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In this paper, we survey a common problem of the fixed point problem and the quasimonotone variational inequality problem in
Hilbert spaces. We suggest an iterative algorithm for finding a common element of the solution of a quasimonotone variational
inequality and the fixed point of a pseudocontractive operator. Convergence theorems are shown under some mild conditions.
Several corollaries are also obtained.

1. Introduction

Let H be a real Hilbert space with an inner product ·, ·〈 〉 and
an induced norm ‖ · ‖. Let C be a nonempty closed and
convex subset of H. Let f: C⟶ H be a nonlinear operator.
In this paper, our work is closely related to a classical
variational inequality of finding a point x† ∈ C such that

f x
†

 , x − x
†

 ≥ 0, ∀x ∈ C. (1)

We use Sol(C, f) to denote the solution set of (1).
It is well known that variational inequality problems

provide a general mathematical framework for a large
number of problems arising in optimization [1–8]. For
example, constrained optimization problems such as LP and
NLP are special cases of variational inequalities, and systems
of equations and complementarity problems can be cast as
variational inequalities. /us, variational inequality prob-
lems have many applications, including those in trans-
portation networks [9], signal processing [10, 11], regression
analysis [12], equilibrium problems [13, 14], fixed point

problems [15–19], and complementarity problems [1, 20].
/ere are numerous iterative algorithms for solving varia-
tional inequalities and related problems, (see for examples
[21–31]).

Let φ: C⟶ R be a convex function. Letting
f(x) � ∇φ(x), the variational inequality (1) is equivalent to
the following minimization problem:

min
x∈C

φ(x), (2)

which implies that we can use the following projection-
gradient algorithm [32–35] to solve variational inequality
(1), i.e., an iterative sequence un  generated by the recursive
form:

un+1 � projC un − ςnf un(  , (3)

where ςn > 0 is the step size, and projC: H⟶ C is the
metric projection.

/e sequence un  generated by the projection-gradient
algorithm is the convergent provided. f is strongly (pseudo)
monotone (see [25, 36]), or f is inverse strongly monotone
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(see [10, 35]). However, if f is plain monotone, then the
sequence un  generated by (3) does not necessarily con-
verge. To overcome this flaw, many iterative methods have
been proposed, such as the proximal point method [37, 38],
Korpelevich’s extragradient method [39–41] and its variant
forms [42–44], the subgradient extragradient method
[45, 46], and Tseng’s method [47]. Especially, Bot et al. [48]
suggested the following Tseng-type forward-backward-for-
ward algorithm:

vn � PC un − λf un( ( ,

un+1 � μk vn + λ f un(  − f vn( ( ( + 1 − μk( un, ∀n≥ 0.


(4)

Bot et al. [48] proved that the sequence un  generated by (4)
converges weakly to an element in Sol (C, f) provided f is
pseudomonotone and sequentially weakly continuous.

Let Sold(C, f) be the solution set of the dual variational
inequality of (1), that is,

Sold(C, f) ≔ u ∈ C| f(x), x − u ≥ 0, ∀x ∈ C . (5)

where Sold(C, f) is the closed convex. If C is convex and f is
continuous, then Sold(C, f) ⊂ Sol(C, f).

To show the convergence of the sequence un , a
common condition Sol(C, f) ⊂ Sold(C, f) has been added,
that is,

f(x), x − u ≥ 0, ∀u ∈ Sol(C, f) and x ∈ C, (6)

which is a direct consequence of the pseudomonotonicity of
f. But this conclusion (that is, Sol(C, f) ⊂ Sold(C, f)) is
false, if f is quasimonotone.

