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In this research, we introduced the S-mapping generated by a finite family of contractive mappings, Lipschitzian mappings and
finite real numbers using the results of Kangtunyakarn (2013). Then, we prove the strong convergence theorem for fixed point sets
of finite family of contraction and Lipschitzian mapping and solution sets of the modified generalized equilibrium problem
introduced by Suwannaut and Kangtunyakarn (2014). Finally, numerical examples are provided to illustrate our main theorem.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert
space H. Let F: C x C — R be bifunction. The equilibrium
problem for F is to determine its equilibrium point, i.e., the
set

EP(F) ={x € C: F(x,y)>0, VyeC} (1)

Equilibrium problems were first introduced by Muu and
Oettli [1] in 1992. It contains various problems such as
variational inequality problem, fixed point problem, opti-
mization problem and Nash equilibrium problem. Iterative
methods for the equilibrium problems are widely studied,
see, for example, [2-9].

If we take F (x, y) = {y — x, Bx), where B: C — Hisa
nonlinear mapping, then the equilibrium problem (1) is
equivalent to finding an element x € C such that

(y—x,Bx)>0, VyeC, (2)

which is well-known as the variational inequality problem.
The solution set of the problem (2) is denoted by VI(C, A).

Variational inequality problem were first defined and
studied by Stampacchia [10] in 1964. The variational in-
equality theory is an important tool based on studying a wide

class of problems such as economics, optimization, opera-
tions research and engineering sciences. Several iterative
algorithms have been used for solving variational inequality
problem and related optimization problems (see [11-15] and
the references therein).

Let CB(H) be the family of all nonempty closed bounded
subsets of H and % (-, -) be the Hausdorff metric on CB (H)
defined as

H (M,N) = max{sup d(m,N),supd(M,n)}, VM, N € CB(H),
meM neN
(3)

where d(m,N) = inf, yd (m,n),d (M, n) = inf, d (m,n)
and d(m,n) = |lm -n|.

A multivalued mapping V: H — CB(H) is said to be
Z-Lipschitz continuous if there exists a constant w > 0 such
that

Z (V(p),V(q) <wlp -4l

Let V:H — CB(H) a multi-valued mapping,
¢:C— R be a real-valued function and
¥: HxCxC — R an equilibrium-like function, that is,
Y(z,x,y)+¥(z,y,x) =0 for every (z,x,y) e HxCxC
satisfying the following properties:

Vp,q € C. (4)
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(H1)(z,x)»Y¥(z,x,y) is an upper semicontinuous
function from H x C — R, for all fixed y € C, that is, for
(z,x) e HxC, whenever z, —z and x,— x as
n— 0o,

limsup ¥ (z,, x,,, ¥) < ¥ (2, x, ¥);. (5)

n—~oo

(H2)x—Y¥(z,x, y) is a concave function, for all fixed
(z,y) e HxC;

(H3)y—Y¥(z,x, y) is a convex function, for all fixed
(z,x) e HxC.

In 2009, Ceng et al. [16] introduced the generalized
equilibrium problem (GEP) as follows:

Find x € Cand z € V (x)such that,
(GEP){ (6)
Y(z,x, ) +¢(y) —d(x)=0, VyeC.

Furthermore, (GEP),(V¥, ¢) denotes the solution set of
the generalized equilibrium problem.

In 2012, Kangtunyakarn [7] investigated the strong
convergence theorem using CQ method for two solution sets
of the generalized equilibrium problem (GEP) and fixed
point problem of nonlinear mappings.

In 2014, by modifying the generalized equilibrium
problem (6), Suwannaut and Kangtunyakarn [17] intro-

duced the modified generalized equilibrium problem
(MGEP) as follows:

Findx € Candz e V(I - pA)x, Vp>0,

(MGEP){
Y (z, % 9)+¢(y) —d(x) +{y — x,Ax) >0,

Yy € C.
(7)

where A is a self-mapping on C. Also, (MGEP), (¥, ¢, A)
represents the solution set of (MGEP). If A = 0, (7) reduces
to (6). They also obtain the strong convergence theorem
under some mild conditions.

Definition 1. Let W be a self-mapping on C. Then W is called
(i) nonexpansive if

Wu-Wv|<|lu-v|, VuvecC;. (8)

(ii) contractive if there exists 7 € (0, 1) such that

[Wu-Wv|<tlu-vl, Vu,veC;. (9)

(iii) inverse-strongly monotone if there exists a real
number w >0 such that

Yu,v € C.
(10)

u=v, Wu = W) > w|[Wu - W%,

It is well-known that I — W is demiclosed if W is a
nonexpansive mapping, see [18]. Moreover, Fix (W) is used
to represent the set of fixed points of W.

Definition 2. (see [19]). A mapping W: C — C is called
y-strictly pseudo-contractive if there exists a constant
v € [0,1) such that
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IWu = Wl < llu = vII* + 9I(T = Wu = (I - Wv|?, Vu,veC.

(11)

Browder and Petryshyn [19] introduced and studied the
class of strictly pseudo-contractive mapping as an important
generalization of the class of nonexpansive mappings. It is
trivial to prove that every nonexpansive mapping is strictly
pseudo-contractive.

Definition 3. A mapping W: C — C is called L-Lip-
schitzian if there exists L >0 satisfying the following
inequality:

IWu-Wv|<L|lu-v|, VuveC. (12)

Note that if 0 < L < 1, W becomes a contractive mapping.
If L = 1, W is said to be a nonexpansive mapping. In fact, all
four classes of mappings mentioned in Definitions 1 and 2
are subclasses of Lipchitzian mapping.

Over the past decades, many mathematicians are in-
terested in studying the fixed point of finite family of
nonlinear mappings and their properties, (see
[6-8, 17, 20-23]).

In 2009, Kangtunyakarn and Suantai [24] defined
K-mapping for a finite family of nonexpansive mappings.
Let K: C — C be defined by

U, =MT, +(1-1)L
U, = LToU; +(1-4,)U,
U, =AT U, +(1-1;)U,,
3 . 3T5U, +( U, (13)
Uy = Ay TnaUnoa + (1= Ay ) Uno
K=Uy=ANTyUy_y +(1=Ay)Unoss
where {T,-}iN:1 is a finite family of nonexpansive mappings
and A, €[0,1],i=1,2,...,N. Moreover, under some
control conditions, Fix(K) = N¥,Fix(T;) and K is a non-
expansive mapping.

Later, Kangtunyakarn and Suantai [6] introduced the
S-mapping for a finite family of nonexpansive mappings. Let
S: C — C be defined by

Uy=1,
U, = oc}TlUO + (x;UO + oc;I,
U, = &T,U, + ;U + &2,

U, = €. T5U, + U, + aal, (14)

N-1 N-1 N-1
Una=0ap Ty Uy,+ay Uyp+oag 1

>
N N N
S=Uny=aTyUy_1+a;, Uy +a51,

where {T;}"Y, is a finite family of nonexpansive mappings
and «; = (o}, a),a}) € IxIx I, where I =[0,1] and o} +
b + o = 1forevery j=1,2,...,N. Moreover, under some
control conditions, Fix(S) = N Fix(T,) and S is a non-
expansive mapping.
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If we take aj = 0, Vj = 1,2,..., N, then the S-mapping
reduces to the K-mapping.

