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&e study of networks such as Butterfly networks, Benes networks, interconnection networks, David-derived networks through
graph theoretical parameters is among the modern trends in the area of graph theory. Among these graph theoretical tools, the
topological Indices (TIs) have been frequently used as graph invariants. TIs are also the essential tools for quantitative structure
activity relationship (QSAR) as well as quantity structure property relationships (QSPR). TIs depend on different parameters, such
as degree and distance of vertices in graphs. &e current work is devoted to the derivation of 2-distance based TIs, known as,
modified first Zagreb connection index ZC∗1 and first Zagreb connection index (ZC1) for r− dimensional Benes network and some
classes generated from Benes network. &e horizontal cylindrical Benes network (HCB(r)), vertical cylindrical Benes network
(VCB(r)), and toroidal Benes network (TB(r)) are the three classes generated by identifying the vertices of the first row with the
last row, the first columnwith the last column of the Benes network.&e obtained results are also analyzed through graphical tools.

1. Introduction

&e study of networks such as Butterfly network [1], Benes
network [2, 3], interconnection network [4–6], David-de-
rived network [7] through graph theoretical parameters is
among the modern trends in the area of graph theory. In an
interconnected network (ICN), the processing nodes are the
multiprocessors that are utilized to construct a network
based on homogeneously identical processor memory pairs.
&e transmissions of messages enable programs to be
compiled and then executed. Constructive significance to the
architectural plan and usage of multiprocessor ICN is on
account of economical, reasonable, systematic and more
efficient microprocessors and chips [8]. &e resemblance of
ICN with communication patterns is a natural scenario,

which makes them more valuable and influential. Mostly
networks are interconnected and due to the dependency on
one another, these are networks are needed to be assessed
and improved for upcoming work.

To design these networks, graphs are used in a very
natural manner, in which the components or processors are
distinguished by vertices, and certain communication links
such as fiber optic cables etc., are represented by edges. &e
functionality of the mentioned components is accomplished
through incidence functions. It enables to examine net-
works, its components and the links between components
through study of graphs as graphs and networks are similar
in the sense of structure.

Butterfly graphs are the elementary graphs in Fourier
transform networks that can perform Fast Fourier
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Transforms (FFT) very expeditiously. In Butterfly networks
(BF(r)), the series of interconnection patterns and
switching stages permits k inputs to be linked to k outputs.
&e Benes network comprises back to back connected
butterflies. &is worthwhile network is familiar for per-
mutation routing [2]. &ese are remarkable multistage in-
terconnection networks, which are entertained by striking
and distinctive topologies for communication networks [3].
&e Benes networks are utilized in parallel computing
systems such as NEC Cenju-3, IBM, SP1/SP2 and MIT
Transit Project. &ese networks also have applications in the
internal structural composition of optical couplers [1, 4]. In
an r-dimensional Benes, there are 2r + 1 number of levels,
with each level having 2r nodes. An r-dimensional butterfly
is organized from the level 0 to r nodes. &e adjacently
connected butterflies which share the central level to gen-
erate a Benes network. An r-dimensional Benes network is
denoted by B(r), for example, B(3) is shown in Figure 1.

New representations of the Benes networks are recently
constructed by embedding it on the surface of torus and
cylinder known as Toroidal Benes network (TB(r)), horizontal
cylindrical Benes network (HCB(r)), and vertical cylindrical
Benes network (VCB(r)). For further details, see [9].

From now onward, G represents a simple, connected
graph with edge and vertex sets by E(G) and V(G), re-
spectively. Moreover, for v ∈ V(G), dv and N(v) represent
its degree and set of neighbors, respectively. &e con-
nection number τv is the cardinality of the set of vertices
which lie at distance 2 from v. For further details on
undefined terminologies, we refer [5, 10, 11]. Various
invariants assigned to molecular structures or networks,
set up correlations between their physicochemical prop-
erties and structures. A class among the graph invariants
is the class of topological indices (TIs). &ese invariants
(TIs) are usually dependent on distance and degree and
are came up to be beneficial in anticipating the multiple
features of structures including networks and molecular
graphs. &e first and primordial topological index, enti-
tled as the Wiener index, introduced by H. Wiener [12], in
1947, while studying the alkanes. Based on its productive
outcomes and predictive ability, numerous TIs of
chemical graphs, have been flourished subsequently. &e
Zagreb connection index (ZCI) is a noteworthy class of
TIs and depends upon connection number denoted by τv.
&is connection number expresses the total vertices at
distance (edges in a minimal path) two from arbitrary
vertex v [13]. &is class came into sight in 1972 to quantify
the total π-electron energy [14]. After that, researchers
took no notice of it for many years. Lately, Ali and Tri-
najstic [15] reinvestigated the ZCIs and revealed that the
ZCI comparatively to classical Zagreb indices come up
with finer absolute values of the correlation. Utilizing the
connection number ZCI Ali et al. defined the modified
first ZCI [15], given as ZC∗1(G) � v∈V(G)dvτv and first
Zagreb Connection index is defined and denoted as
ZC1(G) � v∈V(G)τ2v [16]. For further details about com-
putation of indices, we refer the readers [17, 18]. In this