/e main purpose of this paper is to introduce a self-
adaptive forward-backward-forward algorithm to solve
quasimonotone variational inequalities (1) and the fixed
point problem of pseudocontractive operators. /e algo-
rithm is designed such that the step-sizes are dynamically
chosen and its convergence is guaranteed without prior
knowledge of the Lipschitz constant of f. We prove that the
proposed algorithm converges weakly to a common element
of the solution of a quasimonotone variational inequality
and the fixed point of a pseudocontractive operator under
some additional conditions.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert
space H. Let T: C⟶ C be a nonlinear operator. Fix(T) is
used to denote the set of fixed points of T, i.e.,
Fix(T): � x ∈ C|x � Tx{ }. “ ⇀ ” and “ ⟶ ” is used to
denote weak convergence and strong convergence, respec-
tively. Let un  be a sequence in H. ωw(un) is used to denote
the set of all weak cluster points of un , i.e.,
ωw(un) � u†: ∃ uni

  ⊂ un  such that uni
⇀u†(i⟶∞) .

Let f: C⟶ H be a nonlinear operator.We recall thatf

is said to be

(i) pseudomonotone if

f x
†

 , x − x
†

 ≥ 0 implies f(x), x − x
†

 ≥ 0,

∀x, x
† ∈ C

(7)

(ii) quasimonotone if

f x
†

 , x − x
†

 > 0 implies f(x), x − x
†

 ≥ 0,

∀x, x
† ∈ C

(8)

(iii) L-Lipschitz continuous if there exists some constant
L> 0 such that

f(x) − f x
†

 
�����

�����≤L x − x
†����
����, for allx, x

† ∈ C (9)

(iv) sequently weakly continuous if un⇀x implies that
f(un)⇀f(x).

We recall that an operator T: C⟶ C is said to be
pseudocontractive if

T(x) − T x
†

 
�����

�����
2
≤ x − x

†����
����
2

+ (I − T)x − (I − T)x
†����
����
2
,

(10)

for all x, x† ∈ C.
For fixed x ∈ H, there exists a unique x† ∈ C satisfying

‖x − x†‖ � inf ‖x − x‖: x ∈ C{ }. x† is denoted by projC[x].
/e projection projC has the following basic property: for
given x ∈ H,

x − projC[x], y − projC[x] ≤ 0, ∀y ∈ C. (11)

Applying this characteristic inequality, we have the
following equivalence relation:

x
† ∈ Sol(f, C)⇔x

†
� projC x

†
− ςf x

†
  , ∀ς> 0. (12)

In a Hilbert space H, we have

ζu +(1 − ζ)u
†����
����
2

� ζ‖u‖
2

+(1 − ζ) u
†����
����
2

− ζ(1 − ζ) u − u
†����
����
2
,

(13)

∀u, u† ∈ H and ∀ζ ∈ [0, 1].

Lemma 1 (see [44]). LetC be a nonempty, convex, and closed
subset of a Hilbert space H. We assume that T: C⟶ C is an
L-Lipschitz pseudocontractive operator. =en, for all u ∈ C

and u† ∈ Fix(T), we have

u
†

− T[(1 − ϖ)u + ϖT(u)]
����

����
2
≤ u − u

†����
����
2

+(1 − ϖ)‖u − T[(1 − ϖ)u + ϖT(u)]‖
2
,

(14)

where 0<ϖ< 1/
�����
1 + L2

√
+ 1.

Lemma 2 (see [14]). Let C be a nonempty, convex, and closed
subset of a Hilbert space H. Let T: C⟶ C be a continuous
pseudocontractive operator. =en,

(i) Fix(T) ⊂ C is closed and convex
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(ii) T is a demiclosedness, i.e., un⇀z and T(un)⟶ z†

imply that T(z) � z†

3. Main Results

In this section, we introduce our main results. Let C be a
nonempty closed convex subset of a real Hilbert spaceH. We
assume that the following conditions are satisfied:

(C1): the operator f: H⟶ H is quasimonotone;
κ-Lipschitz continuous and satisfies the following
property (P):

H ∈ xn⇀x
† ∈ H as n⟶∞

liminf
n⟶+∞

f xn( 
����

���� � 0

⎫⎪⎬

⎪⎭
imply thatf x

†
  � 0

(15)

(C2): the operator T: H⟶ H is pseudocontractive
and L-Lipschitz continuous
(C3): Γ: � Sold(C, f)∩ Fix(T)≠∅ and
x ∈ C: f(x) � 0 ∖Sold(C, f) is a finite set

Remark 1. If the operator f is sequentially weakly con-
tinuous, then f satisfies the property (P).