In 2013, using the concept of S-mapping, Kangtunyakarn
[25] introduced S*-mapping for a finite family of non-
expansive mappings and strictly pseudo-contractive map-
pings as follows. Let $4: C — C be defined by

Uy =1,
U, =T, (W Uy + Uy + a51),
U, = T,(a}W,U, + oqU, + a31),
Uy = T3 (a4 W5U, + U, + a31), (15)

N-1 N-1 N-1
Uy = TN—1(0‘1 WynaUnop+ay Uy, +ag I)a
$4=Uy =Ty(ay WyUn s + a3 Uy + 05 1),

where {T;}YY,: C — C be a finite family of nonexpansive
mappings and {W;}.,: C — C be a finite family of strictly
pseudo-contractive mappings, I is the identity mapping and
a; = (o, a5, 05) € IxIx I, where I =[0,1] and o} + o) +
ab =1 for every j=1,2,...,N. Also, under some control
conditions, Fix(§%4) = N, Fix(T;) n N ¥, Fix(W;) and $4 is
a nonexpansive mapping.

IfT; =1, for everyi = 1,2,..., N, then the S*-mapping
becomes the S-mapping.

Based on the previous research work, we give our the-
orem for MGEP and S-mapping for Lipschitzian mappings
and some important results as follows:

(i) We first establish Lemmas 2 and 3 showing fixed
point results and some properties of S-mapping for

(ii) We prove a strong convergence theorem of the
sequences generated by iterative scheme for finding
a common solution of generalized equilibrium
problems and fixed point problem for a finite family
of contractive mappings and Lipschitzian
mappings.

(iii) We give some illustrative numerical examples
supporting our main theorem and our examples
show that our main result is not true is some
conditions fail. Moreover, the main theorem can be
used to approximate the value of pi.

2. Preliminaries

Throughout this work, the notations “—” and “ — ” denote
weak convergence and strong convergence, respectively.

Lemma 1 (see [26]). Let {u,} be a sequence of nonnegative
real numbers satisfying

U, < (1-B)u, +1, V¥n=0, (16)

where {B,,} is a sequence in (0,1) and {n,} is a sequence such
that

(1) thil ﬁn =00,

(2) limsup,,__, (1,/B,) <0 or Y2, |1, < 00.

Then, lim,__, u, = 0.
Theorem 1 (see [16]). Let ¢: C —> R be a lower semi-
continuous and convex functional. Let V: H — CB(H) be

F -Lipschitz continuous with constant w, and ¥: H x C x
C— R be an equilibrium-like function satisfying

Lipschitzian mappings under some control (H1) — (H3). Let t >0 be a constant. For each z € C, take
conditions. P, € T(z) arbitrarily and define a mapping S,: C — C as
follows:
1
S (2) ={u € C:¥Y(p,u,v)+¢(v) — ¢(u) +;<u -z,v—uy>0, VYve C}. (17)

Then, the following hold:
(a) S, is single-valued;
(b) S, is firmly nonexpansive (that is, for any u,v € C,
ISu - Stv||2 <(Su—-Sv,u—vy) if
¥ (p1>8:(21),8:(22)) + ¥ (P2 S, (22), S: (21)) <.
(18)

forall (z,,z,) e CxCandall p; e V(z),i=12
(c) Fix(S,) = (GEP), (¥, ¢);
(d) (GEP), (Y, ¢) is closed and convex.

Definition 4 (see [6]). Let C be a nonempty closed convex
subset of a real Banach space. For every i =1,2,...,N, let
{T}Y,,{W,}Y, be a finite family of a ;-contractive mapping
and L;-Lipschitzian mapping of C into itself, respectively,

with L;>1 and n;L;<1. For every i=12,...,N, let
o = (qﬁ,aé, o) e IxIxI, where I=10,1] and
o) + o + o = 1. Define a mapping S: C — C as follows:

Uy =1,
U, =T, (W, Uy + U, + 51,
U, =T, (WU, + a3U, + &31),
U = T WU, + a3U, + a3, (19)

N- N- N-
Uy = TN71(0‘1 "Wy Uyop + @, Uy, + &3 II)’
S=Uy=Ty(y WyUy s+ a3 Uy, + a3 1).

This mapping S is called the S-mapping generated by

T,Ty....Ty, W, W,, .. .,Wy and ap, ay, . .., ay.



N, {T;}X, be a finite family
of a n-contractive mapping and {W,}Y, be L;-Lipschitzian
mapping of C into itself, respectively, with L; > 1, ;L; <1 and
NN, Fix(T;)n nY,Fix(W,)#&. For every i=1,2,...,N,
let a; = (oc’i,ocg,océ) eIxIxI, where I=10,1] and
of +al,+ab =1 Let S be the S-mapping generated by
WL, W,, ..., Wy T, T, Ty and ap,ay,..., ay. Then
there hold the following statement:

(i) Fix(S) = NN, Fix(T;)n NN, Fix(W,);

Lemma 2. Foreveryi=1,2,...,

lx — yI* =11Sx - yII?

= HTN(“?WNUN—I + ‘xlszN—l * “é\jl)x - y"Z
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(ii) S is a nonexpansive mapping.

Proof. First, it is clear that N¥ Fix(T;)nnY, Fix
(W,)CFix (S).
Next, claim that Fix(S)c n ¥, Fix(T;) n N Y, Fix(W)).
Let x € Fix(S) and y € n¥ Fix(T;)n n ¥ Fix(W,). By

Definition 4, we have

<oyl (WaUnorx= ) + 6 Uy ix = 9) + 0 (= )
<[ IWaUn- 6= o + @ U 2= o+ 6 I = 17 - @ WU = - o U =
<@ L Uno = o+ @ U= + e = 1P - @ e WU = - ) o U - 5]
= in(a Ly + a3 )[Un_ 1 =y + e lx = yI°
— ey oy [Wx Uy yx = x|
iy Uy x -
= n o WU = x| = e o U = x|
<(1 - )Unix =y + ol = I
— ey o [WUy e =2 = ey o Uy -y =
<(1- )| Ta (o W Uy + ) Uy +ad D) -y
+ayllx -yl
< (1= ) [yl Wa Upcax = )+ 7 Uy = 9) + @7 o= ]
+ayllx -yl

(1_“3)[’1N— <“1 1"WN 1Un_2X = )’" +0‘2 1"UN 2X = ;V” +“3 Hlx - )’" _0‘1 - N 1”WN 1Un-2x - x”

- Uy - o)

N 2
+o lx =yl

< (1= ") s (o e fUnoox =+ 0 Uk =+ 0= I = e Wi U =

-0 Uy e - )]

N 2
+og lx =yl
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(l—oc3)

—HN1% 71“23\]71“(]1\1— 2X = x||2]

+aj Ix - ylI?

