbers of vertices and edges labeled i in $L_{3,3}^{2}$ that are connected to the last zero in $P_{4 r+3}$. Consequently, it is easy to show that $\left|v_{0}-v_{1}\right|=0,\left|e_{0}-e_{1}\right|=1$, and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=$ 1. Thus, $P_{2 r+1} \odot L_{3,3}^{2}, r \geq 0$, is cordial and total cordial.

Case 3. When $m \equiv 0(\bmod 4)$ and $k \equiv 0(\bmod 4)$, that means, $k=4 r, r \geq 1$ and $m=4 t, t>1$, then the labeling $\left[L_{4 r} ; 0_{3} 1_{3} M_{4 t-4}, \quad 0_{3} 1_{3} M_{4 t-4}, 01 L_{4} M_{4 t-4}^{\prime}, 01 L_{4} M_{4 t-4}^{\prime}, \ldots\right.$, (r - times)] for $P_{4 r} \odot L_{3,4 t}^{2}$ can be applied. Therefore, $x_{0}=x_{1}=2 r, a_{0}=2 r, a_{1}=2 r-1, y_{0}=y_{1}=2 t+1, b_{0}$ $=4 t+1, b_{1}=4 t, y_{0}^{\prime}=y_{1}^{\prime}=2 t+1, b_{0}^{\prime}=4 t, \quad$ and $b_{1}^{\prime}=4 t+1$. So, $\quad\left|v_{0}-v_{1}\right|=0, \quad\left|e_{0}-e_{1}\right|=1, \quad$ and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=1$. For the case $P_{4 r} \odot L_{3,4}^{2}$, the labeling $\left[L_{4 r} ; 0_{3} 1_{3}, 0_{3} 1_{3}, 01 L_{4}, 01 L_{4}, \ldots,(r-\right.$ times $\left.)\right]$ is sufficient and thus $P_{4 r} \odot L_{3,4 t}^{2}$ is cordial and also total cordial.
Case 4. When $m \equiv 0(\bmod 4)$ and $k \equiv 1(\bmod 4)$ that means $=4 r+1, r \geq 0$ and $m=4 t, t>1$, then the labeling , $\left[L_{4 r} 0 ; 0_{3} 1_{3} M_{4 t-4}, 0_{3} \quad 1_{3} M_{4 t-4}, 01 L_{4} M_{4 t-4}^{\prime}\right.$, $01 L_{4} M_{4 t-4}^{\prime}, \ldots,(r$ - times $\left.), 0_{3} L_{3} M_{4 t-4}\right]$ for $P_{4 r+1} \odot L_{3,4 t}^{2}$ is considered. Therefore, $x_{0}=2 r+1, x_{1}=2 r, a_{0}=a$ ${ }_{1}=2 r, y_{0}=y_{1}=2 t+1, b_{0}=4 t+1, b_{1}=4 t, y_{0}^{\prime}=y_{1}^{\prime}=$ $2 t+1, b_{0}^{\prime}=4 t$, and $b_{1}^{\prime}=4 t+1$. Hence, $\left|v_{0}-v_{1}\right|=1$, $\left|e_{0}-e_{1}\right|=1$, and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=0$. For the case $P_{4 r+1} \odot L_{3,4}^{2}$, the labeling $\left[L_{4 r} 0 ; 0_{3} 1_{3}, 0_{3} 1_{3}, 01 L_{4}\right.$, $01 L_{4}, \ldots,(r$-times $\left.), 1_{3} 0_{3}\right]$ is sufficient and thus $P_{4 r+1} \odot L_{3,4 t}^{2}$ is cordial and total cordial.
Case 5. When $m \equiv 0(\bmod 4)$ and $k \equiv 2(\bmod 4)$ that means $k=4 r+2, r \geq 0$, and $m=4 t, t>1$, then the labeling $\quad\left[L_{4 r} 10 ; 0_{3} 1_{3} M_{4 t-4}, 0_{3} 1_{3}, \quad M_{4 t-4}, 01 L_{4} M_{4 t-4}^{\prime}\right.$, $01 L_{4} M_{4 t-4}^{\prime}, \ldots,(r$ - times $\left.), 01 L_{4} M_{4 t-4}^{\prime}, 0_{3} 1_{3} M_{4 t-4}\right]$ for $P_{4 r+2} \odot L_{3,4 t}^{2}$ is applied. Therefore, $x_{0}=x_{1}=2 r+1, a_{0}=$ $2 r+1, a_{1}=2 r, y_{0}=y_{1}=2 t+1, b_{0}=4 t+1, b_{1}=4 t$, $y_{0}^{\prime}=y_{1}^{\prime}=2 t+1, b_{0}^{\prime}=4 t$, and $\quad b_{1}^{\prime}=4 t+1$. So, $\left|v_{0}-v_{1}\right|=0,\left|e_{0}-e_{1}\right|=1$, and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=$ 1. For the case $P_{4 r+2} \odot L_{3,4}^{2}$, the labeling $\left[L_{4 r} 10 ; 0_{3} 1_{3}\right.$, $0_{3} 1_{3}, 01 L_{4}, 01 L_{4}, \ldots,(r$ times $), 01 L_{4}, 0_{3} 1_{3}$] is sufficient and thus $P_{4 r+2} \odot L_{3,4 t}^{2}$ is cordial and total cordial.

Figure 1: Cordial and total cordial labeling of $P_{3} \odot L_{3,7}$.