Next, we present an iterative algorithm for finding a
common point in Γ. Let ζn , αn , and ϖn  be three se-
quences in (0, 1). Let β ∈ (0, 1) and ς0 > 0 be two constants.

Algorithm 1. Initialization: let u0 ∈ H be an initial guess. We
set n � 0.

Step 1. Let the n-th iterate un be given. We compute

vn � 1 − ϖn( un + ϖnT un( 

vn � 1 − αn( un + αnT vn( 
. (16)

Step 2. Let the n-th step size ςn be known. We compute

wn � projC vn − ςnf vn(  , (17)

and

un+1 � 1 − ζn( vn + ζnwn + ζnςn f vn(  − f wn(  . (18)

Step 3. We update the n + 1-th step size by the fol-
lowing form:

ςn+1 �

min ςn,
β wn − vn

����
����

f wn(  − f vn( 
����

����
 , if f wn( ≠f vn( ,

ςn, else.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(19)

We set n: � n + 1 and return to step 1.

Based on Algorithm 1, we have the following remark.

Remark 2. (i) By (17), if at some step
wn � vn � projC[vn − ςnf(vn)], then vn ∈ Sol(C, f). (ii) By
(19), ςn+1 ≤ ςn and ςn ≥min ς0, β/κ  for all n, so limn⟶∞ςn �

ς† exists, and ς† ≥min ς0, β/κ > 0.

Next, we prove the convergence of Algorithm 1.

Theorem 1. Suppose that 0< α < αn < α<ϖn <
ϖ< 1/

�����
1 + L2

√
+ 1(∀n≥ 0) and 0< liminfn⟶∞ζn ≤

limsupn⟶∞ζn < 1. =en, the sequence un  generated by
Algorithm 1 converges weakly to some point in Γ.

Proof. Let x ∈ Γ. Since x ∈ Sold(C, f) ⊂ C, from (11) and
(17), we have

wn − vn + ςnf vn( , wn − x ≤ 0, (20)

which yields that

wn − vn, wn − x ≤ ςn f vn( , x − wn . (21)

Noting that wn ∈ C and x ∈ Sold(C, f), we have

f wn( , x − wn ≤ 0. (22)

Combining (21) and (23), we obtain

wn − vn, wn − x  + ςn f vn(  − f wn( , wn − x ≤ 0. (23)

In Hilbert space H, we have
x − y, x − z  � 1/2(‖x − y‖2 + ‖x − z‖2 − ‖y − z‖2) for all

x, y, z ∈ H. Setting x � wn, y � vn, and z � x, we deduce
wn − vn, wn − x  � 1/2(‖wn − vn‖2 + ‖wn − x‖2− ‖vn − x‖2).
/is together with (1) implies that

1
2

wn − vn

����
����
2

+ wn − x
����

����
2

− vn − x
����

����
2

 

+ ςn f vn(  − f wn( , wn − x ≤ 0,

(24)

and it follows that

wn − x
����

����
2 ≤ vn − x

����
����
2

− 2ςn f vn(  − f wn( , wn − x 

− wn − vn

����
����
2
.

(25)

Based on (18), we have
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un+1 − x
����

����
2

� 1 − ζn(  vn − x(  + ζn wn − x(  + ζnςn f vn(  − f wn(  
����

����
2

� 1 − ζn(  vn − x(  + ζn wn − x( 
����

����
2

+ ζ2nς
2
n f vn(  − f wn( 
����

����
2

+ 2ζn 1 − ζn( ςn vn − x, f vn(  − f wn(  

+ 2ζ2nςn wn − x, f vn(  − f wn(  .