paper, we compute 2-distance based TIs, known as,
modified first Zagreb connection index ZC∗1 and first
Zagreb connection index (ZC1) for r−dimensional Benes
and Butterfly networks, HCB(r), VCB(r), and TB(r). &e
obtained results are also analyzed through graphical tools.

2. Main Results

&roughout this paper r≥ 2. Figures 2 and 3 represent the
graphs of VCB(r) and HCB(r), respectively. &e graph of
TB(r), i.e., embedding of B(r) on Torous is given in Figure 4.
Now, we present the results in the following sections.

2.1. Modified Zagreb Connection Indices for Benes and But-
terfly Networks. In an r−dimensional Benes network B(r),
total number of vertices are 2r(2r + 1), whereas in BF(r),
there are 2r(r + 1) total number of vertices. For details of
these networks, see [6]. &ese networks are presented in
Figures 5 and 6 for r � 3.

Theorem 1. For r− dimensional Benes network G, we have:

(1) ZC∗1(G) � 2r+2(42 + 20(r − 3))

(2) ZC1(G) � 200r.2r − 269.2r

PROOF. Let [w, i] � [w1w2 . . . wr, i] be an arbitrary node of
Benes network, where i denotes the level (0≤ i≤ 2r) and w �

w1w2 . . . wr is an r-bit binary number that denotes the row
of the node. Let us denote by Vk, 0≤ k≤ 2r, the set of vertices
of k th column. For 0≤ i, j≤ 2r, if [w, i] and [w′, j] are
adjacent then wj � 0 implies wj

′ � 1, and vice versa. We
partition the vertices v � [w, i], 0≤ i≤ 2r of benes networks
into the different cases depending on τv: □

Case 1. (Fori � 0andi � 2r)

Let v ∈ V0, that is v � [w1w2 . . . wr, 0]. &en N(v) � N

([w1 . . . wr, 0]) � [w1 . . . wr, 1], [w1′ . . . wr, 1] . Further-
more, N([w1w2 . . . wr, 1]) � [w1 . . . wr, 0], [w1 . . . wr, 2],

[w1′ . . . wr, 0], [w1w2′ . . . wr, 2]} and.N([w1′ . . . wr, 1]) �

[w1 . . . wr, 0], [w1′ . . . wr, 2], [w1′ . . . wr, 0], [w1′w2′ . . . wr,

2]}. So, there are 5 distinct vertices that are at distance 2 from
v, that is τv � 5 for v ∈ V0. On the other hand for v ∈ V0,
dv � 2. &us, v∈V0

dvτv � 2.5.2r � 10.2r. &e case when
v ∈ V2r is also the same.

Figure 1: 3-dimensional Benes network.
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Case 2. (Fori � r)

Let v ∈ Vr, that is v � [w1 . . . wr, r]. &en N(v) �

[w1 . . . wr, r + 1], [w1 . . . wr
′, r + 1], [w1 . . . wr, r − 1], [w1

. . . wr
′, r − 1]}. Furthermore, N([w1 . . . wr, r + 1]) � [w1

. . . wr, r], [w1 . . . wr, r + 2], [w1 . . . wr−1′wr, r + 2], [w1 . . .

wr
′, r]}, N([w1 . . . wr

′, r + 1]) � [w1 . . . wr, r], [w1 . . . wr
′, r+

2], [w1 . . . wr−1′wr
′, r + 2], [w1 . . . wr

′, r]}, N([w1 . . . wr, r −

1]) � [w1 . . . wr, r], [w1 . . . wr, r − 2], [w1 . . . wr−1′ wr, r −2],

[w1 . . . wr
′, r]} and N([w1 . . . wr

′, r − 1]) � [w1 . . . wr,

r], [w1 . . . wr
′, r − 2], [w1 . . . wr−1′wr

′, r − 2], [w1 . . . wr
′, r]}.