Case 6. When $m \equiv 0(\bmod 4)$ and $k \equiv 3(\bmod 4)$ that means $k=4 r+3, r \geq 0$ and $m=4 t, t>1$, then one can select the labeling $\left[L_{4 r} 001 ; 0_{3} 1_{3} M_{4 t-4}, 0_{3} 1_{3} \quad M_{4 t-4}\right.$, $01 L_{4} M_{4 t-4}, \quad 01 L_{4} M_{4 t-4}, \ldots,(r-$ times $), 0_{3} 1_{3} M_{4 t-4}$, $\left.0_{3} 1_{3} M_{4 t-4}, 01 L_{4} M_{4 t-4}\right]$ for $P_{4 r+3} \odot L_{3,4 t}^{2}$.
Therefore, $\quad x_{0}=2 r+2, x_{1}=2 r+1, a_{0}=a_{1}=2 r+1$, $y_{0}=y_{1}=2 t+1, b_{0}=4 t+1, b_{1}=4 t, y_{0}^{\prime}=y_{1}^{\prime}=2 t+1$, $b_{0}^{\prime}=4 t$, and $b_{1}^{\prime}=4 t+1$. Hence, one can easily show that $\left|v_{0}-v_{1}\right|=1,\left|e_{0}-e_{1}\right|=1$ and $\mid\left(v_{0}+e_{0}\right)-\left(e_{1}+\right.$ $\left.v_{1}\right) \mid=0$. For the case $P_{4 r+3} \odot L_{3,4}^{2}$, the labeling [$L_{4 r} 001 ; 0_{3} 1_{3}, 0_{3} 1_{3}, 01 L_{4}, 01 L_{4} \ldots,(r$-times $\left.)\right]$ is sufficient and thus $P_{4 r+3} \odot L_{3,4 t}^{2}$ is cordial and total cordial. Case 7. When $m \equiv 1(\bmod 4)$ and $k \equiv 0(\bmod 4)$ that means $k=4 r, r \geq 1$ and $m=4 t+1, t>1$, then one can choose the labeling $\left[L_{4 r} ; 101 L_{4}^{\prime} 0 M_{4 t-6}^{\prime} 0,101\right.$ $L_{4}^{\prime} 0 M_{4 t-6}^{\prime} 0,010 L_{4} 1 M_{4 t-6} 1,010 L_{4} 1 M_{4 t-6} 1, \ldots,(r-$ times)] for $P_{4 r} \odot L_{3,4 t+1}^{2}$. Therefore, $x_{0}=x_{1}=2 r, a_{0}=$ $2 r, a_{1}=2 r-1, \quad y_{0}=2 t+1, y_{1}=2 t+2, b_{0}=4 t+2$, $b_{1}=4 t+1, y_{0}^{\prime}=2 t+2, y_{1}^{\prime}=2 t+1, b_{0}^{\prime}=4 t+2$, and $b_{1}^{\prime}=4 t+1$. Hence, one can easily show that $\left|v_{0}-v_{1}\right|=0,\left|e_{0}-e_{1}\right|=1$ and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=1$. For the special case $P_{4 r} \odot L_{3,5}^{2}$, the labeling [$L_{4 r} ; 01 L_{4}^{\prime} 0,01 L_{4}^{\prime} 0,10 L_{4} 1,10 L_{4} 1, \ldots,(r$ times $\left.)\right]$ is sufficient and thus $P_{4 r} \odot L_{3,4 t+1}^{2}$ is cordial and total cordial. Case 8 . When $m \equiv 1(\bmod 4)$ and $k \equiv 1(\bmod 4)$ that means $k=4 r+1, r \geq 0$ and $m=4 t+1, t>1$, then one can select the labeling $\left[L_{4 r} 0 ; 101 L_{4}^{\prime} 0 M_{4 t-6}^{\prime} 0,101 L_{4}^{\prime} 0\right.$ $M_{4 t-6} 0,010 L_{4} 1 M_{4 t-6} 1,010 L_{4} 1 M_{4 t-6} 1, \ldots,(r-$ times $)$, $101 L_{4}^{\prime} 1 M_{4 t-6}^{\prime}$] for $P_{4 r+1} \odot L_{3,4 t+1}^{2}$. Therefore, $x_{0}=2 r+$ $1, x_{1}=2 r, a_{0}=a_{1}=2 r, y \quad 0=2 t+1, y_{1}=2 t+2$, $b_{0}=4 t+2, b_{1}=4 t+1, y_{0}^{\prime}=2 t+2, y_{1}^{\prime}=2 t+1, b_{0}^{\prime}=$ $4 t+2$, and $b_{1}^{\prime}=4 t+1$. So, $\left|v_{0}-v_{1}\right|=0,\left|e_{0}-e_{1}\right|=0$ and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=0$. For the special case $P_{4 r+1} \odot L_{3,5}^{2}$, the labeling $\quad\left[L_{4 r}^{\prime} 0 ; 01 L_{4}^{\prime} 0,01\right.$ $L_{4}^{\prime} 0,10 L_{4} 1,10 L_{4} 1, \ldots,(r$-times $\left.), 10 L_{4} 1\right]$ is sufficient and thus $P_{4 r+1} \odot L_{3,4 t+1}^{2}$ is cordial and total cordial.
Case 9. When $m \equiv 1(\bmod 4)$ and $k \equiv 2(\bmod 4)$ that means $k=4 r+2, r \geq 0$ and $m=4 t+1, t>1$, then the labeling $\quad\left[L_{4 r} 10 ; 101 L_{4}^{\prime} 0 M_{4 t-6}^{\prime} 0,101 \quad L_{4}^{\prime} 0 M_{4 t-6}^{\prime} \quad 0,010\right.$ $L_{4} 1 M \quad{ }_{4 t-6} 1,010 L_{4} 1 M_{4 t-6} 1, \ldots,(r-\quad$ times $), 010 \quad L_{4} 1$ $\left.M_{4 t-6} 0,101 L_{4}^{\prime} 0 M_{4 t-6}^{\prime} 1\right]$ for $P_{4 r+2} \odot L_{3,4 t+1}^{2}$ can be applied. Therefore, $\quad x_{0}=2 r+1, x_{1}=2 r+1, a_{0}=$ $2 r+1, a_{1}=2 r, y \quad 0=2 t+1, y_{1}=2 t+2, b_{0} \quad=4 t+$ $2, b_{1}=4 t+1, y_{0}^{\prime}=2 t+2, y_{1}^{\prime}=2 t+1, b_{0}^{\prime}=4 t+2$, and $b_{1}^{\prime}=4 t+1$. Hence, $\left|v_{0}-v_{1}\right|=0,\left|e_{0}-e_{1}\right|=1$ and
$\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=1$. For the special case $P_{4 r+2} \odot L_{3,5}^{2}$, the labeling $\quad\left[L_{4 r} 10 ; 01 L_{4}^{\prime} 0,01 L_{4}^{\prime}\right.$ $0,10 L_{4} 1,10 L_{4} 1, \ldots,(r$-times $\left.), 10 L_{4} 1,01 L_{4}^{\prime} 0\right]$ is sufficient and thus $P_{4 r+2} \odot L_{3,4 t+1}^{2}$ is cordial and also total cordial.
Case 10. When $m \equiv 1(\bmod 4)$ and $k \equiv 3(\bmod 4)$ that means $k=4 r+3, r \geq 0$ and $m=4 t+1, t>1$, then take the labeling $\quad\left[L_{4 r} 0_{2} 1 ; 101 L_{4}^{\prime} 0 M_{4 t-6}^{\prime} 0,101 \quad L_{4}^{\prime} 0 M_{4 t-6}^{\prime}\right.$ $0,010 L_{4} \quad 1 M_{4 t-6} 1,010 L_{4} 1 M_{4 t-6} 1, \ldots,(r-\quad$ times $)$, $\left.101 L_{4}^{\prime} 0 M_{4 t-6}^{\prime} 1,101 L_{4}^{\prime} 0 M_{4 t-6}^{\prime} 1,, 010 L_{4} 1 M_{4 t-6} 0\right] \quad$ for $P_{4 r+3} L_{3,4 t+1}^{2}$. Therefore, $x_{0}=2 r+2, x_{1}=2 r+1, a_{0}=$ $a_{1}=2 r+1, y_{0}=2 t+1, y_{1}=2 t+2, b_{0}=4 t+2, b_{1}=$ $4 t+1, y_{0}^{\prime}=2 t+2, \quad y_{1}^{\prime}=2 t+1, b_{0}^{\prime}=4 t+2, \quad$ and $b_{1}^{\prime}=4 t+1$. Hence, $\left|v_{0}-v_{1}\right|=0,\left|e_{0}-e_{1}\right|=0$, and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=0$. For the special case $P_{4 r+3} \odot L_{3,5}^{2}$, the labeling $\left[L_{4 r} 0_{2} 1 ; 01 L_{4}^{\prime} 0,01 L_{4}^{\prime} 0,10\right.$ $L_{4} 1,10 L_{4} 1, \ldots,(r$-times $\left.), 01 L_{4}^{\prime} 0,10 L_{4} 1,10 L_{4} 1\right]$ is sufficient and thus $P_{4 r+3} \odot L_{3,4 t+1}^{2}$ is cordial and total cordial.
Case 11. When $m \equiv 2(\bmod 4)$ and k even that means $m=4 t+2, t>1$, and $k=2 r, r \geq 1$, then by taking the labeling $\quad\left[M_{2 r} ; 0_{2} 1 L_{4}^{\prime} 0 M_{4 t-4}^{\prime}, 1_{2} 0 \quad L_{4} 1 M_{4 t-4}, \ldots\right.$, $(r$ - times $)]$ for $P_{2 r} \odot L_{3,4 t+2}^{2}$, therefore $x_{0}=x_{1}=r, a_{0}=$ $0, a_{1}=2 r-1, y_{0}=2 t+3, y_{1}=2 t+1, b_{0}=4 t+2, b_{1}=$ $4 t+3, \quad y_{0}^{\prime}=2 t+1, y_{1}^{\prime}=2 t+3, b_{0}^{\prime}=4 t+2, \quad$ and $b_{1}^{\prime}=4 t+3$. Hence, $\left|v_{0}-v_{1}\right|=0, \quad\left|e_{0}-e_{1}\right|=1$ and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=1$. For the case $P_{2 r} \odot L_{3,6}^{2}$, the labeling [$M_{2 r} ; 0_{2} L_{4}^{\prime} 01,1_{2} L_{4} 10, \ldots,(r$ times $)$] is sufficient and thus $P_{2 r} \odot L_{3,6}^{2}$ is cordial and total cordial.
Case 12 .When $m \equiv 2(\bmod 4)$ and k odd that means $m=4 t+2, t>1$, and $k=2 r+1, r \geq 1$, then the labeling $\left[M_{2 r+1} ; 0_{2} 1 L_{4}^{\prime} 0 M_{4 t-4}^{\prime}, 1_{2} 0 L_{4} 1 M_{4 t-4}, \ldots,(r-\right.$ times $), 010$ $\left.L_{4} 1 M_{4 t-4}\right]$ for $P_{2 r+1} \odot L_{3,4 t+2}^{2}$ is considered. Therefore, $x_{0}=r+1, x_{1}=r, a_{0}=0, a_{1}=2 r, y_{0}=2 t+3, y_{1}=$ $2 t+1, b_{0}=4 t+2, b_{1}=4 t+3, y_{0}^{\prime}=2 t+1, y_{1}^{\prime}=2 t+3$, $b_{0}^{\prime}=4 t+2 \quad$ and $\quad b_{1}^{\prime}=4 t+3$. So, $\quad\left|v_{0}-v_{1}\right|=1$, $\left|e_{0}-e_{1}\right|=1$, and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=0$. For the case $P_{2 r+1} \odot L_{3,6}^{2}$, the labeling [$M_{2 r+1} ; 0_{2} L_{4}^{\prime} 01,1_{2} L_{4} 10, \ldots,(r-$ times), $01 L_{4} 10$] is sufficient and thus $P_{2 r+1} \odot L_{3,6}^{2}$ is cordial and total cordial.

Case 13. When $m \equiv 3(\bmod 4)$ and $k \equiv 0(\bmod 4)$ that means $m=4 t+3, t \geq 1$, and $k=4 r, r \geq 1$, then the labeling $\left[L_{4 r} ; 0_{2} M_{4 t+3}^{\prime}, 0_{2} M_{4 t+3}^{\prime}, 1_{2} M_{4 t+3}, 1_{2} M_{4 t+3}, \ldots\right.$, (r - times)] for $P_{4 r} \odot L_{3,4 t+3}^{2}$ can be applied. Therefore, $x_{0}=x_{1}=2 r, a_{0}=2 r, \quad a_{1}=2 r-1, y_{0}=2 t+3, y$
${ }_{1}=2 t+2, b_{0}=4 t+3, b_{1}=4 t+4, y_{0}^{\prime}=2 t+2, y_{1}^{\prime}=2 t+$ $3, b_{0}{ }^{\prime}=4 t+3$, and $b_{1}^{\prime}=4 t+4$. Hence, $\left|v_{0}-v_{1}\right|=0$, $\left|e_{0}-e_{1}\right|=1$, and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=1$. Thus, $P_{4 r} \odot L_{3,4 t+3}^{2}$ is cordial and total cordial.
Case 14. When $m \equiv 3(\bmod 4)$ and $k \equiv 1(\bmod 4)$ that means $m=4 t+3, t \geq 1$, and $k=4 r+1, r \geq 0$, then one can select the labeling $\left[L_{4 r}^{\prime} 0 ; 1_{2} M_{4 t+3}, 1_{2} M_{4 t+3}\right.$, $0_{2} M_{4 t+3}^{\prime}, 0_{2} M_{4 t+3}^{\prime}, \ldots,(r-$ times $), 1_{2} M_{4 t+3}$] for $P_{4 r+1} \odot$ $L_{3,4 t+3}^{2}$. Therefore, $x_{0}=2 r+1, x_{1}=2 r, a_{0}=2 r+1, a_{1}=$ $2 r-1, \quad y_{0}=2 t+3, y_{1}=2 t+2, b_{0}=4 t+3, b_{1}=4 t+$ $4, y_{0}^{\prime}=2 t+2, y_{1}^{\prime}=2 t+3, b_{0}^{\prime}=4 t+3, b_{1}^{\prime}=4 t+4, y_{0}^{*}=$ $2 t+2, y_{1}^{*}=2 t+3, b_{0}^{*}=4 t+3$, and $b_{1}^{*}=4 t+4$. So, $\left|v_{0}-v_{1}\right|=0,\left|e_{0}-e_{1}\right|=0$, and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=$ 0 . Thus, $P_{4 r+1} \odot L_{3,4 t+3}^{2}$ is cordial and total cordial.
Case 15 . When $m \equiv 3(\bmod 4)$ and $k \equiv 2(\bmod 4)$ that means $m=4 t+3, t>1$, and $k=4 r+2, r \geq 0$, then one can take the labeling $\left[L_{4 r} 10 ; 0_{3} 1_{3} M_{4 t-4}, 0_{3} 1_{3} M_{4 t-4}, 01 L\right.$ ${ }_{4} M_{4 t-4}^{\prime}, 01 L_{4} M_{4 t-4}^{\prime}, \ldots,(r$ times $), 01 L_{4} M_{4 t-4}, \quad 0_{3} 1_{3}$ $M 4 t-4]$ for $P_{4 r+2} \odot L_{3,4 t}^{2}$. Therefore, $x_{0}=x_{1}=$ $2 r+1, a_{0}=2 r+1, a_{1}=2 r, y_{0}=2 t+3, y \quad 1=2 t+2$, $b_{0}=4 t+3, b_{1}=4 t+4, y_{0}^{\prime}=2 t+2, y_{1}^{\prime}=2 t+3, b_{0}^{\prime}$
$=4 t+3$, and $b_{1}^{\prime}=4 t+4$. Hence, $\left|v_{0}-v_{1}\right|=0$, $\left|e_{0}-e_{1}\right|=1$, and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=1$. Thus, $P_{4 r+2} \odot L_{3,4 t+3}^{2}$ is cordial and total cordial.
Case 16. When $m \equiv 3(\bmod 4)$ and $k \equiv 3(\bmod 4)$ that meansm $=4 t+3, t \geq 1$, and $k=4 r+1, r \geq 0$, then one can choose the labeling $\left[L_{4 r} 100 ; 0_{2} M_{4 t+3}^{\prime}\right.$, $0_{2} M_{4 t+3}^{\prime}, 1_{2} M_{4 t+3}, 1_{2} M_{4 t+3}, \ldots,(r-$ times $), 1_{2} \quad M_{4 t+3}$, $\left.0_{2} M_{4 t+3}, 1_{2} M_{4 t+3}\right]$ for $P_{4 r+3} \odot L_{3,4 t+3}^{2}$.
Therefore, $x_{0}=2 r+2, x_{1}=2 r+1, a_{0}=2 r+2, a_{1}=2 r$, $y_{0}=2 t+3, y_{1}=2 t+2, b_{0}=4 t+3, b_{1}=4 t+4, y_{0}^{\prime}=2 t+2$, $y_{1}^{\prime}=2 t+3, b_{0}^{\prime}=4 t+3, b_{1}^{\prime}=4 t+4, y_{0}^{*}=2 t+2, y_{1}^{*}=2 t+3$, $b_{0}^{*}=4 t+3, \quad$ and $\quad b_{1}^{*}=4 t+4$. Hence, $\quad\left|v_{0}-v_{1}\right|=0$, $\left|e_{0}-e_{1}\right|=0$, and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=0$. Thus, $P_{4 r+3} \odot L_{3,4 t+3}^{2}$ is cordial and total cordial.