(26)

Using (13) and from (26), we deduce

un+1 − x
����

����
2

� 1 − ζn(  vn − x
����

���� + ζn wn − x
����

����
2

− ζn 1 − ζn(  vn − wn

����
����
2

+ ζ2nς
2
n f vn(  − f wn( 
����

����
2

+ 2ζ2nςn wn − x, f vn(  − f wn(  

+ 2ζn 1 − ζn( ςn vn − x, f vn(  − f wn(  .

(27)

According to (25) and (27), we obtain

un+1 − x
����

����
2 ≤ vn − x

����
���� − ζn 2 − ζn(  vn − wn

����
����
2

+ ζ2nς
2
n f vn(  − f wn( 
����

����
2

+ 2ζn 1 − ζn( ςn vn − wn, f vn(  − f wn(  

≤ vn − x
����

���� − ζn 2 − ζn(  vn − wn

����
����
2

+ ζ2nς
2
n f vn(  − f wn( 
����

����
2

+ 2ζn 1 − ζn( ςn vn − wn

����
���� f vn(  − f wn( 
����

����.

(28)

/anks to (19), ‖f(wn) − f(vn)‖≤ β‖wn − vn‖/ςn+1. /is
together with (28) implies that

un+1 − x
����

����
2 ≤ vn − x

����
���� − ζn 2 − ζn(  vn − wn

����
����
2

+ ζ2nβ
2 ς2n
ς2n+1

wn − vn

����
����
2

+ 2ζn 1 − ζn( β
ςn

ςn+1
vn − wn

����
����
2

� vn − x
����

����
2

− ζn 2 − ζn − ζnβ
2 ς2n
ς2n+1

− 2 1 − ζn( β
ςn

ςn+1
  vn − wn

����
����
2
.

(29)

It is noted that 0< liminfn⟶∞ζn ≤ limsupn⟶∞ζn < 1
and limn⟶∞ςn/ςn+1 � 1. /en, we have
liminfn⟶∞ζn[2 − ζn − ζnβ

2ς2n/ς2n+1 − 2(1 − ζn)βςn/ςn+1]> 0.
So, there exists a positive constant θ and a positive integerN
such that when n≥N,\

ζn 2 − ζn − ζnβ
2 ς2n
ς2n+1

− 2 1 − ζn( β
ςn

ςn+1
 ≥ θ. (30)

In combination with (29), we get

un+1 − x
����

����
2 ≤ vn − x

����
���� − θ vn − wn

����
����
2
, n≥N. (31)

By (13) and (16), we obtain

vn − x
����

����
2

� 1 − αn(  un − x(  + αn T vn(  − x( 
����

����
2

� 1 − αn(  un − x
����

����
2

+ αn T vn(  − x
����

����
2

− αn 1 − αn(  un − T vn( 
����

����
2
.

(32)

Using Lemma 1, we have

T vn(  − x
����

����
2

� T 1 − ϖn( un + ϖnT un(   − x
����

����
2

≤ un − x
����

����
2

+ 1 − ϖn(  un − T vn( 
����

����
2
.

(33)

Substituting (33) into (32), we get

vn − x
����

����
2 ≤ un − x

����
����
2

+ αn − ϖn( αn un − T vn( 
����

����
2
, (34)

which results, together with (31), that
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un+1 − x
����

����
2 ≤ un − x

����
����
2

− ϖn − αn( αn un − T vn( 
����

����
2

− θ vn − wn

����
����
2
, n≥N, (35)

which implies that

ϖn − αn( αn un − T vn( 
����

����
2

+ θ vn − wn

����
����
2 ≤ un − x

����
����
2

− un+1 − x
����

����
2
, n≥N. (36)

By assumption, liminfn⟶∞(ϖn − αn)αn > 0. From (35),
we conclude that ‖un+1 − x‖≤ ‖un − x‖, n≥N. /erefore,
limn⟶∞‖un − x‖ exists, and the sequence un  is bounded.