<(1- o) (1 - ) Unoox =y + (1) (1 (1= ™))l - oI
N-1 Nl

(1—0@])’7N 1% ”WN 1UN-2% = xll

_“é\l)’?N I“QI l‘xé\l 1|IUN_2x—x” Tog ||x—y||2
N .
< H (l—oc3)|UN VX — y|| <1— 1_[ (l—ag)>||x_y”2

~(
~(
~(

i=N-1 i=N-1
1- “?)ﬂN-l“i\r foy 1”WN 1WUn-2x — x”
1- “?)WN-l“é\] ' N 1”UN 2X = x“

i=N-1 i=N-1

 [L0-dloss— (1= [ (- Jo- o

ﬁ(l—“s)||sz o ( —ﬁ(l—a§)>llx—yllz

i=3

w

- H(l - oc;)n3afoc§||W3U2x - x"2 - H(l - oc;)moc;(xg”sz - x||2

i=4 i=4

;:lz
=

(- a)lvs—f + (1— (1—a2)>nx—yn2

1]
8}

:lz

(1-a)ux -y + ( —lﬁ[(l—¢>c§)>||x—y||2

i=2 =2

N .
(1 - a3)1120c oc3||W2U x - x|| H(l - ag)ﬂzaiagule - x||2

i=3

— &:2

I
—_

<[]0 —aé)||x—y||2+<1 It _0;3)>"x_y”2

i=1

ﬁ(l—(x3) n0; a3||W1x x”

i=2

N .
=[x - y|I* - H(l - ocg)nloc}océuwlx - x||2.

i=2

From (20), it yields that

An-1Ln- 1(1 - “3 )”UN—Zx - yuz + ﬂN—l“;\H”x - )’"2 ~N-1%

NlNl

W Uy-ox = 2

(20)



N
H(l —aé)ql(x}aéuwlx—xuzso. (21)

i=2
This implies that x = W x, that is,
x € Fix(W)), (22)
Then, by Definition 4, we obtain
Ux= Tl(oc}WIon + océUOx + oc;x)
= Tl(cx}x + X + (xéx) (23)
=T x.
Again, from (20), we get

e - yI* < ﬁ(l - di)|ux -y’ +<1 - ﬁ(l - aé)>||x—y||2

i=2 i=2

(1 - ag)nzaitxi”le - x”z

—

1l
&)

N .
<l =P - TJ(1 - &) eled|U,x - x|

i=3

(24)
which follows that
N . )
[](1 - &)mased||U,x - x| <o. (25)
i=3
We deduce that
U,x =x. (26)
that is, x € Fix(U,).
From (23) and (26), we have
x € Fix(T,). (27)
By (22) and (27), it yields that
x € Fix(T,) nFix(W,). (28)

From (20) and (26), we derive that

e = yI* < ﬁ(l - i) |ux - 5| +<1 - ﬁ(l - aé))llx—yllz

i=2 i=2

=

. (1 - ag)nzafaguszlx - x"2

1

Il
w

N .
=l = yI? =T (1 - & )mpeda|Wypx - |-

i=3
(29)
which implies that

N .
1_[(1 — o )0 5| Wox - x“2 <0, (30)
i=3
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Then we obtain W,x = x, that is,
x € Fix(W,). (31)
By the definition of U,, (26) and (31), we get
U,x = Tz(ocfszlx + oéle + (xgx)
= Tz(oc?WZx + och + oéx)
(32)
= Tz((xfx + (xgx + ocix)
=T,x.
By (20), we have that

[l — yIIZ < ﬁ(l - a;)”sz —y||2 + <1 - ﬁ (1 _ ag))llx _ )/||2

i=3 i=3

N .
~[1(1 - @)Uy - o

i=4

N .
<l = yl2 = T](1 - o sadad|Upx - x|

i=4

(33)
which follows that
N
1—4[(1 - ocg)113ocgoc§”U2x - x”2 <0. (34)
Thus, we get
U,x = x. (35)
By (32) and (35), we obtain
x € Fix(T,). (36)
By (31) and (35), it follows that
x € Fix(T,) N Fix(W,). (37)

By using the same method described above, we easily
obtain that x € Fix(T;)NFix(W;) and U,x = x, for each
i=12,...,N-1.

From (20), we obtain

lx = 12 < (1= a)Un- 1 = 2| + 0 llx - pI?
— iy Y WUy x - x| (38)
<l = yI? = e o [Wyx x|
which implies that
el o [Wyx - x|* <o. (39)
Hence, we have W yx = x, that is,
X € FLX(WN) (40)

By the definition of Uy and (40), it yields that
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N N N
x=8=Upnx= TN(oc1 WxyUnix+o, Uy (X +as x)
_ N N N
= TN(oc1 Wax +ay x + o, x)

_ N N N
—TN(oclx+oc2x+oc3x)

=Tyx.
(41)
which follows that
x € Fix(Ty). (42)
Then, we obtain x € Fix(T'y) N Fix (W), that is,
N N
xen Fix(T;)n n Fix(W,). (43)
Therefore, we can conclude that
N N
Fix(S)< n Fix(T;)N n Fix(W)). (44)
i= i=

Finally, by applying the similar method of (20), S is a
nonexpansive mapping. |

N, let {T;}Y, be a finite
family of n;-contractive mappings and {W,}~, be a finite

Lemma 3. For each i=1,2,...,

”Unlx -Ux, ||—||T ay Wlx +(

< 111"(()41 W x, +(

= ’71|“1’ - “ll”Wlxn - X

For k € {2,3,..., N}, we have

||Un)1xn - len" = "Tl(oc;"lWlxn +(1 - ocT’l)xn) - Tl(ociwlxn +(1 - (x})xn)
< ql'l(aq”lwlxn +(1 - a’f’l)xn) —(a}Wlxn +(1 - (x})xn)

x|

=y lof! - ai|||W1xn -

< Mk [“T,k”WkUn,k—lxn -

MU kX — Upr X ||+|1 v

ot = ah x|

=Mk [“1 Lk"Unk 1%n

+ (X;’k|lUn’k71X Uk 1x || +<

family of L;-Lipschitzian mappings of C into itself, respec-
tively, with nL;<1, ny=maxe,; yi and L=
max,_,; nLp. For each j=1,2,...,N, let oc](»”)
oc;’j,ocg”j), a; = ((x{,océ,océ) € I xIxI, wherel = [0,1], oc”’j +
o +ay’ =1 and af + (xé + (x3 =1 satisfying the following

conditions: o ]

Yoo Iocwrl g - a’| < oo, fori=1,3. Foreveryn € N, let S and
S, be the S-mapping generated by W, ,W,,...,Wy,
T,Ty....,Ty and ap,a,...,ay and generated by
WL W,,..sWy, T, Ty .., Ty and o, &, .. al?,
respectively. Then, for any bounded sequences {x,} in C, there
hold the following statement:

(i) lim,__, IS, x, — Sx,| = 0;

(ii) 2221 IS, %,-1 =S

= (af”,

—a; as n— o0, for i=1,3 and

n—lxn—l ” <00.

Proof. Let {x,} be a bounded sequence in C. For fixed k € N
and for all neN, let U, and U,; be generated by
Wi Wooo s Wy, TppTo Ty and Wi, Wa,o Wy,
T,,T,,...,Ty and )", océ"), e ,ocl(\;'), respectively.