Lemma 2. $P_{k} \odot L_{n, m}^{2}$ is cordial and total cordial for all $k \geq 1$ and $m>6$.

Proof. Let $k=4 r+i(i=0,1,2,3$ and $r \geq 1)$ or $k=2 r+j$ ($j=0,1$ and $r \geq 1), n=4 s+i$ and $m=4 t+j(i, j=1,2,3$ and $s, t \geq 2$), then we may use the labeling A_{i} or A_{j} for P_{k} as given in Table 1. For a given value of j with $1 \leq i, j \leq 3$, we may use one of the labeling in the set $\left\{B_{i j}\right.$, $\left.B_{i j}^{\prime}\right\}$ for $L_{n, m}$, where $B_{i j}$ and $B_{i j}$ are the labeling of $L_{n, m}^{2}$ which are connected to the vertices labeled 0 in P_{k}, while $B_{i j}$ and $B_{i j}^{\prime}$ are the labeling of P_{m} which are connected to the vertices labeled 1 in P_{k} as given in Table 2. Using Table 3 and the formulas $v_{0}-v_{1}=\left(x_{0}-x_{1}\right)+$ $x_{0} \cdot\left(y_{0}-y_{1}\right)+x_{1} \cdot\left(y_{0}^{\prime}-y_{1}^{\prime}\right), \quad e_{0}-e_{1}=\left(a_{0}-a_{1}\right)+x_{0} \cdot\left(b_{0}-\right.$ $\left.b_{1}\right)+x_{1} \cdot\left(b_{0}^{\prime}-b_{1}^{\prime}\right)+x_{0} \cdot\left(y_{0}-y_{1}\right)-\quad x_{1} \cdot\left(y_{0}^{\prime}-y_{1}^{\prime}\right)$, and $\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)=\left(x_{0}-x_{1}\right)+2 x_{0} . \quad\left(y_{0}-y_{1}\right)+$ $\left(a_{0}-a_{1}\right)+x_{0} .\left(b_{0}-b_{1}\right)+x_{1} .\left(b_{0}^{\prime}-b_{1}^{\prime}\right)$, we can compute the values shown in the last two columns of Table 3. We see that $P_{k} \odot L_{n . m}^{2}$ is isomorphic to $P_{k} \odot L_{m, n}^{2}$. Since all of these values are 1 or 0 , the lemma follows.

Lemma 3. $P_{k} \odot L_{4, m}^{2}$ is cordial and total cordial for all $k \geq 1$ and $m>3$.

Proof

Case 1 . When $m \equiv 0(\bmod 4)$ and $k=r, r \geq 1$ that means $m=4 t, t>1$, and $k=r, r \geq 1$. Then, take the labeling $\left[1_{r} ; 100 L_{4} M_{4 t-4}^{\prime}, \ldots,(r\right.$-times $\left.)\right]$ for $P_{r} \odot L_{4,4 t}^{2}$. Therefore, $x_{0}=0, x_{1}=r, a_{0}=r-1, a_{1}=0, y_{0}^{\prime}=2 t+2, y_{1}^{\prime}=$ $2 t+1, b_{0}^{\prime}=4 t+2$, and $b_{1}^{\prime}=4 t+2$. Hence, $\left|v_{0}-v_{1}\right|=0$, $\left|e_{0}-e_{1}\right|=1$, and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=1$. For the case $P_{r} \odot L_{4,4}^{2}$, the labeling $\left[1_{r} ; 0_{3} 1_{3} 0, \ldots,(r-\right.$ times $\left.)\right]$ is sufficient and thus $P_{r} \odot L_{4,4 t}^{2}, r \geq 1$, is cordial and total cordial.
Case 2. When $m \equiv 1(\bmod 4)$ and $k \equiv 0(\bmod 4)$ that means $m=4 t+1, t>1$, and $k=4 r, r \geq 1$, then the labeling $\quad\left[S_{4 r} ; 10_{3} L_{4} 1 M_{4 t-6} 1,10_{3} L_{4} 1 M_{4 t-6} 1, \quad 10_{3} L_{4}\right.$ $1 M_{4 t-6} 1,10_{3} L_{4} 1 M_{4 t-6} 1, \ldots,(r-$ times $\left.)\right]$ for $P_{4 r} \odot L_{4,4 t+1}^{2}$ is applied. Therefore, $x_{0}=x_{1}=2 r, a_{0}=2 r-1, a_{1}=$ $2 r, y_{0}=2 t+2, \quad y_{1}=2 t+2, b_{0}=b_{1}=4 t+3, y_{0}^{\prime}=$ $2 t+2, y_{1}^{\prime}=2 t+2, \quad b_{0}^{\prime}=4 t+3, \quad$ and $\quad b_{1}^{\prime}=4 t+3$. So, $\left|v_{0}-v_{1}\right|=0, \quad\left|e_{0}-e_{1}\right|=1$, and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|$ $=1$. For the case $P_{4 r} \odot L_{4,5}^{2}$, the labeling [$S_{4 r} ; 10_{2} L_{4} 1,10_{2} L_{4} 1,10_{2} L_{4} 1,10_{2} L_{4} 1, \ldots,(r$ times $\left.)\right]$ is sufficient and thus $P_{4 r} \odot L_{4,4 t+1}^{2}$ is cordial and total cordial.
Case 3. When $m \equiv 1(\bmod 4)$ and $k \equiv 1(\bmod 4)$ that means $m=4 t+1, t>1$, and $k=4 r+1, r \geq 0$, then one can select the labeling $\left[S_{4 r} 0 ; 10_{3} L_{4} 1 M_{4 t-6} 1\right.$, $10_{3} L_{4} 1 M_{4 t-6} 1,10 \quad{ }_{3} L_{4} 1 M_{4 t-6} 1,10_{3} L_{4} 1 M_{4 t-6} 1, \quad \ldots$, (r - times), $10_{3} L_{4} 1 M_{4 t-6} 1$] for $P_{4 r+1} \odot L_{4,4 t+1}^{2}$. Therefore, $\quad x_{0}=2 r+1, x_{1}=2 r, a_{0}=a_{1}=2 r, \quad y_{0}=2 t+2$, $y_{1}=2 t+2, b_{0} \quad=b_{1}=4 t+3, y_{0}^{\prime}=2 t+2, y_{1}^{\prime}=2 t+$ $2, b_{0}^{\prime}=4 t+3$, and $\quad b_{1}^{\prime}=4 t+3$. So, $\quad\left|v_{0}-v_{1}\right|=1$. $\left|e_{0}-e_{1}\right|=0$, and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=1$. For the case $P_{4 r+1} \odot L_{4,5}^{2}$, the labeling $\left[S_{4 r} 0 ; 10_{2} L_{4} 1,10_{2} L_{4} 1\right.$, $10_{2} L_{4} 1,10_{2} L_{4} 1, \ldots,(r$-times $\left.), 10_{2} L_{4} 1\right]$ is sufficient and thus $P_{4 r+1} \odot L_{4,4 t+1}^{2}$ is cordial and total cordial.
Case 4. When $m \equiv 1(\bmod 4)$ and $k \equiv 2(\bmod 4)$ that means $m=4 t+1, t>1$, and $k=4 r+2, r \geq 0$, then the labeling $\left[S_{4 r} 01 ; 10_{3} L_{4} 1 M_{4 t-6} 1,10_{3} L_{4} 1 M_{4 t-6} 1\right.$, $10_{3} L_{4} 1 M_{4 t-6} 1,10_{3} L_{4} 1 M_{4 t-6} 1, \ldots,(r$-times $), \quad 10_{3} L_{4}$ $\left.1 M_{4 t-6} 1,10_{3} L_{4} 1 M_{4 t-6} 1\right]$ for $P_{4 r+2} \odot L_{4,4 t+1}^{2}$ is applied. Therefore, $\quad x_{0}=x_{1}=2 r+1, a_{0}=2 r, a_{1}=2 r+1$, $y_{0}=2 t+2, y_{1}=2 t+2, b_{0}=b_{1}=4 t+3, y_{0}^{\prime}=2 t+2, y_{1}^{\prime}$ $=2 t+2, b_{0}^{\prime}=4 t+3$, and $b_{1}^{\prime}=4 t+3$. Hence, $\left|v_{0}-v_{1}\right|=0,\left|e_{0}-e_{1}\right|=1$, and $\left|\left(v_{0}+e_{0}\right)-\left(\mathrm{e}_{1}+\mathrm{v}_{1}\right)\right|=1$. For the case $P_{4 r+2} \odot L_{4,5}^{2}$, the labeling [$S_{4 r} 01$; $10_{2} L_{4} 1,10_{2} L_{4} 1,10_{2} L_{4} 1,10_{2} L_{4} 1, \ldots,(r$ times $), 10_{2}$ $L_{4} 1,10_{2} L_{4} 1$] is sufficient and thus $P_{4 r+2} \odot L_{4,4 t+1}^{2}$ is cordial and total cordial.
Case 5. When $m \equiv 1(\bmod 4)$ and $k \equiv 3(\bmod 4)$ that means and $m=4 t+1, t>1$, and $k=4 r+3, r \geq 0$, then one can take the labeling $\left[S_{4 r} 001 ; 10_{3} L_{4} 1\right.$ $M_{4 t-6} 1,10_{3} L_{4} 1 M_{4 t-6} 1,10_{3} \quad L_{4} 1 M_{4 t-6} 1,10_{3} L_{4} 1$ $M_{4 t-6} 1, \ldots,(r$-times $), 10_{3} L_{4} 1 M_{4 t-6} 1,10_{3} L_{4} 1 M_{4 t-6} 1$, $\left.10_{3} L_{4} 1 M_{4 t-6} 1\right]$ for $P_{4 r+3} \odot L_{4,4 t+1}^{2}$. Therefore, $x_{0}=2 r+$ $2, x_{1}=2 r+1, a_{0}=a_{1}=2 r+1, y_{0}=2 t+2, y_{1}=$