&us, τv � 9 for v ∈ Vr. On the other hand for v ∈ Vr,
dv � 4. So, v∈Vr

dvτv � 4.9.2r � 36.2r.
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Figure 2: Normal representation of VCB(3).
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Figure 3: Normal representation of HCB(3).
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Figure 4: Normal representation of TB(3).
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Case 3. (Fori � 1, i � 2r − 1)

Let v ∈ V1, that is v � [w1w2 . . . wr, 1]. &en N(v) �

[w1 . . . wr, 2], [w1w2′ . . . wr, 2], [w1 . . . wr, 0], [w1′ . . . wr,

0]}. Furthermore, N([w1 . . . wr, 2]) � [w1 . . . wr, 1], [w1
. . . wr, 3], [w1w2′ . . . wr, 1], [w1w2w3′ . . . wr, 3]}, N([w1w2′
. . . wr, 2]) � [w1 . . . wr, 1], [w1 w2′ . . . wr, 3], [w1w2′ . . . wr,

1], [w1w2′w3′ . . . wr, 3]}, N([w1w2 . . . wr, 0]) � [w1w2 . . .

wr, 1], [w1′w2 . . . wr, 1]} and.
N[w1′ . . . wr, 0] � [w1w2 . . . wr, 1], [w1′w2 . . . wr, 1] .

&us, τv � 6 for v ∈ V1. On the other hand for v ∈ V1, dv � 4.
So, v∈V1

dvτv � 4.6.2r � 24.2r. &e case for i � 2r − 1 is
similar.

Case 4. (Fori � r − 1, i � r + 1)

Let v ∈ Vr−1, that is v � [w1 . . . wr, r − 1]. &en N(v) �

[w1 . . . wr, r], [w1 . . . wr
′, r], [w1 . . . wr, r − 2], [w1 . . . wr−1′

wr, r − 2]}. Furthermore, N([w1 . . . wr, r]) � [w1 . . . wr, r−

1], [w1 . . . wr, r + 1], [w1 . . . wr
′, r + 1], [w1 . . . wr

′, r − 1]}, N

([w1 . . . wr
′, r]) � [w1 . . . wr, r − 1], [w1 . . . wr

′, r + 1], [w1

. . . wr
′, r − 1], [w1 . . . wr, r + 1]}, N([w1 . . . wr, r − 2]) �

[w1 . . . wr, r − 1], [w1 . . . wr−2′wr−1wr, r − 3], [w1 . . . wr, r −

3], [w1 . . . wr−1′wr, r − 1]} and N([w1 . . . wr−1′wr, r − 2]) �

[w1 . . . wr, r − 1], [w1 . . . wr−1′wr, r − 1], [w1 . . . wr−2′wr−1′
wr, r − 3], [w1 . . . wr−1′wr, r − 3]}.

&us τv � 8 for v ∈ Vr−1. On the other hand for v ∈ Vr−1,
dv � 4. So v∈Vr−1

dvτv � 4.8.2r � 32.2r. &e case for i � r + 1
is similar.

Case 5. (For1< i< r − 1, r + 1< i< 2r − 1)

Let v ∈ Vi, where 1< i< r − 1 or r + 1< i< 2r − 1, that is
v � [w1 . . . wr, i]. &en N(v) � [w1 . . . wr, i + 1], [w1 . . .

wi+1′ . . . wr, i + 1], [w1 . . . wr, i − 1], [w1 . . . wi
′ . . . wr, i − 1]}.