First, we will show that (i) holds. For every n € N, we get

ay 1)xn) - Tl(ociWIxn +(1 - a})xn)
"l)xn) —(oc}WIxn +(1 - ai)xn)

il

(45)

- “1|||WkUk 1% n

otk — otk —1+oc1+oc3|||Uk 1%

_“1“|WkUk 1%n ”

nk

- ] +]a — o] )|Up 1
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nk _ k
sy — o,

Jx.I]
<tk (L + V||Uypr %, = Upy x| + Wk'“?’k —a} (”WkUk—lxn" +||Uk—1xn||)

+ 1k

% — | (U] + %)) (46)

<AL+ D|U, 1%, = Up x| + 11

o = ot (IWUi 5] |Uicx)

+1le = 5| (JUieix +xal)

By (45) and (46), we get

NESE
= “Un,an - Uan”

<y(L+ 1)||Un,N_1xn - UN_lxn"

™ = & |(IWnUN ]+ ])

+n

nN

s = o |(JUn-16] + )

<n(L+1) [11 (L+ DU, n2%, = Uy_ox,|

ot - “i\]71|(“WN—1UN—2xﬂ“ +"UN‘2x"")

ayN - “13\7_1'("UN—2xn" +”x”")]

1

+n

™ = (WU 0w )

1

e = o |(JUn-16] + )

=(n(L+ 1))2||Un,N—2xn - UN—an"

+ ;72 (L+1) a'll’N_l - “?]_IKHWNAUN—an” +"UN*2x”H)
+ ;12 (L+1) ocgl’I\F1 - “13\771|(||UN72xn" +“xﬂ”)

o - o (“WNUN—lxﬂ" +”UN‘1x”")

+n

ol = o (JUs-a |+l

=(n(L+ 1))2||Un,N—2xn - UN—an"

N
S A ¢ A VR
j=N-1

mj_
a” - ocl'<||WjUj,1xn

+|'Uj,1xn

)

N
+ Y gV @t
j=N-1

mj _ ol
oy — (x3'<||Uj_1xn

+x])
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< ((L+ )N U, %, - Uy, |

N
+qu—j+1(L+1) h —oc1|<“WU i-1%n >
=
© N-jil
+y L) | —a(U +x>
]Zz 30(] [ )
<(n(L+ 1))N*1;1l|oc§”1 - ocH"Wlxn - xn“
N
+ Z nN—j+1 (L + 1)N—j aT’j _ a{'|<“WjU._ 1% >
=
N .
3 L el = (U] )
=
By (47) and the fact that oc?’j — (x{ as n — 00, for Finally, we shall prove that (ii) holds. For any n € N, we
every i=1,3 and j= >N, we can deduce that  get
lim,_,,IIS,x, — Sx,ll =
"Un,lxn—l - Un—l,lxn—lll
= “Tl(oc;"lWlxn_1 +(1 - oc'f’l)xn_l) -T ( Mwox, +(1 -t l)xn_l)”
<o Wi,y (1= o)) = (o W + (10 ), (48)
=m "‘?’1 - 0‘111 ll)Wlxn—l —("‘1 - ll)xn—1
= ’11|“ - “’11 11|||W1xn—1 - xn—l“'
For k € {2,3,..., N} and the similar argument as (46), From (48), (49) and the same method as (47), we obtain
we have
"Un,kxn—l - Un—l,kxn—l "
<n(L+ 1)||Unk 1Xp-1 ~ Unflk—lxn—lu
“? b ("WkUnfl)kflxn—lu +||Un—1,k—1xn—1“)
= o5 (0| + ]
(49)
”Snxn—l - Sn—lxn—lu
<(n(L+ 1))1\#1;71]04“1 o 11|||W X, xn_1||
N , .
+ Y NI L DY g - a’f‘l’f|<|jijn,l)j,1xn,l U 1% ) (50)
=2

N
+ Z ;7N7]“ (L+ 1)V
=

n, j n—1,j
o3 — oy |<U

x|

n-1,j-1%n-1
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n+l,j n,j .
Hence, Y2 lai" —a’| <o, for every i=1,3 and

j=12,...,N, we have Y2 IS, x,_1 =S, 1x,_1ll<oco. O
3. Strong Convergence Theorem

Theorem 2. Let C be a nonempty closed convex subset of
a real Hilbert space H. Let {T;}~, be a finite family of
n;-contractive mappings and {W,}Y, be a finite family of
L;-Lipschitzian mappings of C into itself, respectively, with
nL;<1, for all i=1,2,...,N. Assume that Q: = n¥,
Fix(T)n nY,Fix(W))n nY, (MGEP), (¥,, ¢, A) + . For
each i=1,2,...,N, V;: H— CB(H) be ¥ -Lipschitz

n

_\"N i i
v, = a,c,,
i=1

{241 = YHf (Vn) + ﬁnzn + (SnSnVn’

where f: C — C is a contraction mapping with a constant &
and {Vn}’ {ﬁn}’ {8n}g(0’ 1) Wlth ))n + /511 + 871 = 1’ Vl’l2 L.
Suppose the following statement are true:
(i) lim, . y,=0and Y2y, = 00;
(ii)) 0<1<B,,6,<v<;
(iii) 0<n<a,<o<l, for each i=1,2,...,N~1 and
0<n<aN<1with ¥ a =1;
(iv)0<esril§w7<2/\, for
i=1,2,...,N;
v) Zfl(:)l |yn+1 - Yn' <00, 2221 |/3n+l - ﬁnl <00,
thzl |8n+1 - 6n| <00, 2221 |rln+1 N Tlnl <00,
Yoot 14, - a,| < 00, hI ™
YO |t — a’| < oo, for eachi=1,2,...,N and
j=1L2,...,N;
(vi) For each i =1,2,...,N, there exists p; >0 such that

‘{Ii<wil’Tr’l (x1)>Tr; (x2)> + ‘{/i<w;>Tr; (x2)>Tr§ (x1)>

Tr’l (xl) - TV’Z (X2)|

every neN  and

- oc?’jl <00,

2
>

< _Pi'
(52)

. for every (ril,ré) €0, x0, (xl,xz) eCxC and
Wi eV, (x;), for j=1,2, where ©; = {ri:n>1}
Then {z,}, {v,} and {c’} converge strongly to z* € Q, for

n

alli=1,2,...,N.

Vn>1,

Journal of Mathematics

continuous with coefficients y;, ¥;: HxCxC — R be
equilibrium-like  function  satisfying (HI)-(H3). Let
¢: C — R be a lower semicontinuous and convex function
and A: C — C be an A-inverse strongly monotone mapping.
For every neN, let S, be the S-mapping generated by
W, W,,....,W,, T;,T,,..., Ty and (xf"), ocz("), .. ,ocl(\?),
where oc](-") = (ocT’j, ocg’j,(xg"j) €IxIxI, where I=10,1],
oc;"j + ocZ’j +oc’31’j =1 and ocq"j,oc;’j,ocg”j € [b;,b,] c [0,1], for
all j=1,2,...,N. For every i =1,2,...,N, let {z,} be the
sequence generated by x, € C and w) € V(I — | A)x,, there
exists sequences {p'} € H and {z,}, {c\}<C such that

P e Vi1 =1uA)z [P = Pl < (1) (V1= 154)2,,Vi(T = 1 A)2,0),

‘I’i(p;, c;, y) +¢(y) - (/5(6;) +ii(cil -Z,y- ci) +{Az,, y - c;> >0, VyeC,

(51)

Proof. The proof will be splited into six steps. O

Step 1. Claim that I-rjA is nonexpansive, for each
i=12,...,N.
From (51), we get

¥i(pl o) + 6 () - 9(c,)
- | | (53)
+—{c, —(I - rlnA)zn, y—c,»>0,

n

for every y€C and i=1,2,...,N. From (53) and
Theorem 1, it yields that

¢ =Tu(I-1,A)z, Vi=12,...N (54)

n

Put r € ®, for all i =1,2,..., N. From (52), we have

\Pi(wip Tyi (1), T (xz)) + \{Ji(w;’Tr" (x2), Ty (xl))
2
< _Pi“Tri ('xl) - Tr" (x2)|| <0,
(55)
for all (x;,x,) € CxCand w) € V;(x;), j=1.2.
From (55), it implies that Theorem 1 holds.