Table 1: Labelling of P_{k}.

$K=4 r+i^{\prime}$,	Labelling of P_{k}	x_{0}	x_{1}	a_{0}	a_{1}
$i^{\prime}=0,1,2,3$		$2 r$	$2 r$	$2 r$	$2 r-1$
$i^{\prime}=0$	$A_{0}=L_{4 r}$	$2 r+1$	$2 r$	$2 r$	$2 r$
$i^{\prime}=1$	$A_{1}=L_{4 r} 0$	$2 r+1$	$2 r+1$	$2 r+1$	$2 r$
$i^{\prime}=2$	$A_{2}=L_{4 r} 10$	$2 r+2$		$2 r+1$	$2 r+1$
$i^{\prime}=3$	$A_{3}=L_{4 r} 001$				
$k=2 r+j^{\prime}$,		r	r	0	$2 r-1$
$i^{\prime}=0,1$	$A_{4}=M_{2 r}$	$r+1$	r	0	$2 r$
$i^{\prime}=0$	$A_{5}=M_{2 r+1}$			2	
$i^{\prime}=1$					

Table 2: Labelling of $L_{n, m}^{2}$.

$\begin{aligned} & n=4 s+i, \\ & m=4 t+j \\ & i, j=0,1,2,3 \\ & \hline \end{aligned}$	Labelling of $L_{n, m}^{2}$	y_{0}	y_{1}	y_{0}	y_{1}
$i=0$	$B_{00}=L_{4}^{\prime}$	$2 s+2 t$	$2 s+2 t$	$4 s+4 t$	$4 s+4 t$
$j=0$	$M_{4 s-5} L_{4}^{\prime} L_{4 t-4}^{\prime}$	+1	-1	+2	+2
$i=0$	$B_{00}=L_{4}$	$2 s+2 t$	$2 s+2 t$	$4 s+4 t$	$4 s+4 t$
$j=0$	$M_{4 s-5}^{\prime} L_{4} M_{4 t-4}^{\prime}$	-1	+1	+2	+2
$i=0$	$B_{01}=L_{4} M_{4 s-5}$	$2 s+2 t$	$2 s+2 t$	$4 s+4 t$	$4 s+4 t$
$j=1$	$M_{4 t-6}^{\prime} 1 L_{4}^{\prime} 0$				
$i=0$	$B_{02}=L_{4}^{\prime} M_{4 s-5}$	$2 s+2 t$	$2 s+2 t$	$4 s+4 t$	$4 s+4 t$
$j=2$	$1 L_{4}^{\prime} 0 M_{4 t-4}^{\prime}$,	+1	$2 s+2 t$	$4 s+4 t$	$4 s+4 t$
$i=0$ $j=2$	$\overrightarrow{B r}_{02}=L_{4} M_{4 s-5}$	$2 s+2 t$	$2 s+2 t$	$4 s+4 t$	$4 s+4 t$
	$0 L_{4} 1 M_{4 t-4}$				
$i=0$	$B_{03}=L_{4}$	$2 s+2 t$	$2 s+2 t$	$4 s+2 t$	$4 s+4 t$
$j=3$	$M_{4 s-5} M_{4 t+3}$	+1	+1	+2	+2
$i=1$	$B_{11}=1 L_{4}^{\prime} 0 M_{4 s-6}^{\prime}$	$2 s+2 t$	$2 s+2 t$	$4 s+4 t$	$4 s+4 t$
$j=1$	$0_{2} M_{4 t-6} 0 L_{4} 1$	+1			
$i=1$	$B_{11}^{\prime}=0 L_{4} 1 M_{4 s-6}$	$2 s+2 t$	$2 s+2 t$	$4 s+4 t$	$4 s+4 t$
$j=1$	$1_{2} M_{4 t-6}^{\prime} 1 L_{4}^{\prime} 0$	$2 s+2 t$	+1	$4 s+4 t$	$4 s+4 t$
$i=1$	$B_{12}=0 L_{4} 1 M_{4 s-6}$	$2 s+2 t$	$2 s+2 t$	$4 s+4 t$	$4 s+4 t$
$j=2$	$M_{4 t-6} 1 L_{4}^{\prime} 0$	+1	+1	+1	+1
$i=1$	$B_{13}=1 L_{4}^{\prime} 0$	$2 s+2 t$	$2 s+2 t$	$4 s+4 t$	$4 s+4 t$
$j=3$	$M_{4 s-6} M_{4 t+3}$	+2	+1	+2	+2
$i=1$	$\bar{B}_{13}=0 L_{4} 1$	$2 s+2 t$	$2 s+2 t$	$4 s+4 t$	$4 s+4 t$
$j=3$	$M_{4 s-6} M_{4 t+3}$	+1	+2	+2	+2
$i=2$	$B_{22}=M_{4 s-4} 0 L_{4} 1$	$2 s+2 t$	$2 s+2 t$	$4 s+4 t$	$4 s+4 t$
$j=2$	$L_{4}^{\prime} 0 M_{4 t-4}^{\prime}$	+2	+1	+2	+2
$i=2$	$B_{22}^{\prime}=M_{4 s-4}^{\prime} 1 L_{4}^{\prime} 0$	$2 s+2 t$	$2 s+2 t$	$4 s+4 t$	$4 s+4 t$
$j=2$	$L_{4} 1 M_{4 t-4}$	+1	+2	+2	+2
$i=2$	$B_{23}=0 L_{4} 1$	$2 s+2 t$	$2 s+2 t$	$4 s+4 t$	$4 s+4 t$
$j=3$	$M_{4 s-5} M_{4 t+3}$	+2	+2	+3	+3
$i=3$	$B_{33}=M_{4 s+2}$	$2 s+2 t$	$2 s+2 t$	$4 s+4 t$	$4 s+4 t$
$j=3$	$M_{4 t+3}$	+2	+3	+3	
$i=3$	$B_{33}^{\prime}=M_{4 s+2}$	$2 s+2 t$	$2 s+2 t$	$4 s+4 t$	$4 s+4 t$
$j=3$	M_{4+3}	+3	+2	+3	+3

$2 t+2, \quad b_{0}=b_{1}=4 t+3, y_{0}^{\prime}=2 t+2, y_{1}^{\prime}=2 t+2, \quad b_{0}^{\prime}=$ $4 t+3$, and $b_{1}^{\prime}=4 t+3$. So, $\left|v_{0}-v_{1}\right|=1,\left|e_{0}-e_{1}\right|=0$, and $\left|\left(v_{0}+e_{0}\right)-\left(\mathrm{e}_{1}+\mathrm{v}_{1}\right)\right|=1$. For the case $P_{4 r+3} \odot L_{4,5}^{2}$, the labeling $\left[S_{4 r} 01 ; 10_{2} L_{4} 1,10_{2} L_{4} 1, \quad 10_{2} L_{4} 1, \quad 10\right.$
${ }_{2} L_{4} 1, \ldots,(r$-times $\left.), 10_{2} L_{4} 1,10_{2} L_{4} 1,10_{2} L_{4} 1\right]$ is sufficient and thus $P_{4 r+3} \odot L_{4,4 t+1}^{2}$ is cordial and total cordial. Case 6 . When $m \equiv 2(\bmod 4)$ and k is even that means $m=4 t+2, t>1$, and $k=2 r, r \geq 1$. Then, one can

Table 3: Labelling of $P_{k} \odot L_{n, m}^{2}$.