Furthermore, N([w1 . . . wr, i + 1]) � [w1 . . . wr, i], [w1

. . . wr, i + 2], [w1 . . . wi+2′ . . . wr, i + 2], [w1 . . . wi+1′ . . . wr, i]},
N([w1 . . . wr, i − 1]) � [w1 . . . wr, i], [w1 . . . wr, i − 2],

[w1 . . . wi−1′ . . . wr, i − 2], [w1 . . . wi
′ . . . wr, i]}, N([w1 . . .

wi+1′ . . . wr, i + 1]) � [w1 . . . wr, i], [w1 . . . wi+1′ . . . wr, i + 2],

[w1 . . . wi+1′ . . . wr, i], [w1 . . . wi+1′ wi+2′ . . . wr, i + 2]} and
N([w1 . . . wi

′ . . . wr, i − 1]) � [w1 . . . wr, i], [w1 . . . wi
′ . . .

wr, i − 2], [w1 . . . wi
′ . . . wr, i], [w1 . . . wi−1′ wi

′ . . . wr, i − 2]}.
&us τv � 10, on the other hand dv � 4 for v ∈ Vi. So
v∈Vi

dvτv � 4.10.2r(r − 3) � 40.2r(r − 3). Hence ZC∗1(G) �

v∈V(G)dvτv � 2.10.2r + 36.2r + 2.32.2r + 2.24.2r + 2.40(r −

3) 2r � 2r+2(42 + 20(r − 3)).
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Figure 5: Normal representation of B (3).
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Also, ZC1(G) � 2.25.2r + 81.2r + 2.36.2r + 2.64.2r+

2.100.2r (r − 3) � 200r.2r − 269.2r.

Theorem 2. For r− dimensional Butterfly network G, we
have

(1) ZC∗1(G) � 2r(40r − 52)

(2) ZC1(G) � 100r.2r − 178.2r

PROOF. Let v ∈ Vr in a butterfly network G, that is
v � [w1 . . . wr, r]. &en N(v) � [w1 . . . wr, r − 1], [w1

. . . wr
′, r − 1]}. Furthermore, N([w1 . . . wr, r − 1]) � [w1

. . . wr
′, r], [w1 . . . wr, r], [w1 . . . wr, r − 2], [w1 . . . wr−1′wr,

r − 2]} and
N([w1 . . . wr

′, r − 1]) � [w1 . . . wr−1′wr
′, r − 2]t, n[qw1

. . . wr
′, rh][[w1

. . . wr
′, r − 2x]7, C[; w1 . . . wr, r]}. &us, for

v ∈ Vr, τv � 5 and dv � 2. &e case when v ∈ V0 is also same.
Moreover, if v ∈ Vr−1 that is v � [w1w2 . . . wr, r − 1].

&en N(v) � [w1 . . . wr, r], [w1 . . . wr−1′wr, r − 2], [w1 . . .

wr, r − 2], [w1 . . . wr
′, r]} and N([w1 . . . wr−1′wr, r − 2]) �

[w1 . . . wr, r − 1], [w1 . . . wr−1′wr, r − 1], [w1 . . . wr−1′wr, r −

3][w1 . . . wr−2′wr−1′wr, r − 3]} N([w1 . . . wr, r − 2]) � [w1

. . . wr, r − 1], [w1 . . . wr−1′ wr, r − 1], [w1 . . . wr−2′wr−1wr,

r − 3], [w1 . . . wr, r − 3]}, N([w1w2 . . . wr, r]) � [w1w2. . .r,

r − 1], [w1 . . . wr
′, r − 1]} and. N([w1 . . . wr

′, r]) � [w1w2

. . . wr, r − 1], [w1 . . . wr
′, r − 1]}.

&us, for v ∈ Vr−1, τv � 6 and dv � 4. &e case for v ∈ V1
is also similar.

By following the same pattern, it can be proved that if
v ∈ Vi for 2≤ i≤ r − 2, dv � 4 and τv � 10. So, ZC∗1(G) �

2.5.2r + 4.6.2r + 4.10.2r(r − 3) + 2.5.2r + 4.6.2r � 2r(40r −

52) and ZC1(G) � 25.2r + 36.2r + 100.2r(r − 3) + 36.2r +

25.2r � 100r.2r − 178.2r. □

2.2. Modified Zagreb Connection Indices for Vertical Cylin-
drical Representations of Benes Networks. &is network is
obtained by the identification of last column with first
column of Benes network. Following the construction of
VCB(r), clearly there are r2r+2 vertices in VCB(r). &is is a
regular graph with degree of each vertex as four [9].