- Letu,v € C. Since A is A-inverse strongly monotone with
ri, € (0,2A), it deduces that



Journal of Mathematics 11
i i 2 Step 2. Prove that {z,}, {v,} and {c'}, Vi=1,2,..., N are
“(I B rnA)u _(I B r"A)V“ bounded.
_ ||u e r;(Au _ Av)||2 Let z € Q. From Theorem 1, observe that
i i\2 N
=|u-v|* - 2r,{u—v, Au - Av) +(rn) lAu — Av|* (56) “Vn _ z” < Z alnucln _ Z"
2 i 2 i\2 2 i=1
< llu = vI* = 2Ar [ Au - Av|? +(r,,) | Au - Av| -
=l = vI? + 7 (v = 20) | Au — Av)P? =Y a1, (1-riA)z, - 2| < |z - 2]
i=1
<lu— v, (57)
Thus I-r,A is a nonexpansive mapping, for all By nonexpansiveness of S,, we derive that
i=12,..., N.
[z = 2l <vall £ () = 2l + Bullz = 2] + 8, [Sv - 2]
<1, (|f ) = £ @] +1£ ) = 2) + Bz — 2] + 8,vs - 2]
G A TR RYCK A Y S )
=(1-y,(1=8)|z, — 2| + vl f (2) - 2l
gmax{nxl _ 4|,W}.
By induction, we obtain |z, - z| <max{|lx, - z|, Step 3. Show that lim, | lz,,; —z,ll =0.
(If (z) — zll/1 = &)}, Vn € N. It follows that {z,} is bounded By the definition of z,,, we obtain
so are {v,} and {c'}, Vi=1,2,..., N.
||Zn+1 - Zn”
Syn"f(vn) - f(vn—l)“ +|Yn - Yn—ll”f(vnfl)"
+Bullzn = Zucr | +1Bs = Buci |21 |
+ 8n|lsnvn - Snvn—lu + 6n|lsnv -1~ Sn—lvn—ln
+|8n - 8n—1|”8n—lvn—ln
< Yngnvn ~ Va1 “ +|Vn - Vn—l'"f(vn—l)"
+ /))n“zn - zn—l" +lﬁn - ﬁn—l I”Zn—l“
+ 87,”1/" ~ Va1 “ (59)

+ 6n|'snvn—1 - Sn—lvn—lll +|8n - 6n—1|||sn—lvn—1"

N o ) N )
i i i i
SYnf Zanucn - Cn—l" + Z a, =
i=1 i=1

i
an—l

||c:;1||] vl Gl

+ ﬁn“zn - Zn—l" +lﬁn - /—;n—l I”Zn—l“

i=1 i=1

N . N
+0, [Z a’n"c'n - c;H" + Z

i i
an an—l

|

+ 8nl'snvn—l - Sn—lvn—l " +|6n - 6n—1|||sn—lvn—1"'



12 Journal of Mathematics

By using the same method of proof in Step 3 in [17], we Substitute (60) into (59), we get

obtain
|z,

i i
T = Tyt

I, = cnall <Mz = 2l +
(60)

1
+_
13

i
rn rn—l

c; —(I - r;A)zn .

||Zn+1 - Zn”

z|

i i
an an—l

) . - “Cln—1":| ¥ = Vac || f ()|

c; —(I - r;A)zn

i
rn rn—l

42,11+

i
rn rn—l

SE E (I =z +

i=1

+ ﬁn“zn - Zn—l" +|Bn - ﬁn—l“lzn—l”

z|

c; —(I - r;A)zn

i i
rn rn—l

i i i i “ i "
Ty =Ty + an an—l Cn—l
i=1

1
4z, +

N .
+3, [z (e =z +

i=1

+ 8nllsnvn—l - Sn—lvn—l “ +|8n - 6n—1|||sn—lvn—1"

N
< (1 ~Vn (1- z;‘))“Zn - Zn—l" +2 Z aln rln - rln—l ”Azn—ln
i=1
N . . N 4
+ - Z a,|r, —7_lllc, —(I - r’nA)zn +2 Z a,-a, ”cln_l n
i i=1

Il
—_

+lYn - lel“f (anl)” +|ﬁn - ﬁn—l”'zn—l" +|lsnvn—1 - Sn—lvn—ln

+l6n - 5n—1|”sn—lvn—l ”
(61)

et =2l < lew =2l Nz =il + 2ri e~ il Az, — Az

Using the conditions (i), (v), Lemmas 1 and 3 (ii), we
obtain (63)
lim ||szr1 - zn" =0. (62) and also
n—~mo
lim ||Az, - Az| = 0. (64)
Step 4. Claim that lim, llc, -zl = lim, . |S, From the definition of z, and (63), we derive that

Vn_vn”=0;Vi=1,2 ..... N.
By following the same method as in Step 4 of [17], we

deduce that

20 -2l

<vallf 0a) =2l + Bl = 2l + 0,80~ 2

<l () ==l + ol +8, a2l

N
< 0n) ol + Bl =2l + 0,3 e - o ~lew= &I + 27, - 42, - ac])
i=1
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< Yn"f (Vn) -

13

2 2 N i
2 +lzn -2l -8, 2 ailz <l
i=1

N
+20, Z afdr;”zn - c’n“ ||Azn - Az”.

which implies that

N P12
6n Z a:1||zn - Cln"
[z = 2+ vall £ () - 2]

<[l —Z||

+28, Y dyr ey - Iz, - 42
i=1

<(lzu = 2l +lzuer = 2Dlzaes = 2all + vl £ () = 2l
+26, ; a;r;“zn - c;" |Az, - Az]|.

(66)
From (62), (64) and the conditions (i), (ii), (iii), we get

nl'gnoo“zn - c'n" =0, foralli=1,2,..., N. (67)

i
n

Zpt1 ~ Vn _Vn(f(v) ) B

_Yn(f(v)_v)+ﬁn

”MZ\ gM2|

From (67), (69) and (71) and the conditions (i) and (ii),
we can conclude that

nh_r)noo”SnVn - Vn” =0. (73)

Step 5. Prove that {z,}, {p},} and {r},} are Cauchy sequences,
foreachi=1,2,..., N.

Let a € (0, 1), by (62), there exists N € N such that
|2ns1 — 2a] <a”, ¥n=N. (74)

Therefore, for any n>N € N and p € N, we derive that

n+p-1 n+p-1

Z |21 — 2] < Z a <za =

(75)

Z}’Hp

Since a € (0,1), we get lim, , a"=0. From (79),
taking n — oo, we obtain {z,} is a Cauchy sequence in
a Hilbert space H. Let lim, , z,=2z% Since

(65)
Consider
N N
ol =Yz s Yalh-a) @
i=1 i=1
Then, by (67), this follows that
nlinoo”V” - Zn" =0. (69)
Since
[z = vall ll2es = 2all +ll2 = val (70)
then, from (62) and (69), we obtain
nhl)n ||Zn+1 - vn" =0. (71)
By the definition of z,, we obtain
(c - ) +6,(Suve — V)
(72)

a((c = 2,) + (20 = V) + 8, (v = V).