$\overline{i^{\prime} / j^{\prime}}$	${ }^{i j}$	P_{k}	$L_{n, m}^{2}$	$\left\|v_{0}-v_{1}\right\|$	$\left\|e_{0}-e_{1}\right\|$	$\left\|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right\|$
0	00	A_{4}	$B_{00}, B_{00}{ }^{\prime}$	0	1	1
1	00	A_{5}	$B_{00}, B_{00}{ }^{\prime}, . ., B_{00}, B_{00}{ }^{\prime}, B_{00}{ }^{\prime}$	0	1	1
0	01	A_{0}	$B_{01}, B_{01}, B_{01}, B_{01}$	0	1	1
1	01	A_{1}	$B_{01}, B_{01}, B_{01}, B_{01}, \ldots, B_{01}$	1	0	1
2	01	A_{2}	$B_{01}, B_{01}, B_{01}, B_{01}, \ldots, B_{01}, B_{01}$	0	1	1
3	01	A_{3}	$B_{01}, B_{01}, B_{01} B_{01}, \ldots, B_{01}, B_{01}, B_{01}$	1	0	1
0	02	A_{4}	$B_{02}, B_{02}{ }^{\prime}$	0	1	1
1	02	A_{5}	$B_{02}, B_{02}{ }^{\prime}, . ., B_{02}, B_{02}{ }^{\prime}, B_{02}{ }^{\prime}$	0	1	1
0	01	A_{0}	$B_{03}, B_{03}, B_{03}, B_{03}$	0	1	1
1	01	A_{1}	$B_{03}, B_{03}, B_{03}, B_{03}, \ldots, B_{03}$	1	0	1
2	01	A_{2}	$B_{03}, B_{03}, B_{03}, B_{03}, \ldots, B_{03}, B_{03}$	0	1	1
3	01	A_{3}	$B_{03}, B_{03}, B_{03}, B_{03}, \ldots, B_{03}, B_{03}, B_{03}$	1	0	1
0	11	A_{4}	$B_{11}, B_{11}{ }^{\prime}$	0	1	1
1	11	A_{5}	$B_{11}, B_{11}{ }^{\prime}, . ., B_{11}, B_{11}{ }^{\prime}, B_{11}{ }^{\prime}$	0	1	1
0	12	A_{0}	$B_{12}, B_{12}, B_{12}, B_{12}$	0	1	1
1	12	A_{1}	$B_{12}, B_{12}, B_{12}, B_{12}, . ., B_{12}$	1	0	1
2	12	A_{2}	$B_{12}, B_{12}, B_{12}, B_{12}, \ldots, B_{12}, B_{12}$	0	1	1
3	12	A_{3}	$B_{12}, B_{12}, B_{12}, B_{12}, \ldots, B_{12}, B_{12}, B_{12}$	1	0	1
0	13	A_{4}	B_{13}, B_{13}^{\prime}	0	1	1
1	13	A_{5}	$B_{13}, B_{13}^{\prime}, \ldots, B_{13}, B_{13}^{\prime}, B_{13}^{\prime}$	0	1	1
0	22	A_{4}	, $B_{22}, B_{22}^{\prime}{ }^{\prime}$, ${ }^{\prime}$	0	1	1
1	22	A_{5}	$B_{22}, B_{22}^{\prime}, \ldots, B_{22}, B_{22}^{\prime}, B_{22}^{\prime}$	0	1	1
0	23	A_{0}	$B_{23}, B_{23}, B_{23}, B_{23}$	0	1	1
1	23	A_{1}	$B_{23}, B_{23}, B_{23}, B_{23}, . ., B_{23}$	1	0	1
2	23	A_{2}	$B_{23}, B_{23}, B_{23}, B_{23}, \ldots, B_{23}, B_{23}$	0	1	1
3	23	A_{3}	$B_{23}, B_{23}, B_{23}, B_{23}, \ldots, B_{23}, B_{23}, B_{23}$	1	0	1
0	33	A_{4}	${ }^{B_{33}, B_{33}^{\prime}}{ }^{\prime}$,	0	1	1
1	33	A_{5}	$B_{33}, B_{33}{ }^{\prime}, . ., B_{33}, B_{33}^{\prime}, B_{33}^{\prime}$	0	1	1

choose the labeling $\left[M_{2 r} ; 10_{3} L_{4} 1 M_{4 t-4}\right.$, $01_{3} L_{4}^{\prime} 0 M_{4 t-4}^{\prime}, \ldots,(r-$ times $\left.)\right]$ for $P_{2 r} \odot L_{4,4 t+2}^{2}$. Therefore, $x_{0}=x_{1}=r, a_{0}=0, a_{1}=2 r-1, y_{0}=2 t+3, y_{1}=$ $2 t+2, b_{0}=b_{1}=4 t+3, y_{0}^{\prime}=2 t+2, y_{1}^{\prime}=2 t+3$, and $b_{0}^{\prime}=b_{1}^{\prime}=4 t+4$. Hence, one can easily show that $\left|v_{0}-v_{1}\right|=0 .\left|e_{0}-e_{1}\right|=1$ and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=1$. For the special case $P_{2 r} \odot L_{4,6}^{2}$, the labeling [$M_{2 r} ; 10_{2} L_{4} 01,01_{2} L_{4}^{\prime} 10, \ldots,(r$-times $\left.)\right]$ is sufficient, and thus $P_{2 r} \odot L_{4,4 t+2}^{2}, r \geq 1$, is cordial and total cordial.
Case 7. When $m \equiv 2(\bmod 4)$ and k is odd that means $m=4 t+2, t>1$, and $k=2 r+1$ where $r \geq 0$, then one can choose the labeling $\left[M_{2 r+1} ; 10_{3} L_{4} 1 M_{4 t-4}\right.$, $01_{3} L_{4}^{\prime} 0 M_{4 t-4}^{\prime}, \ldots,(r$ times $\left.), 01_{3} L_{4}^{\prime} 0 M_{4 t-4}^{\prime}\right] \quad$ for $P_{2 r+1} \odot L_{4,4 t+2}^{2}$. Therefore, $x_{0}=r+1, x_{1}=r, a_{0}=0, a_{1}=$ $2 r, y_{0}=2 t+3, y_{1}=2 t+2, b_{0}=b_{1}=4 t+3, y_{0}^{\prime}=2 t+$ $2, y_{1}^{\prime}=2 t+3, b_{0}^{\prime}=b_{1}^{\prime}=4 t+4, y_{0}^{*}=2 t+2, y_{1}^{*}=2 t+3$, and $b_{0}^{*}=b_{1}^{*}=4 t+3$, where y_{i}^{*} and b_{i}^{*} are the numbers of vertices and edges labeled i in $L_{4,4 t+2}^{2}$ that are connected to the last zero in $P_{4 r+3}$. Consequently, it is easy to show that $\left|v_{0}-v_{1}\right|=0, \quad\left|e_{0}-e_{1}\right|=1$ and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=1$. For the special case $P_{2 r+1} \odot L_{4,6}^{2}$, the labeling $\left[M_{2 r} ; 10_{2} L_{4} 01,01_{2} L_{4}^{\prime} 10, \ldots\right.$, (r-times), $\left.01_{2} L_{4}^{\prime} 10\right]$ is sufficient and thus $P_{2 r+1} \odot L_{4,4 t+2}^{2}, r \geq 0$, is cordial and total cordial.
Case 8 . When $m \equiv 3(\bmod 4)$ and $k \equiv 0(\bmod 4)$ that means $m=4 t+3, t>1$, and $k=4 r, r \geq 1$, then one can choose the labeling $\left[L_{4 r} ; 10_{3} M_{4 t} 11\right.$, $10_{3} M_{4 t} 11,10_{3} M_{4 t} 11,10_{3} M_{4 t} 11, \ldots, \quad(r$-times $\left.)\right]$ for
$P_{4 r} \odot L_{4,4 t+3}^{2}$. Therefore, $x_{0}=x_{1}=2 r, a_{0}=2 r-1, a_{1}=$ $2 r, y_{0}=y_{1}=2 t+3, b_{0}=b_{1}=4 t+5, y_{0}^{\prime}=y_{1}^{\prime}=2 t+3$, and $b_{0}^{\prime}=b_{1}^{\prime}=4 t+5$. Hence, one can easily show that $\left|v_{0}-v_{1}\right|=0,\left|e_{0}-e_{1}\right|=1$, and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=$ 1. Thus, $P_{4 r} \odot L_{4,4 t+3}^{2}$ is cordial and total cordial.

Case 9. When $m \equiv 3(\bmod 4)$ and $k \equiv 1(\bmod 4)$ that means $m=4 t+3, t>1$, and $k=4 r+1, r \geq 0$. Then, the labeling $\quad\left[L_{4 r} 0 ; 10_{3} M_{4 t} 11,10_{3} M_{4 t} 11,10_{3} M_{4 t} 11\right.$, $10_{3} M_{4 t} 11, \ldots,(r$-times $\left.), 10_{3} M_{4 t} 11\right]$ for $P_{4 r+1} \odot L_{4,4 t+3}^{2}$ is considered. Therefore, $x_{0}=2 r+1, x_{1}=2 r, a_{0}=a_{1}=$ $2 r, y_{0}=y_{1}=2 t+3, b_{0}=b_{1}=4 t+5, y_{0}^{\prime}=y_{1}^{\prime}=2 t+3$, and $b_{0}^{\prime}=b_{1}^{\prime}=4 t+5$. So, $\left|v_{0}-v_{1}\right|=1,\left|e_{0}-e_{1}\right|=0$, and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=1$. Thus, $P_{4 r+1} \odot L_{4,4 t+3}^{2}$ is cordial and total cordial.
Case 10 . When $m \equiv 3(\bmod 4)$ and $k \equiv 2(\bmod 4)$ that means $m=4 t+3, t>1$, and $k=4 r+2, r \geq 0$, then one can select the labeling $\left[L_{4 r} 01 ; 10_{3} M_{4 t} 11\right.$, $10_{3} M_{4 t} 11,10_{3} M_{4 t} 11,10_{3} M_{4 t} 11, \ldots, \quad(r$-times $)$, $\left.10_{3} M_{4 t} 11,10_{3} M_{4 t} 11\right]$ for $P_{4 r+2} \odot L_{4,4 t+3}^{2}$. Therefore, $x_{0}=$ $x_{1}=2 r+1, a_{0}=2 r, a_{1}=2 r+1, y_{0}=y_{1}=2 t+3, b_{0}=$ $b_{1}=4 t+5, \quad y_{0}^{\prime}=y_{1}^{\prime}=2 t+3, \quad$ and $\quad b_{0}^{\prime}=b_{1}^{\prime}=4 t+5$. Hence, $\left|v_{0}-v_{1}\right|=0, \quad\left|e_{0}-e_{1}\right|=1$, and $\mid\left(v_{0}+e_{0}\right)-$ $\left(e_{1}+v_{1}\right) \mid=1$. Thus, $P_{4 r+2} \odot L_{4,4 t+3}^{2}$ is cordial and total cordial.
Case 11 . When $m \equiv 3(\bmod 4)$ and $k \equiv 3(\bmod 4)$ that means $m=4 t+3, t>1$, and $k=4 r+3, r \geq 0$, then one can take the labeling $\left[L_{4 r} 001 ; 10_{3} M_{4 t} 11\right.$, $10_{3} M_{4 t} 11,10_{3} M_{4 t} 11,10_{3} M_{4 t} 11, \ldots, \quad(r$ times $)$,
$\left.10_{3} M_{4 t} 11,10_{3} M_{4 t} 11,10_{3} M_{4 t} 11\right] \quad$ for $\quad P_{4 r+3} \odot L_{4,4 t+1}^{2}$. Therefore, $\quad x_{0}=2 r+2, x_{1}=2 r+1, a_{0}=a_{1}=2 r+1$, $y_{0}=y_{1}=2 t+3, \quad b_{0}=b_{1}=4 t+5, y_{0}^{\prime}=y_{1}^{\prime}=2 t+3$, and $b_{0}^{\prime}=b_{1}^{\prime}=4 t+5$. Hence, $\left|v_{0}-v_{1}\right|=1,\left|e_{0}-e_{1}\right|=0$, and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=1$. Thus, $P_{4 r+3} \odot L_{4,4 t+3}^{2}$ is cordial and also total cordial; by this, the lemma was proved.