Theorem 3. For G � VCB(r), we have

(1) ZC∗1(G) � 2r(200 + 80(r − 3))

(2) ZC1(G) � 200r.2r − 182.2r

PROOF. Let G denotes the 4-regular graph of VCB(r) in
which [w, i] � [w1w2 . . . wr, i] is an arbitrary node, for any
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Figure 6: Normal representation of BF (3).
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0≤ i≤ 2r − 1. Let Vk, 0≤ k≤ 2r − 1 be the set of vertices of k

th column in G. For 0≤ i, j≤ 2r − 1, if [w, i] and [w′, j] are
adjacent then wj � 0 implies wj

′ � 1, and vice versa. We
partition the vertices v � [w, i], 0≤ i≤ 2r − 1 of G in to the
different cases depending on τv: □

Case 6. (Fori � 0)

Let v ∈ V0, that is v � [w1w2 . . . wr, 0], then N(v) � N

[w1 . . . wr, 0] � [w1 . . . wr, 1], [w1′ . . . wr, 1], [w1 . . . wr, 2r−

1], [w1′ . . . wr, 2r − 1]}.
Furthermore,

N([w1w2 . . . wr, 1]) � [w1 . . . wr, 0], [w1 . . . wr, 2], [w1′ . . .

wr, 0], [w1w2′ . . . wr, 2]} N([w1′ . . . wr, 1]) � [w1 . . . wr, 0],

[w1′ . . . wr, 2], [w1′ . . . wr, 0], [w1′w2′ . . . wr, 2]}, N([w1 . . . wr,

2r − 1]) � [w1 . . . wr, 2r − 2], [w1w2′ . . . wr, 2r − 2], [w1′ . . .

wr, 0], [w1 . . . wr, 0]} and. N([w1′ . . . wr, 2r − 1]) � [w1′ . . .

wr, 2r − 2], [w1′ . . . wr, 0], [w1′w2′ . . . wr, 2r − 1], [w1 . . . wr,

0]}. So, τv � 9 and therefore, v∈V0
dvτv � 4.9.2r � 36.2r.

Case 7. (Fori � 1, i � 2r − 1)

Let v ∈ V1, that is v � [w1w2 . . . wr, 1]. &en N(v) �

[w1 . . . wr, 2], [w1w2′ . . . wr, 2], [w1 . . . wr, 0], [w1′ . . . wr,

0]}.
Furthermore,

N([w1w2 . . . wr, 2]) � [w1 . . . wr, 1], [w1 . . . wr, 3], [w1w2
w3′ . . . wr, 3], [w1w2′ . . . wr, 1]}, N[w1w2′ . . . wr, 2] � [w1

. . . wr, 1], [w1w2′ . . . wr, 3], [w1w2′ . . . wr, 1], [w1w2′w3′ . . . wr,

3]},
N([w1 . . . wr, 0]) � [w1 . . . wr, 2r − 1]t, n [qw1′ . . . wr,

2r − 1h][[w1′ . . . wr, 1x]7, C[; w1 . . . wr, 1]} and N([w1′ . . .

wr, 0]) � [w1′ . . . wr, 2r − 1], [w1 . . . wr, 2r − 1], [w1′w2′
. . . wr, 2r − 1], [w1 . . . wr, 1]}. So, τv � 8 and therefore
v∈V1

dvτv � 4.8.2r � 32.2r. &e case for i � 2r − 1 is similar.

Case 8. (For1< i< 2r − 1)

Similarly, if v ∈ Vi, where 1< i< 2r − 1, then we have
v∈Vi

� 2.40(r − 3)2r + 2.32.2r + 36.2r � 2r (80(r − 3)+

100). &erefore, ZC∗1(G) � v∈V(G)dvτv � 36.2r + 2.32.2r+

2r(80(r − 3) + 100) � 2r(200 + 80(r − 3)) and ZC1(G) �

81.2r + 2.64.2r + 2.100(r − 3).2r + 2.64.2r + 81.2r � 200r.2r

−182.2r.

2.3. Modified Zagreb Connection Indices for Horizontal Cy-
lindrical Representations of Benes Networks. &e network
HCB(r) is obtained by identifying vertices of the last row of
Benes network with the corresponding vertices of the first
row.&e total vertices in HCB(r) are (2r + 1)(2r − 1) [9]. By
following the same method as in previous theorems, the
(2r + 1)(2r − 1) vertices are partitioned in terms of degree
and τ as shown in Table 1.