V;: C— CB(H) be #-Lipschitz continuous on H
with coefficients y;, for every i =1,2,..., N, and (51), we
have

12, = Ph | s<1+%>7/ (I-1, A z V(I rmA)an)
(1 +%>M1‘KI 1’ A n+1A)Zn+l

<(1e (-
A1 -rA)z1 (1= 711 A)z,
< (12 )2~ 2l +
< (1 )l = 2l |

I I’A) Zpt1

)

n+1

)
M),

i i
n+l rn

(76)
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where M = max,\{llAz,l}. From (62), (76) and the con-  lim,  p’ =p;, and lim, ,r =r; for every
dition (vi), we obtain i=1,2,...,N.
P ) — Next, claim that p; eV;(I-rA)z", for each
mnHOO”pn_an“:O’ foreveryi=1,2,...,N. (77) i=1,2,...,N.
It is obvious that {p’ } and {ri } are Cauchy sequences in a Because p;, € V;(I - ,A)z,, we obtain
Hilbert space H, for all i=1,2,...,N. So we let
d(p,, V(I -1; A)z")
< max d pn, - r;‘A)z*), sup d(Vi(I - r;A)zn,ﬁi)
pieV; (I-rfA)z*
(1-r; 4) (78)
< max sup  d(p,V,(I-rfA)z"),  sup d(V,»(I - r;A)zn,ﬁi)
eV (I-rid)z, pieV; (I-r; A)z*
—rAzn,V(I—r A)z" ), foreachi=1,2,...,N.
d(pi,Vi(I-r{A)z") =0, (80)
Since
d(p V(-7 A)z") which implies that B
; ; .\ pieV,(I-r/A)zZ", forali=12,...,N. (81)
<|pi = il +d(p, Vi1 -ri A)z")
<lp; - pull + Z(Vi(1-1,A)z,,S,(I -1 A)z")
. ; . Step 6. Finally, show that {z,}, {v,} and {c} converge
<[pi - pul + /Ai'KI - rnA)zn —(I-r/A)z strongly to z* € Q, for every i =1,2,...,N.
Clar i e (i g Without loss of generality, we can assume that z,, —z" as
=loi —pull+ ‘u"“(z” z (r”Az” rj Az ) ‘ k — co. By (69), we easily obtam that v, —z* as ks oo,

(79)

taking n — 00, we have

a*! — a! € (0,1)ask — oo,

Let S be the S-mapping generated by T,T,,..., Ty,
W, W,,...,W,and ay, a,, . .., ayy. By Lemma 2, we have S
is nonexpansive and Fix(S) = ﬂfilFix(Ti) n ﬂfilFix(Wi).

From Lemma 3 (i), we obtain

leoo ey Svnk =0. (83)
Since
Vi, = SV [l < Vi, = S Vi || +{|Sn, Vi, = SV || (84)
by (73) and (83), we have
kli_r)noo Vi, — Svnk =0. (85)

Since v, —z" as n — 00, (85) and I — S is demiclosed,
we deduce that

2 € Fix($) = 0 Fix(T,) n 0 Fix(W)) (86)

For each j=1,2,...,N, o} ',az ,(x3J€[b1,b]C[0 1],
without loss of generahty, we may assume that

foreveryi=1,2,3andj=1,2,...,N. (82)

Finally, we show that z* € NN, (GEP), (¥,, ¢, A).
Since z, — z" ask — o0 and (67), we get

cilk — z'ask — 00, foralli=1,2,...,N. (87)

From (51), we have
V(£ o y) + 60 - ¢(cr, )

1 ; . )
+— (c;k - c’nk) +(Az,,y - clnk> >0.

e

Zpo Y

(88)
for every y € Candi=1,2,...,N. From (67), (87), the

condition (H1) and the lower semicontinuity of ¢, we
deduce that

VY (p/, 25 y)+d(») —¢(2") +<(AZ", y - 2"y >0. (89)
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forevery y € Candi = 1,2,..., N, which follows by (81)

that

z" € (GEP),(¥,,¢,A), foreveryi=1,2,...,N.  (90)

It follows that
e ,Igvl (GEP), (¥, ¢, A). (91)

From (86) and (91), we have
z" e Q. (92)

Therefore, we obtain the sequence {z,} converges
strongly to z* € Q. Moreover, from (67) and (69), we have
{v,} and {c'} converge strongly to z* € Q, for every
i=1,2,...,N. This completes the proof.

The following corollary is a direct consequence of

Theorem 2. Therefore, the proof is omitted.

peV

ici
n-n’

where f: C —> C is a contraction mapping with a constant £
and {y,}, {B,}, {8,}<(0,1) with y,+p,+6,=1, Vn>1.
Suppose the following statement are true:

(i) hmn—»ooyn =0 and ZS;ZI Yn = 05

(ii)) 0<7<f,,8,<v<];

(zzz)0<17<a <o<l, for each i=1,2,.
0<n<al<1with YN a =1;

n=1"n

N -1 and

(iv) 0<e<r,<w<2\,  for every neN and
i=12,...,N;
(V) 22t Wt = Yl <00, T2 1By = Bal < 00,
2221 |8n+1 - 8n| <00, z =1 |rn+1 rlnl < 00,
, ; L ¥
Yo lal, —ajl <o, T2, lay ™ — o] <co,

Yoo 1|oc"+”—oc3]|<oo for eachi=1,2,...,N and

j=12,...,N;

Hi(Phocho ) + 60D = §(h) + 7 =2y
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Corollary 1. Let C be a nonempt% closed convex subset of a
real Hilbert space H. Let {T;};., be a finite family of
n;-contractive mappings and {Wi}lN:1 be a finite family of
L;-Lipschitzian mappings of C into itself, respectively, with
nL; <1, for all i=1,2,...,N. Assume that Q: =
NN Fix(T)n nX Fix(W)n nY, (GEP),(Y¥,,$) # O. For
each i=1,2,...,N, V;: H— CB(H) be J-Lipschitz
continuous with coefficients y;, ¥;: HxCxC — R be
equilibrium-like  function  satisfying (HI)-(H3). Let
¢: C — R be a lower semicontinuous and convex function.

For every neN, let S, be the S- mapp(zr)zg genemted b;/

WI,WZ,.. W, T,,T,,...,Ty and )", a2 ,...,ocN,
where al” = (oc1 0y ,063])€I><I><I where 1= 10,1],

+ocgf]+(x3 =1 and o, oy, a3’ € [b),b,] C [0,1], for
all j=1,2,...,N. For every i = 1,2,...,N, let {z,} be the

sequence gengrated by x, € C and wh € V;(x,), there exists
sequences {p.} € H and {z,}, {c\}<C such that

"Pn Pn+1|| < (1 + 1)%(‘71' (22), Vi(241))>

cL) >0, VyeC,

(93)

Z}’l+1 = Yﬂf (Vﬂ) + ﬁﬂz + 6 Snvn’ V?’l> 1

(vi) For each i =1,2,...,N, there exists p; >0 such that

5wl Ty (). T (52) ) + W0 T (2. T (1))
s () =Ty ()]

< —pi
(94)

for every (r},r}) €©;x0, (x,,x,)€eCxC and
wh €V, (x)), for]—l 2, where@ {ri n>1} Then {z,},
{v.} and {c} converge strongly to z*€Q, for all
i=1,2,...,N.

In 2014, Suwannaut and Kangtunyakarn [17] introduced
the viscosity approximation method for the modified gen-
eralized equilibrium problem and a finite family of strlctly
pseudo-contractive mappings in Hilbert spaces. Let {T} -

be a finite family of «;-strictly pseudo-contractive mappings
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with F: = nN F(T,)n nY, (MGEP),(¥;,¢,A)+ . For
i=1,2,...,N,let {x,} be the sequence generated by x, € C

i i i
¢(Cn) * ri <Cn

n

\Pi(P;’ C;’ }’) +¢(y) -

where K, is a K-mapping generated by a finite family of
strictly pseudo-contractive mappings and real numbers.
Then, under some control conditions, the sequences {z,}
and {c} converge strongly to q=Pgsf(q), for all

n

i=12,...,N.