Lemma 4. $P_{k} \odot L_{5, m}^{2}$ is cordial and also total cordial for all $k \geq 1$ and $m \geq 3$.

Proof

Case 1. When $m \equiv 0(\bmod 4)$ that means $m=4 t, t \geq 1$, since $P_{k} \odot L_{5,4}^{2}$ isomorphic to $P_{k} \odot L_{4,5}^{2}$, by Lemma 3, $P_{k} \odot L_{4,5}^{2}$ is cordial and total cordial and then $P_{k} \odot L_{5,4}^{2}$ is cordial and total cordial. Also, since $P_{k} \odot L_{5,4 t}^{2}, t \geq 1$ isomorphic to $P_{k} \odot L_{4 t, 5}^{2}$, by Lemma $3, P_{k} \odot L_{4 t, 5}^{2}$ is cordial and total cordial and then $P_{k} \odot L_{5,4 t}^{2}$ is cordial and total cordial.
Case 2 . When $m \equiv 1(\bmod 4)$ and k is even that means $m=4 t+1, t \geq 1$, and $k=2 r, r \geq 1$, then one can take the labeling $\quad\left[M_{2 r} ; L_{4}^{\prime} 1 L_{4}^{\prime} 0 M_{4 t-6}^{\prime} 0, L_{4} 0 L_{4} 1 M_{4 t-6} 1, \ldots\right.$, (r-times $)$ for $\quad P_{2 r} \odot L_{5,4 t+1}^{2}$. Therefore, $x_{0}=r, x_{1}=r, a_{0}=0, a_{1}=2 r-1, y_{0}=2 t+3, y_{1}=2 t$ $+2, b_{0}=b_{1}=4 t+4, y_{0}^{\prime}=2 t+2, y_{1}^{\prime}=2 t+3, \quad$ and $b_{0}^{\prime}=b_{1}^{\prime}=4 t+4$. So, $\left|v_{0}-v_{1}\right|=0,\left|e_{0}-e_{1}\right|=1$, and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=1$. For the special case $P_{2 r} \odot L_{5,5}^{2}$, the labeling $\left[M_{2 r} ; L_{4} L_{4}^{\prime} 0, L_{4}^{\prime} L_{4} 1, \ldots\right.$, $(r$-times $)]$ is sufficient and thus $P_{2 r} \odot L_{5,4 t+1}^{2}, r \geq 1$, is cordial and total cordial.
Case 3.When $m \equiv 1(\bmod 4)$ and k is odd that means $m=4 t+1, t \geq 1$, and $k=2 r+1, r \geq 1$, then the labeling [$M_{2 r+1} ; L_{4}^{\prime} 1 L_{4}^{\prime} 0 M_{4 t-6}^{\prime} 0, L_{4} 0 L_{4} 1 M_{4 t-6} 1, \ldots,(r-$ times $)$, $\left.L_{4} 0 L_{4} 1 M_{4 t-6} 1\right]$ for $P_{2 r+1} \odot L_{5,4 t+1}^{2}$ can be applied. Therefore, $x_{0}=r+1, x_{1}=r, a_{0}=0, a_{1}=2 r, y_{0}=2 t+$ $3, y_{1}=2 t+2, b_{0}=b_{1}=4 t+4, y_{0}^{\prime}=2 t+2, y_{1}^{\prime}=$ $2 t+3 b_{0}^{\prime}=b_{1}^{\prime}=4 t+4, y_{0}^{*}=2 t+2, y_{1}^{*}=2 t+3$, and $b_{0}^{*}=b_{1}^{*}=4 t+4$, where y_{i}^{*} and b_{i}^{*} are the numbers of vertices and edges labeled i in $L_{5,4 t+1}$ that are connected to the last zero in $P_{2 r+1}$. Consequently, it is easy to show that $\quad\left|v_{0}-v_{1}\right|=0, \quad\left|e_{0}-e_{1}\right|=1, \quad$ and $\quad \mid\left(v_{0}+e_{0}\right)-$ $\left(e_{1}+v_{1}\right) \mid=1$. For the special case $P_{2 r+1} \odot L_{5,5}^{2}$, the labeling $\left[M_{2 r+1} ; L_{4} L_{4}^{\prime} 0, L_{4}^{\prime} L_{4} 1, \ldots,(r-\right.$ times $\left.), L_{4}^{\prime} L_{4} 1\right]$ is sufficient and thus $P_{2 r+1} \odot L_{5,4 t+1}^{2}, r \geq 1$, is cordial and total cordial.
Case 4. When $m \equiv 2(\bmod 4)$ and $k \equiv 0(\bmod 4)$ that means $m=4 t+2, t \geq 1$, and $k=4 r, r \geq 1$, then one can choose the labeling $\left[L_{4 r} ; L_{4} 0 L_{4} 1 M_{4 t-4}^{\prime}, L_{4} 0 L_{4} 1 M_{4 t-4}^{\prime}\right.$, $L_{4} 0 L_{4} 1 M_{4 t-4}^{\prime}, L_{4} 0 L_{4} 1 M_{4 t-4}^{\prime}, \ldots,(r$-time $\left.)\right] \quad$ for $P_{4 r} \odot L_{5,4 t+2}^{2}$. Therefore, $x_{0}=x_{1}=2 r, a_{0}=2 r, a_{1}=2 r-$ $1, y_{0}=y_{1}=2 t+3, b_{0}=b_{1}=4 t+5, y_{0}^{\prime}=y_{1}^{\prime}=2 t+3$, and $b_{0}^{\prime}=b_{1}^{\prime}=4 t+5$. Consequently, it is easy to show that $\left|v_{0}-v_{1}\right|=0,\left|e_{0}-e_{1}\right|=1$, and $\mid\left(v_{0}+e_{0}\right)-\left(e_{1}+\right.$ $\left.v_{1}\right) \mid=1$. For the special case $P_{4 r} \odot L_{5,6}^{2}$, the labeling [$L_{4} r ; L_{4}^{\prime} L_{4} 10, L_{4}^{\prime} L_{4} 10, L_{4}^{\prime} L_{4} 10, L_{4}^{\prime} L_{4} 10, \ldots,(r-$ time $\left.)\right]$ is sufficient and thus $P_{4 r} \odot L_{5,4 t+2}^{2}$ is cordial and total cordial.

Case 5. When $m \equiv 2(\bmod 4)$ and $k \equiv 1(\bmod 4)$ that means $m=4 t+2, t \geq 1$, and $k=4 r+1, r \geq 0$, then one can take the labeling $\left[L_{4 r} 0 ; L_{4} 0 L_{4} 1 M_{4 t-4}^{\prime}, L_{4} 0 L_{4} 1 M_{4 t-4}^{\prime}\right.$, $L_{4} 0 L_{4} 1 M_{4 t-4}^{\prime}, L_{4} 0 L_{4} 1 M_{4 t-4}, \ldots,(r$ time $), \quad L_{4} 0 L_{4} 1$ $\left.M_{4 t-4}\right]$ for $P_{4 r+1} \odot L_{5,4 t+2}^{2}$. Therefore, $x_{0}=2 r+1, x_{1}=$ $2 r, a_{0}=a_{1}=2 r, y_{0}=y_{1}=2 t+3, b_{0}=b \quad 1=4 t+5$, $y_{0}^{\prime}=y_{1}^{\prime}=2 t+3$, and $b_{0}^{\prime}=b_{1}^{\prime}=4 t+5$. So, $\left|v_{0}-v_{1}\right|=1$, $\left|e_{0}-e_{1}\right|=0$, and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=1$. For the special case $P_{4 r+1} \odot L_{5,6}^{2}$, the labeling [$L_{4} r 0 ; L_{4}^{\prime} L_{4} 10, L_{4}^{\prime} L_{4} 10, L_{4}^{\prime} L_{4} 10, L_{4}^{\prime} L_{4} 10, \ldots,(r-$ time $)$, $\left.L_{4}^{\prime} L_{4} 10\right]$ is sufficient and thus $P_{4 r+1} \odot L_{5,4 t+2}^{2}$ is cordial and total cordial.