In combination with (36), we derive

lim
n⟶∞

un − T vn( 
����

���� � 0, (37)

lim
n⟶∞

vn − wn

����
���� � 0. (38)

By (16), vn − un � αn(T(vn) − un), it follows from (37)
that

lim
n⟶∞

vn − un

����
���� � 0. (39)

From (38) and the Lipschitz continuity of f, we have

lim
n⟶∞

f vn(  − f wn( 
����

���� � 0. (40)

According to the boundedness of the sequence un , we
conclude that the sequence vn  is bounded by (34) and the
sequence wn  is bounded because of
‖wn‖≤ ‖vn‖ + ςn‖f(vn)‖ by (17).

Since T is L-Lipschitz continuous, we have

un − T un( 
����

����≤ un − T vn( 
����

���� + T vn(  − T un( 
����

����

≤ un − T vn( 
����

���� + Lϖn un − T un( 
����

����.
(41)

It follows that

un − T un( 
����

����≤
1

1 − Lϖn

un − T vn( 
����

����. (42)

/is together with (37) implies that

lim
n⟶∞

un − T un( 
����

���� � 0. (43)

By virtue of (18), (38), and (40), we have

lim
n⟶∞

un+1 − vn

����
���� � 0. (44)

Next, we show that ωw(un) ⊂ Γ. Selecting any
x∗ ∈ ωw(un) and letting uni

  to be a subsequence of un 

such that uni
⇀x∗ as i⟶∞, from (38) and (39), we have

vni
⇀x∗ andwni

⇀x∗. Taking into account (43) and Lemma 2,
we obtain that x∗ ∈ Fix(T). Next, we show that
x∗ ∈ Sol(C, f). Based on (11) and
wni

� projC[vni
− ςni

f(vni
)], we receive

wni
− vni

+ ςni
f vni

 , wni
− x

†
 ≤ 0, ∀x† ∈ C, (45)

which yields

1
ςni

vni
− wni

, u − wni
  + f vni

 , wni
− vni

 

≤ f vni
 , x

†
− vni

 , ∀x† ∈ C.

(46)

Owing to (39), limi⟶∞‖vni
− wni

‖ � 0. It follows from (46)
that

liminf
i⟶∞

f vni
 , x

†
− vni

 ≥ 0, ∀x† ∈ C. (47)

/ere are two possible cases: liminf i⟶+∞‖f(vni
)‖ � 0

and liminf i⟶+∞‖f(vni
)‖> 0.

If liminf i⟶+∞‖f(vni
)‖ � 0, by vni

⇀x∗ and f satisfying
(16), we obtain that f(x∗) � 0. If liminf i⟶+∞‖f(vni

)‖> 0,
then there exists an integerI> 0 satisfying f(vni

)≠ 0 for all
i≥I. By (47), we achieve

liminf
i⟶+∞

f vni
 

f vni
 

�����

�����
, x

†
− vni

 ≥ 0, ∀x† ∈ C. (48)

Let ξj  be a positive strictly decreasing sequence such
that ξj⟶ 0 as j⟶ +∞. By virtue of (48), there exists a
strictly increasing subsequence nij

  satisfying nij
≥I and

∀j≥ 0,

f vnij
 

f vnij
 

������

������

, x
†

− vnij
  + ξj > 0, ∀x† ∈ C, (49)

which results that

f vnij
 , x

†
− vnij

  + ξj f vnij
 

������

������> 0, ∀x† ∈ C,∀j≥ 0.

(50)

We set vj � f(vnij
)/‖f(vnij

)‖2 for all j≥ 0. /en,
f(vnij

), vj  � 1 for each j≥ 0. Owing to (50), we have

f vnij
 , x

†
+ ξj f vnij

 

������

������vj − vnij
 > 0, ∀x† ∈ C,∀j≥ 0.

(51)

Since f is quasimonotone on H, by (51), we get

f x
†

+ ξj f vnij
 

������

������vj , x
†

+ ξj f vnij
 

������

������vj − vnij
 ≥ 0,

∀x† ∈ C,∀j≥ 0.

(52)

Since limj⟶+∞ξj‖f(vnij
)‖‖vj‖ � limj⟶+∞ξj � 0 and f

is Lipschitz continuous, limj⟶∞f(x + ξj‖f(vnij
)‖ vj) � f(x).