Remark 1. The iterative method (51) is a modification and
extension of the iteration (95) as follows:

(1) S-mapping can be reduced to K-mapping. Therefore,
K-mapping is a special case of S-mapping.
(2) In this research, a finite family of Lipschitzian

mappings is considered instead of using a finite
family of strictly pseudo-contractive mappings.

4. Numerical Examples

In this section, we give numerical examples to support our
main theorem.

Example 1. Let the mappings ¢: R — R, A: R — R,
f: R — R be defined by
2

pu=u’,
u
Au =2, (96)
u
fu= T forallu e R.
Un,OZn =z,
1/9
Un,lzn = g (gUn,O +<_

18

UnaZn = 5z (23U’11

—Zp Y

Zn+1 = Yﬂf (Vi’l) + ﬁnz + SHKVIVH’ Vn> 1

Journal of Mathematics

and w] € V,(I -r{A)x,, there exists sequences {p)} € H
and {z,}, {c,}<C such that

(. . . . 1
Pl e Vi(1-rA)z, P - p;+1||s<1+;>%’(v( — A Az, V(T =7 Az,

—dy +(Az,, y-c )20, VyeC,

(95)

Fori=1,2,...,N,letT;: R — Rand W;: R — Rbe
defined by
it = o
: (97)
Wiu =2iu, foreveryu € R.
Fori=12,...,N, let V; R —> R, ®; RxR— R
be defined by
u
Viu=—,
8

(98)

O, (w,u,v) =iw(v—u), foreachw,u,veR.

Let y, = (1/6n), B, = ((3n-2)/6n), 6, = ((3n + 1)/6n),
r,= ((5n+2)/(7n+9)) and a), = ((2n+ 1)/ (51 + 3)), aﬁ =
((3n+2)/(5n+ 3)) foreachn € N. Forevery j =1,2,...,N
and let af = (3/(52+3)), o =32 (5%+3)),
o} = (2j%/(57% + 3)). Then, the sequences {zn}, {v,} and {c’}
converge strongly to 0, for each i =1,2,...,N.

Solution. It is clear that the sequences {yn} {B.}{6,},
and {r,} satisfy all the conditions of Theorem 2. It is easy
to show that T; is a contractive mapping with coeffi-
cient 171 = (1/5i) and W, is 3i-Lipschitzian mappmg
Since «f = (3/(552 +3)), 0c2 (372 (55*+3)), o} = (2/2/
(52 +3)), then a; = ((3/(5j +3)), (3j*/ (5> +3)), (2j°/
(5j2+3))) for j=1,2,...,N. Since S, is S-mapping gen-
erated by T, T,,..., T, W;,W,,..., W, and 0,,0,,...,0,,
we obtain

bl 4
n,0 8 n

12 8
23>U"’1 " E)Z”
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U 1( 9 __— 3k? U . 2k*
Z,=— | —75— —_— — )z
wkn sk \5k2 3 M T \sk2 43 MR T s 437

1 IN-1) 3(N -1 2(N -1 (99)
UnN 1%n 2 Jn,N—2+ . 2 A Un,N—2+72 Zy
T5(N-1) 5(N- 1) +3 5(N- 1Y +3 5(N-1)°+3
S U 1 9NU+3N2U+2N2
z, = z,=——55—U, 5 — qt—— |z
non NI TN \s(N)2 3 PN BN +3) YT T sN2 437"
N . N N
From the definition of T, and W,, we deduce that 1 Fix (T:)n D Fix (Wi)n N (MGEP); (i, A) =
N N
(0} = 0 Fix(T;)n 0 Fix(W,). (100) (101)
i= i=
Therefore
For i=1,2,...,N, we have that ®, V¢, A satisfy all
conditions in Theorem 2 and
i i 1 i i
0< q)i(pn’ C> )/) * ¢(y) - q)(cn) + r_; <)/ TG Cy T Zn> +<Azn’y - Cn>
n
i i > iy, 1 iN( Zy i
= Ipn(y - Cn) +y _(Cn) +f'—l(y - Cn)(cn - zn) +?(y - Cn)
s
(102)

o< iy e () L (- )eh20) + 2 e -20)

n
i\2 A 1;
= —(C ) -r (Cn) - lT’ Cnpn + C Z, - —T' C Z,+ Cny + zrnpny z,y

n n 27111

1. )
+ Er;zny + r;yz.

Let G(y) = —(c) —ri () —irt cnpn+ cz— (1/2)  b=c, +zrnpn—z +(1/2)r iz and c=—(c)* -7 ()~

riciz, +cy+irlply—z,y+ (1/2)rlz,y +r y% where irc, pl + ¢z, — (1/2)r}c,z,. Determine the discriminant A
G( y) is a quadratic function of y with coefficients a =r,,  of G as follows
A = b - 4ac

1 2
(C +17’P -z, +2TZ>

4 () - () - i+ i, - iz

=(c;)2 + 4”;(Ci:)2 + 4(r;)2(c;) + 21r cnpn + 41( n) c;p; + iz(r;)z(p;)z
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otz —3ridz +2r Vi z —2irpz +ilF Yz 42—
anfl rncnzn rn ann lrnpnzn ! ri’l pnzn Zﬂ rnzn

A=)

(103)

= Z(ZC; + A1y, + 2ir, P, — 22, + 1,2,,) .

From (102), we have G(y) >0, for every y € R. If G(y)
has most one solution in R, thus we have A < 0. This deduces
that

b —2ir;pil + Zzn' - r;zn
2(1+2r,)

(104)

n

For each n € N, we rewrite (51) as follows:

p; = V,-(I - r;A)z,,

n

i _ —2ir;p; +2z, - ri,z
2(1+2r,)

VneNandi=1,2,...,N.
(105)

Zptl = ynf (vn) + ﬁnzn + é\nsnvn’

From Theorem 2, the sequences {z,}, {v,} and {c}
generated by (105) converge strongly to 0, for every
i=12,...,N.

The numerical values of all sequences {z,}, {v,} and {c.},
{c?} are shown in Table 1 and Figure 1, where N =2 and
n= N = 200.

Next, we will give an numerical example for the iterative
method (95) in the work of Suwannaut and Kangtunyakarn
(17].

Example2. Fori=1,2,...,N,letthemappingT;: R — R
be defined by

5
Tu= 5t Vu € R, (106)
and
2
=" vnen. (107)
to250n +i

Let all parameters and mappings be defined the same as
mentioned in Example 1. It is obvious that T is 1/4-strictly
pseudo-contractive mapping, for eachi = 1,2,..., N and all
parameters and mappings satisfy all conditions of Theorem 2
in [17]. Thus, we get

N N
{0} = N Fix(T;)n N (MGEP),(®;, 9, A). (108)
i= i=
The numerical values of all sequences {z,,}, {v,} and {c.},

{c2} are shown in Table 2 and Figure 1, where N =2 and
n =N = 200.