Case 6 . When $m \equiv 2(\bmod 4)$ and $k \equiv 2(\bmod 4)$ that means $m=4 t+2, t \geq 1$, and $k=4 r+2, r \geq 0$, then one can select the labeling $\left[L_{4 r} 10 ; L_{4} 0 L_{4} 1 \quad M_{4 t-4}^{\prime}\right.$, $L_{4} 0 L_{4} 1 M_{4 t-4}^{\prime}, \quad L_{4} 0 L_{4} 1 M_{4 t-4}^{\prime}, L_{4} 0 L_{4} 1 \quad M_{4 t-4}, \ldots,(r-$ time), $\left.L_{4} 0 L_{4} 1 M_{4 t-4}^{\prime}, L_{4} 0 L_{4} 1 M_{4 t-4}^{\prime}\right]$ for $P_{4 r+2} \odot L_{5,4 t+2}^{2}$. Therefore, $\quad x_{0}=x_{1}=2 r+1, a_{0}=2 r+1, a_{1}=$ $2 r, y_{0}=y_{1}=2 t+3, b_{0}=b_{1}=4 t+5, y_{0}^{\prime}=y_{1}^{\prime}=2 t+3$, and $b_{0}^{\prime}=b_{1}^{\prime}=4 t+5$. Hence, $\left|v_{0}-v_{1}\right|=0,\left|e_{0}-e_{1}\right|=1$, and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=1$. For the special case $P_{4 r+2} \odot L_{5,6}^{2}$, the labeling $\left[L_{4} r 10 ; L_{4}^{\prime} L_{4} 10, L_{4}^{\prime} L_{4} 10\right.$, $L_{4}^{\prime} L_{4} 10, L_{4}^{\prime} L_{4} 10, \ldots,(r$ time $\left.), L_{4}^{\prime} L_{4} 10, L_{4}^{\prime} L_{4} 10\right]$ is sufficient and thus $P_{4 r+2} \odot L_{5,4 t+2}^{2}$ is cordial and total cordial.
Case 7. When $m \equiv 2(\bmod 4)$ and $k \equiv 3(\bmod 4)$ that means $m=4 t+2, t \geq 1$, and $k=4 r+3, r \geq 0$, then the labeling $\quad\left[\left[L_{4 r} 001 ; L_{4} 0 L_{4} 1 M_{4 t-4}^{\prime}, L_{4} 0 L_{4} 1 M_{4 t-4}^{\prime}\right.\right.$, $L_{4} 0 L_{4} 1 M_{4 t-4}, L_{4} 0 L_{4} 1 M_{4 t-4}, \ldots,(r-t i m e), L_{4} 0 L_{4} 1$
$M_{4 t-4}^{\prime}, L_{4} 0 L_{4} 1 M_{4 t-4}^{\prime}, L_{4} 0 L_{4} 1 M_{4 t-4}^{\prime}$] for $P_{4 r+3} \odot L_{5,4 t+2}^{2}$ is considered. Therefore, $\quad x_{0}=2 r+2, x_{1}=2 r+1$, $a_{0}=a_{1}=2 r+1, y_{0}=y_{1}=2 t+3, b_{0}=b_{1}=4 t+5$,
$y_{0}^{\prime}=y_{1}^{\prime}=2 t+3$, and $b_{0}^{\prime}=b_{1}^{\prime}=4 t+5$. Consequently, it is easy to show that $\left|v_{0}-v_{1}\right|=1,\left|e_{0}-e_{1}\right|=0$, and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=1$. For the special case $P_{4 r+3} \odot L_{5,6}^{2}$, the labeling $\left[L_{4} r 001 ; L_{4}^{\prime} L_{4} 10, L_{4}^{\prime} L_{4} 10\right.$, $L_{4}^{\prime} L_{4} 10, L_{4}^{\prime} L_{4} 10, \ldots,(r-$ time $\left.), L_{4}^{\prime} L_{4} 10, L_{4}^{\prime} L_{4} 10, L_{4}^{\prime} L_{4} 10\right]$ is sufficient and thus $P_{4 r+3} \odot L_{5,4 t+2}^{2}$ is cordial and also total cordial.
Case 8 . When $m \equiv 3(\bmod 4)$ and k is even that means $m=4 t+3, t \geq 1$, and $k=2 r$ where $r \geq 1$, then the labeling $\left[M_{2 r} ; 0_{3} 1 M_{4 t+3}, 1_{3} 0 M_{4 t+3} \ldots,(r-\right.$ times $\left.)\right]$ for $P_{2 r} \odot L_{5,4 t+3}^{2}$ can be applied. Therefore, $x_{0}=r, x_{1}=$ $r, a_{0}=0, a_{1}=2 r-1, y_{0}=2 t+4, y_{1}=2 t+3, b_{0}=b_{1}$ $=4 t+6, y_{0}^{\prime}=2 t+3, y_{1}^{\prime}=2 t+4$, and $b_{0}^{\prime}=b_{1}^{\prime}=4 t+6$. Consequently, it is easy to show that $\left|v_{0}-v_{1}\right|=0$, $\left|e_{0}-e_{1}\right|=1$, and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=1$. Thus, $P_{2 r} \odot L_{5,4 t+3}^{2}, r \geq 1$, is cordial and total cordial.
Case 9. When $m \equiv 3(\bmod 4)$ and k is odd that means $m=4 t+3, t \geq 1$, and $k=2 r+1$ where $r \geq 0$, then one can take the labeling $\left[M_{2 r+1} ; 0_{3} 1 M_{4 t+3}\right.$, $1_{3} 0 M_{4 t+3}, \ldots,(r$ times $\left.), 1_{3} 0 M_{4 t+3}\right]$ for $P_{2 r+1} \odot L_{5,4 t+3}^{2}$. Therefore, $x_{0}=r+1, x_{1}=r, a_{0}=0, a_{1}=2 r, y_{0}=2 t+$ $3, y_{1}=2 t+2, \quad b_{0}=b_{1}=4 t+4, y_{0}^{\prime}=2 t+2, y_{1}^{\prime}=$ $2 t+3 b_{0}^{\prime}=b_{1}^{\prime}=4 t+4, y_{0}^{*} \quad=2 t+3, y_{1}^{*}=2 t+4$, and $b_{0}^{*}=b_{1}^{*}=4 t+6$, where y_{i}^{*} and b_{i}^{*} are the numbers of vertices and edges labeled i in $L_{5,4 t+3}$ that are connected to the last zero in $P_{2 r+1}$. So, $\left|v_{0}-v_{1}\right|=0,\left|e_{0}-e_{1}\right|=1$,
and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=1$. Thus, $P_{2 r+1} \odot L_{5,4 t+3}^{2}$, $r \geq 1$, is cordial and total cordial, and by this, the lemma was proved.

Lemma 5. $P_{k} \odot L_{6, m}^{2}$ is cordial and total cordial for all m, k.

Proof

Case 1. When $m \equiv 0(\bmod 4)$, since $P_{k} \odot L_{6,4}^{2}$ is isomorphic to $P_{k} \odot L_{4,6}^{2}$ and $P_{k} \odot L_{4,6}^{2}$ is cordial and total cordial, then $P_{k} \odot L_{6,4}^{2}$ cordial and total cordial. Also, since $P_{k} \odot L_{6,4 t}^{2}$ is isomorphic to $P_{k} \odot L_{4 t, 6}^{2}$ and $P_{k} \odot L_{4 t, 6}^{2}$ is cordial and total cordial, then $P_{k} \odot L_{6,4 t}^{2}$ is cordial and total cordial.

Case 2. When $m \equiv 1(\bmod 4)$, i.e., $m=4 t+1, t \geq 1$, since $P_{k} \odot L_{6,5}^{2}$ is isomorphic to $P_{k} \odot L_{5,6}^{2}$ and $P_{k} \odot L_{4,6}^{2}$ is cordial and total cordial, then $P_{k} \odot L_{5,6}^{2}$ is cordial and total cordial. Also, since $P_{k} \odot L_{6,4 t+1}^{2}$ is isomorphic to $P_{k} \odot L_{4 t+1,6}^{2}$ and $P_{k} \odot L_{4 t+1,6}^{2}$ is cordial and total cordial, then $P_{k} \odot L_{6,4 t+1}^{2}$ is cordial and total cordial.

Case 3. When $m \equiv 2(\bmod 4)$ and k is even that means $m=4 t+2, t \geq 1$, and $k=2 r, r \geq 1$, then one can choose the
labeling
[$M_{2 r} ; L_{4}^{\prime} 01 L_{4}^{\prime} 0 M_{4 t-4}^{\prime}, L_{4} 10 L_{4} 1 M_{4 t-4}, \ldots,(r$ times $\left.)\right]$ for $P_{2 r} \odot L_{6,4 t+2}^{2}$. Therefore, $x_{0}=r, x_{1}=r, a_{0}=0, a_{1}=2 r-$ $1, y_{0}=2 t+4, y_{1}$
$=2 t+3, b_{0}=b_{1}=4 t+6, y_{0}^{\prime}=2 t+3, y_{1}^{\prime}=2 t+4$, and $b_{0}^{\prime}=b_{1}^{\prime}=4 t+6$. Consequently, it is easy to show that $\left|v_{0}-v_{1}\right|=0$ and $\left|e_{0}-e_{1}\right|=1$. For the special case $P_{2 r} \odot L_{6,6}^{2}$, the labeling [$M_{2 r} ; L_{4}^{\prime} 0 L_{4}^{\prime} 01, L_{4} 1 L_{4} 10, \ldots,(r-$ times)] is sufficient and thus $P_{2 r} \odot L_{6,4 t+2}^{2}, r \geq 1$, is cordial and also total cordial.
Case 4. When $m \equiv 2(\bmod 4)$ and k is odd that means $m=4 t+2, t \geq 1$, and $k=2 r+1, r \geq 0$, then one can choose the labeling $\left[M_{2 r+1} ; L_{4}^{\prime} 01 L_{4}^{\prime} 0 M_{4 t-4}^{\prime}, L_{4} 10 L_{4} 1 M_{4 t-4}, \ldots,(r-\right.$ times), $\left.L_{4} 10 L_{4} 1 M_{4 t-4}\right]$ for $P_{2 r+1} \odot L_{6,4 t+2}^{2}$. Therefore, $x_{0}=r+1, x_{1}=r, a_{0}=0, a_{1}=2 r, y_{0}=2 t+2 t+$
$1, y_{1}=2 s+2 t, b_{0}=b_{1}=4 s+4 t, y_{0}=2 t+4, y_{1}=2 t+$ $3, b_{0}=b_{1}=4 t+6$,
$y_{0}^{\prime}=2 t+3, y_{1}^{\prime}=2 t+4, b_{0}^{\prime}=b_{1}^{\prime}=4 t+6, y_{0}^{*}=2 t+3$,
$y_{1}^{*}=2 t+4$, and $b_{0}^{*}=b_{1}^{*}=4 t+6$, where y_{i}^{*} and b_{i}^{*} are the numbers of vertices and edges labeled i in $L_{6,4 t+2}^{2}$ that are connected to the last zero in $P_{2 r+1}$. So, $\left|v_{0}-v_{1}\right|=0, \quad\left|e_{0}-e_{1}\right|=1, \quad$ and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=1$. For the special case $P_{2 r+1} \odot L_{6,6}^{2}$, the labeling [$M_{2 r+1} ; L_{4}^{\prime} 0 L_{4}^{\prime} 01, L_{4} 1 L_{4} 10, \ldots,(r$-times $\left.), L_{4} 1 L_{4} 10\right]$ is sufficient and thus $P_{2 r+1} \odot L_{6,4 t+2}^{2}, r \geq 1$, is cordial and total cordial.
Case 5. When $m \equiv 3(\bmod 4)$ and $k \equiv 0(\bmod 4)$ that means $m=4 t+3, t \geq 1$, and $k=4 r, r \geq 1$, then the labeling
$\left[L_{4 r} ; L_{4} 1 M_{4 t+3}, L_{4} 1 M_{4 t+3}, L_{4} 1 M_{4 t+3}, L_{4} 1 M_{4 t+3}, \ldots,(r-\right.$ time)] for $P_{4 r} \odot L_{6,4 t+3}^{2}$ is applied. Therefore $x_{0}=x_{1}=$ $2 r, a_{0}=2 r, a_{1}=2 r-1, y_{0}=y_{1}=2 t+3, b_{0}=b_{1}=$
$4 t+7, y_{0}^{\prime}=y_{1}^{\prime}=2 t+4 \quad$ and $\quad b_{0}^{\prime}=b_{1}^{\prime}=4 t+7$.