Letting j⟶ +∞ in (52), we deduce
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f x
†

 , x
†

− x
∗

 ≥ 0, ∀x† ∈ C, (53)

which means x∗ ∈ Sold(C, f).
Next, we show that x∗ is the unique weak cluster point of

un  in Sold(C, f). Let x ∈ Sold(C, f) be another weak
cluster point of un . /en, there exists a sequence un  of
un  satisfying unj

⇀x as j⟶ +∞. We note that for all
k≥ 0,

2 un, x
∗

− x  � un − x
����

����
2

− un − x
∗����
����
2

+ x
∗����
����
2

− ‖x‖
2
. (54)

We note that limn⟶+∞‖un − x∗‖ and limn⟶+∞‖un − x‖

exist. From (54), limn⟶+∞ un, x∗ − x  exists. Hence,

lim
i⟶+∞

uni
, x
∗

− x  � lim
j⟶+∞

unj
, x
∗

− x . (55)

Since uni
⇀x∗ and unj

⇀x, from (55), we have

x
∗
, x
∗

− x  � x, x
∗

− x , (56)

which implies that ‖x∗ − x‖2 � 0, and hence x∗ � x.
/erefore, un  has the unique weak cluster point in
Sold(C, f). By the condition (C3),
x ∈ C, f(x) � 0 ∖Sold(C, f) is a finite set. /erefore, un 

has finite weak cluster points in Sol(C, f) denoted by
q1, q2, . . . , qm. We set N0 � 1, 2, . . . , m{ } and
] � min ‖qj − qk‖/3, j, k ∈ N0, j≠ k . Let qj, j ∈ N0 be any
weak cluster point in Sol(C, f) and u

j
ni

  be a subsequence of
un  satisfying u

j
ni
⇀qj as i⟶ +∞. /en, we have

lim
i⟶+∞

u
j
ni

,
qj − qk

qj − qk

�����

�����
  � qj,

qj − qk

qj − qk

�����

�����
 ,

∀k ∈ N0 and k≠ j.

(57)

By the definition of ], we have ∀k≠ j,

qj,
qj − qk

qj − qk

�����

�����
  �

qj − qk

�����

�����

2
+

qj

�����

�����
2

− qk

����
����
2

2 qj − qk

�����

�����

> ] +
qj

�����

�����
2

− qk

����
����
2

2 qj − qk

�����

�����
.

(58)

In the light of (57) and (58), there exists an integer intji
such that when i≥ intji ,

u
j
ni
∈ x: x,

qj − qk

qj − qk

�����

�����
 > ] +

qj

�����

�����
2

− qk

����
����
2

2 qj − qk

�����

�����

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

k ∈ N0 , k≠ j.

(59)

We write

Sbj � ∩
m

k�1,k≠ j
x: x,

qj − qk

qj − qk

�����

�����
 > ] +

qj

�����

�����
2

− qk

����
����
2

2 qj − qk

�����

�����

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(60)

Taking into account (59) and (60), we have u
j
ni
∈ Sbj

when i≥max intji , j ∈ N0 .
Now, we show that un ∈ ∪m

j�1Sbj for a large enough n. If
not, there exists a subsequence unl

  of un  such that
unl
∉ ∪m

j�1Sbj. By the boundedness of unl
 , there exists a

subsequence of unl
  convergent weakly to x∗. Without the

loss of generality, we still denote the subsequence as unl
 .

According to assumptions, unl
∉ ∪ m

j�1Sbj, so unl
∉ Sbj for

any j ∈ N0. /erefore, there exists a subsequence unls
  of

unl
  such that when ∀s≥ 0,

unls
∉ x: x,

qj − qk

qj − qk

�����

�����
 > ] +

qj

�����

�����
2

− qk

����
����
2

2 qj − qk

�����

�����

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

k ∈ N0, k≠ j.