Theorem 4. For G � HCB(r), we have

(1) ZC∗1(G) � 802 + 104r − 72.2r + 80r.2r

(2) ZC1(G) � 200r.2r − 269.2r − 152r + 2304

PROOF. From the partition of the vertices of HCB(r) and
Table 1 comprising connection number of the vertices, we have

ZC∗1(G) � 
v∈V(G)

dvτv � 54 + 132 + 168 + 96 + 216(r −

3)+ 20 (2r
− 4) + 56 + 48 (2r

− 6) + 128 + 112 + 64(2r
− 6)

+ 320 + 96 + 36(2r
− 4) + 80(2r

− 4) (r − 3) + 224 � 1386 +

216r − 648 + 20.2r
− 80 + 48.2r

− 288 + 64.2r
− 384+ 36.2r

−

144 + 80r.2r
− r320 − 240.2r

+ 960 � 802 − 104r − 72.2r
+

80r.2r.
Similarly, ZC1(G) � 162 + 242 + 392 + 256 + 648r −

1944 + 50.2r
− 200 + 196 + 72.2r

− 432 + 256 + 196 + 128.2r

− 768 + 800 + 288 + 81.2r
− 324 + 200.r.2r

− 800r − 600.2r
+

2400 + 784 � 200r.2r
− 269.2r

− 152r + 2304. □

2.4. Modified Zagreb Connection Indices for Toroidal Repre-
sentation of Benes Networks. &e TB(r) is obtained by the
identification of the vertices of bottom row of VCB(r) to the
vertices of the top row. Here, benes network is embedded on
Torus. &e total number of vertices in TB(r) is 2r(2r − 1)

[9]. Now, we compute ZC∗1 and ZC1 for this network.

Table 1: Vertex partition of HCB(r) corresponding to connection
numbers and degrees.

Deg τv Vertices

3 9 2
6 11 2
6 14 2
6 16 1
6 18 2 (r− 3)
2 5 2 (2r − 34)
2 7 2 (2)
4 6 2 (2r − 36)
4 8 2 (2)
4 7 2 (2)
4 8 2 (2r − 6)

4 10 2 (4)
4 12 2
4 9 (2r − 4)

4 10 2 (2r − 4) (r− 33)
4 14 2 (2)

Table 2: Vertex partition of TB(r) corresponding to connection
numbers and degree.

Deg τv No. of vertices

6 18 1
6 14 2
6 14 2
6 16 1
6 18 2 (r-3)
4 9 (2r-4)
4 12 2 (2)
4 8 2 (2r-4)
4 11 2 (2)
4 7 2 (2)
4 8 2 (2r − 6)

4 10 2 (4)
4 12 2
4 9 (2r − 4)

4 10 2 (2r − 4) (r-3)
4 14 2 (2)
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Theorem 5. For G � TB(r), we have

(1) ZC∗1(G) � 80r.2r − 40.2r − 104r + 1044
(2) ZC1(G) � 200r.2r − 182.2r − 152r + 3020

PROOF. &e 2r(2r − 1) vertices of TB(r) are partitioned on
the basis of degree as: 2r(2r − 2) and 2r vertices have degrees
4 and 6, respectively. &e connection numbers of vertices of
TB(r) are presented in Table 2.

So, we have
ZC
∗
1(G) � 

v∈V(G)

dvτv � 108 + 168 + 168 + 96 + 216(r−

3) + 36(2r
− 4) + 192 + 64(2r

−4) + 176 + 112 + 64(2r
− 6) +

320 + 96 + 36(2r
− 4) + 80(2r

− 4) (r − 3) + 224 � 80r.2r
−

40.2r
− 104r + 1044.

Moreover, ZC1(G) � 324 + 392 + 392 + 256+ 648r−

1944 + 81.2r
− 324 + 576+ 128.2r

− 512 + 484 + 196+

128.2r
− 768+ 800 + 288 + 81.2r

−324 + 200.r.2r
−800r−

600.2r
+ 2400 + 784 � 200r.2r

− 182.2r
− 152r + 3020. □

3. Conclusion

&e newly generated structures and networks are always
interesting topic to be studied. In [9], several new networks
such as HCB(r), VCB(r) and TB(r) have been introduced
by using B(r). By keeping in view of the importance to study
new networks, we computed 2-distance based TIs for these
new classes of networks. Moreover, we have also used
graphical tools to describe a comparison among the values of
the computed indices. Figures 7 and 8 present the rise in the
values of the computed TIs of the networks with respect to
the size r of the networks B(r), BF(r), VCB(r), HCB(r), and
TB(r). &e current paper will be a step forward towards the
study of these networks for general distance and the max-
imum distance based descriptors.
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