Consequently, it is easy to show that $\left|v_{0}-v_{1}\right|=0$, $\left|e_{0}-e_{1}\right|=1$, and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=1$. Thus, $P_{4 r} \odot L_{6,4 t+3}^{2}$ is cordial and total cordial.
Case 6. When $m \equiv 3(\bmod 4)$ and $k \equiv 1(\bmod 4)$ that means $m=4 t+3, t \geq 1$, and $k=4 r+1, r \geq 0$, then one can choose the labeling $\left[L_{4 r} 0 ; L_{4} 1 M_{4 t+3}, L_{4} 1 M_{4 t+3}, L_{4} 1 M_{4 t+3}, L\right.$ ${ }_{4} 1 M_{4 t+3}, \ldots,(r-$ time $\left.), L_{4} 1 M_{4 t+3}\right]$ for $P_{4 r+1} \odot L_{6,4 t+3}^{2}$. Therefore, $x_{0}=2 r+1, x_{1}=2 r, a_{0}=a_{1}=2 r, y_{0}=y_{1}=$ $2 t+3, b_{0}=b_{1} \quad=4 t+7, y_{0}^{\prime}=y_{1}^{\prime}=2 t+4, \quad$ and $b_{0}^{\prime}=b_{1}^{\prime}=4 t+7$. So, $\left|v_{0}-v_{1}\right|=1,\left|e_{0}-e_{1}\right|=0$, and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=1$. Thus, $P_{4 r+1} \odot L_{6,4 t+3}^{2}$ is cordial and total cordial.
Case 7. When $m \equiv 3(\bmod 4)$ and $k \equiv 2(\bmod 4)$ that means $m=4 t+3, t \geq 1$, and $k=4 r+2, r \geq 0$, then one can take the labeling $\left[L_{4 r} 10 ; L_{4} 1 M_{4 t+3}, L_{4} 1 M_{4 t+3}, L_{4} 1 M_{4 t+3}, L_{4}\right.$
$1 M_{4 t+3}, \ldots,(r$ time $\left.), L_{4} 1 M_{4 t+3}, L_{4} 1 M_{4 t+3}\right] \quad$ for $P_{4 r+2} \odot L_{6,4 t+3}^{2}$. Therefore, $x_{0}=x_{1}=2 r+1, a_{0}=2 r+1, a_{1}=2 r, y_{0}=y_{1}=$ $2 t+3, b_{0}=b \quad 1=4 t+7, y_{0}^{\prime}=y_{1}^{\prime}=2 t+4, \quad$ and $b_{0}^{\prime}=b_{1}^{\prime}=4 t+7$. Hence, $\left|v_{0}-v_{1}\right|=0,\left|e_{0}-e_{1}\right|=1$, and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=1$. Thus, $P_{4 r+2} \odot L_{6,4 t+3}^{2}$ is cordial and total cordial.
Case 8 . When $m \equiv 3(\bmod 4)$ and $k \equiv 3(\bmod 4)$ that means $m=4 t+3, t \geq 1$, and $k=4 r+3, r \geq 0$, then one can select the labeling [$L_{4 r} 001 ; L_{4} 1 M_{4 t+3}, L_{4} 1 M_{4 t+3}, L_{4} 1 M_{4 t+3}, L_{4} 1 M_{4 t+3}$, $\ldots,(r-$ time $\left.), L_{4} 1 M_{4 t+3}, L_{4} 1 M_{4 t+3}, L_{4} 1 M_{4 t+3}\right] \quad$ for $P_{4 r+3} \odot L_{6,4 t+3}^{2}$. Therefore, $x_{0}=2 r+2, x_{1}=2 r+1, a_{0}=$ $a_{1}=2 r+1, y_{0}=y_{1}=2 t+3$,
$b_{0}=b_{1}=4 t+7, y_{0}^{\prime}=y_{1}^{\prime}=2 t+4$, and $b_{0}^{\prime}=b_{1}^{\prime}=4 t+7$. Consequently, it is easy to show that $\left|v_{0}-v_{1}\right|=1$, $\left|e_{0}-e_{1}\right|=0$, and $\left|\left(v_{0}+e_{0}\right)-\left(e_{1}+v_{1}\right)\right|=1$. Thus, $P_{4 r+3} \odot L_{6,4 t+3}^{2}$ is cordial and total cordial; by this, the lemma was proved, and through the proofs of these lemmas, we have completed the proof of our main theorem.

4. Conclusions

In this paper, we test the cordial and total cordial labeling of corona product of paths and second power of lemniscate graphs. We found that $P_{k} \odot L_{n, m}^{2}$ is cordial and also total cordial for all $k \geq 1, n, m \geq 3$. In future work, we can improve this work by using the different graphs with other mathematical operations to prove the cordial and total cordial labeling.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under grant number R.G.P.1/258/43.

References

[1] R. H. Azaizeh, A. Ahmad, and G. C. Lau, "3-total edge product cordial labelings of graphs," Far East Journal of Mathematical Sciences, vol. 96, no. 2, pp. 193-209, 2015.
[2] I. Cahit, "Cordial graphs: a weaker version of graceful and harmonious Graphs," Ars Combinatoria, vol. 23, pp. 201-207, 1987.
[3] I. Cahit, "On cordial and 3-eqtitable labeling of graphs," Utiliuies Math, vol. 37, 1990.
[4] A. T. Diab, "On cordial labeling of the second power of paths with other graphs," ARS Combinatoria, vol. 97A, pp. 327-343, 2010.
[5] R. L. Graham and N. J. A. Sloane, "On additive bases and harmonious graphs," SIAM Journal on Discrete Mathematics, vol. 1, pp. 382-404, 1980.
[6] S. W. Golomb, How to Number a Graph in Graph Theory and Computing, R. C. Read, Ed., pp. 23-37, Academic Press, New York, NY, USA, 1972.
[7] J. A. Gallian, "A dynamic survey of graph labeling," The electronic Journal of Combinatorics, vol. 9, p. DS6, 2021.
[8] A. Rosa, On Certain Valuations of the Vertices of a Graph, Theory of Graphs (Internat Symposium, Rome, July 1966), Gordon and Breach, N.Y. and Dunod Paris, 1967.
[9] E. Badr, S. Almotairi, A. Elrokh, A. Abdel-Hay, and B. Almutairi, "An integer linear programming model for solving radio mean labeling problem," IEEE Access, vol. 8, pp. 162343-162349, 2020.
[10] E. Badr, A. A. El-hay, H. Ahmed, and M. Moussa, "Polynomial, exponential and approximate algorithms for metric dimension problem," International Journal of Mathematical Combinatorics, vol. 2, pp. 50-66, 2021.
[11] A. I. H. Elrokh, S. I. M. Nada, and E. M. E. S. El-Shafey, "Cordial labeling of corona product of path graph and second power of fan graph," Open Journal of Discrete Mathematics, vol. 11, no. 2, p. 31, 2021.
[12] E. Badr, S. Nada, M. Mohammed, A. Al-Shamiri, A. AbdelHay, and A. ELrokh, "A novel mathematical model for radio mean square labeling problem," Journal of Mathematics, vol. 2022, Article ID 3303433, 9 pages, 2022.
[13] S. Nada, A. ELrokh, and A. Abdel-Hay, "The cordiality of the second power of some graphs," Advances and Applications in Discrete Mathematics, 2021.
[14] S. Klavzar and M. Tavakoli, "Dominated and dominator colorings over (edge) corona and hierarchical products," Applied Mathematics and Computation, vol. 390, Article ID 125647, 2021.
[15] M. Tavakoli, F. Rahbarnia, and A. R. Ashrafi, "Studying the corona product of graphs under some graph invariants," Transactions on Combinatorics, vol. 3, no. 3, pp. 43-49, 2014.
[16] M. M. A. Al-Shamiri, A. Elrokh, Y. El-Mashtawye, and S. E. Tallah, "The cordial labeling for the cartesian product between paths and cycles," International Journal of Regulation and Governance, vol. 8, no. 3, pp. 331-341, 2020.
[17] A. Hefnawy and Y. Elmshtaye, "Cordial labeling of corona product of paths and lemniscate graphs," ARS Combinatoria, vol. 149, pp. 69-82, 2020.
[18] S. Nada, A. Elrokh, E. A. Elsakhawi, and D. E. Sabra, "The corona between cycles and paths," Journal of the Egyptian Mathematical Society, vol. 25, no. 2, pp. 111-118, 2017.