(61)

/us,

x
∗ ∉ x: x,

qj − qk

qj − qk

�����

�����
 > ] +

qj

�����

�����
2

− qk

����
����
2

2 qj − qk

�����

�����

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

k ∈ N0, k≠ j,

(62)

which implies that x∗ ≠ qj and j ∈ N0. /is is impossible. So,
for a large enough positive integer N1, un ∈ ∪ m

j�1Sbj when
n≥N1.

Next, we show that un  has the unique weak cluster
point in Sol(C, f). First, there exists a positive integer
N2 ≥N1 such that ‖un+1 − un‖< ] for all n≥N2. We assume
that un  has at least two weak cluster points in Sol(C, f).
/en, there exists n≥N2 such that un ∈ Sbj and un+1 ∈ Sbk,
where j, k ∈ N0 and m≥ 2, that is,

un ∈ Sbj � ∩
m

k�1,k≠j
x: x,

qj − qk

qj − qk

�����

�����
 > ] +

qj

�����

�����
2

− qk

����
����
2

2 qj − qk

�����

�����

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(63)

and

un+1 ∈ Sbk � ∩
m

j�1,j≠k
x: x,

qk − qj

qk − qj

�����

�����
 > ] +

qk

����
����
2

− qj

�����

�����
2

2 qk − qj

�����

�����

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(64)

/erefore,

un,
qj − qk

qj − qk

�����

�����
 > ] +

qj

�����

�����
2

− qk

����
����
2

2 qj − qk

�����

�����
, (65)

and
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un+1,
qk − qj

qk − qj

�����

�����
 > ] +

qk

����
����
2

− qj

�����

�����
2

2 qk − qj

�����

�����
. (66)

Combining (65) and (66), we achieve

un − un+1,
qj − qk

qj − qk

�����

�����
 > 2]. (67)

At the same time, we have

‖un+1 − un‖< ]. (68)

Based on (67) and (68), we deduce

2]< un − un+1,
qj − qk

qj − qk

�����

�����
g ≤ un − un+1

����
����< ]. (69)

/is leads to a contradiction./en, un  has the unique weak
cluster point in Sol(C, f). So, the sequence un  has the
unique weak cluster point x∗ ∈ Γ. /erefore, the sequence
un  converges weakly to x∗ ∈ Γ. /is completes the
proof. □

Based on Algorithm 1 and/eorem 1, we can obtain the
following algorithms and the corresponding corollaries.

Algorithm 2. Initialization: let u0 ∈ H be an initial guess. We
set n � 0.

Step 1. Let the n-th iterate un and the n-th step size ςn be
given. We compute

wn � projC un − ςnf un(  , (70)

and

un+1 � 1 − ζn( un + ζnwn + ζnςn f un(  − f wn(  . (71)

Step 2. We update the n + 1-th step size by the following
form:

ςn+1 �

min ςn,
β wn − un

����
����

f wn(  − f un( 
����

����
 , if f wn( ≠f un( ,

ςn, else.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(72)

We set n: � n + 1 and return to step 1.

Corollary 1. We assume that the operator f: H⟶ H is
quasimonotone, κ-Lipschitz continuous and satisfies the
property (P). Suppose that Sold(C, f)≠∅,
x ∈ C: f(x) � 0 ∖Sold(C, f) is a finite set and
0< liminfn⟶∞ζn ≤ limsupn⟶∞ζn < 1. =en, the sequence
un  generated by Algorithm 2 converges weakly to some point
in Sol(C, f).

Algorithm 3. Initialization: let u0 ∈ C and ς0 > 0. We set
n � 0.

Step 1. For known un, we compute

un+1 � 1 − αn( un + αnT 1 − ϖn( un + ϖnT un(  . (73)

Step 2. We set n: � n + 1 and return to step 1.

Corollary 2. We assume that T: C⟶ C is a pseudocon-
tractive and L-Lipschitz continuous operator. We suppose
that Fix(T) ≠∅ and 0< α < αn < α<ϖn <ϖ< 1/

�����
1 + L2

√
+

1(∀n≥ 0). =en, the sequence un  generated by Algorithm 3
converges weakly to some point in Fix(T).
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