Remark 2. From the above numerical results, we can
conclude that

(i) Table 1 shows that the sequences {c}}, {2}, {v,} and
{z,} converge to 0, where {0} = NY, Fix(T;)n
NN, Fix(W,)n nY, (MGEP),(®,9,A) and the

convergence of all sequences can be guaranteed by

Theorem 2.
(ii) Table 2 shows that the sequences {c.}, {c?}, {v,} and
{z,} converge to 0, where

{0} = nY,Fix(T;)n N, (MGEP)(®,9,A) and
the convergence of all sequences can be guaranteed
by Theorem 2 in [17].

(iii) From Tables 1 and 2, we have that the iterative

method (51) converges faster than the iterative
method (95).

Similar to Example 1, we give another example for
Theorem 2. Moreover, we use this numerical example to
approximate the value of 7.

Example 3. Let the mappings ¢: R — R, A: R — R,
f: R — R be defined by

ou=(u- )%,

Au=——, (109)

, forallu e R.
For every i=1,2,...,N, let
W,;: R — R be defined by

u 3im
iuz . " b
3i+1 3i+1

T:R—R and

(110)

Wu=(i+1u—in, forallueR.

Fori=1,2,...,N,letV;: R — R,¥;: Rx R — Rbe
defined by
X—T

Viu =
8

>

(111)

Y (w,u,v) =iw(v—-u), foreachw,u,veR.

Let all parameter sequences be defined as in Example 1.
Then, the sequences {z,}, {v,} and {c!} converge strongly to
7, for eachi=1,2,...,N.

Solution. It is clear that the sequences {y,},{f,}.{9,}
and {r,} satisfy all the conditions of Theorem 2. It is obvious
that T; is a contractive mapping with coeflicient
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TaBLE 1: The values of all sequences for the iterative method (51).

1 2

n c! A v, z,
1 0.226562 0192633 0.205356 1.000000
2 0.021764 ~0.002027 0.007123 0.175224
3 ~0.007967 ~0.030669 ~0.021841 0.058556
4 ~0.017253 ~0.039651 ~0.030887 0.022469
5 ~0.020720 ~0.042995 ~0.034244 0.009040
100 ~0.022991 ~0.044964 ~0.036184 ~0.000031
196 ~0.022985 ~0.044950 ~0.036168 ~0.000016
197 ~0.022985 ~0.044949 ~0.036168 ~0.000016
198 ~0.022985 ~0.044949 ~0.036168 ~0.000015
199 ~0.022985 ~0.044949 ~0.036168 ~0.000015
200 ~0.022985 ~0.044949 ~0.036168 ~0.000015
“e—— 1 : : :
1
Lr 1 0.8 :u ]
I |
08 L 4 |
N : & 06 :— - - - BRI - - - -4
o =
£ 06} 1 F
>;: : >i= 0.4 T i
Nuc‘ 0'4 T O L L ST . N . N N N . N . 1 N()= : . . .
—~E ! ~= 02 . . . . . . . . -
% 02 1 ° g ‘ ‘ ‘
i ]
g S S TS S Ofimmmnoos oo
202 L L L L L L L L L 202 L L L
0 20 40 60 80 100 120 140 160 180 200 0 50 100 150 200
n n
c -z c -z

(a) (b)

FIGURE 1: The convergence of all sequences for the iterative method (51) and (95). (a) The iterative method (51) (b) The iterative method
(95).

TaBLE 2: The values of all sequences for the iterative method (95).

1 2

n c, c, v, z,

1 0.226562 0.192633 0.205356 1.000000

2 0.023261 -0.000569 0.008596 0.181057

3 -0.007420 -0.030133 -0.021300 0.060666

4 -0.017105 -0.039506 -0.030740 0.023036

5 -0.020743 -0.043018 -0.034267 0.008950

100 -0.023122 —0.045094 -0.036314 -0.000524
196 -0.023114 -0.045079 -0.036298 -0.000505
197 -0.023114 -0.045079 -0.036298 -0.000505
198 -0.023114 -0.045079 -0.036298 -0.000505
199 -0.023114 -0.045079 -0.036297 -0.000505

200 -0.023114 -0.045079 —-0.036297 —-0.000505
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n; = (1/(3i+1)) and W, is i+ 1-Lipschitzian mapping.

N . N . N
From the definition of T,, and W, we obtain [ Fix (T)n [ Fix (wWi)n n (MGEP), (¥, ¢, A) ={n}.
N N
{mh = N Fix(T)n 0 Fix (W), (112) (113)

o Then we deduce that
For each i=1,2,...,N, it is obvious that ¥;,V;, ¢, A
satisfy  all  conditions in  Theorem 2  and

me NN, (MGEP) (¥, ¢, A). Then we have

OS‘I’,-(p;,u;,y) + ¢(y) - (p(ulfl) +ll<y —u;,u; _Zn> +<Azn’y _uf’l>

n

= ip;(y—u;) +(y - 71)2 —(u; - n)z +rll.(y —u;)(u; —zn)

+(Zn_r[)(y_uf1)

2 (114)

i 1 )
FIPLY = 2 ST ZY 1Y

Let G(y)= (5nriul/2) - (Lt;)2 - r;(u;)z —irtul pt + (1/2)r'z,,and ¢ = (5mriul/2) - (uil)2 -, (u;)2 —irtul pt+
uz,— (12)riuz, — (5ar,y/2) +u,y +ir,p,y —z,y+ (1/  ujz, - (1/2)r,u;z,. Determine the discriminant A of G as
2)riz,y + ! y*, where G (y) is a quadratic function of y with  follows:

coefficients a=r,, b=-(5nr,/2)+u,y+ir,p, —2z,+

A =b* - dac

i 2
57‘[1’; i i 1 i
= — > + u,y + lrnpn -z, + Ernzn

. Sﬂri ui SN2 . S\2 L. . 1. .
1 nn 1 1 1 o 11 1 1 11
- 4(rn)( 5 —(un) - rn(un) —ir,u,p, +u,z, - Ernunzn

25712(7’;)2 i iN2 i\2 ifi? iV2(, i\?
Z?—&Wﬂ”n_ IOn(rn) ”n+(”n) +4rn(un) +4(rn) (un)

(115)

1

+ Siﬂ(r;)zp; + 2ir;unp; + 4i(r;)2u;p; + iz(r;)z(p;)z + Sﬂr;zn

5 i\2 20 374 2121' 2irt pi (P2 i
_Eﬂ r,) 2, —2u,z, - 3r,u,z, +2(r,) u,z, —2ir, p,z, +ilr,) P,Z,

= 5(5711"; = 2u, — 4r,u, — 2ir, p + 2z, — r;zn) .
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TaBLE 3: The values of {c}, {c2}, {v,} and {z,} with x; =3, N =2 and n = N = 20000.
n cl c v, z,
1 3109513 3.114317 3.112516 3.000000
2 3.037897 3.043914 3.041600 2724918
3 3.057601 3.062415 3.060543 2.804982
4 3.076533 3.080691 3.079064 2.879347
5 3.090648 3.094446 3.092954 2.934169
250 3144346 3.147455 3.146212 3.139700
1000 3.144638 3.147747 3.146504 3.140807
10000 3.144825 3.147934 3.146691 3.141514
19998 3.144836 3.147945 3.146701 3.141553
19999 3.144836 3.147945 3.146701 3.141553
20000 3.144836 3.147945 3.146701 3.141553
32— —
3.15 SEEEEsLss s s e i
31 l)
1
3.05 !
& |
23
[+ I
2951
N?:
S 29y
— s
(9}
285 |
2.8 |
2.75 F
2.7 1 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700 800 900 1000

F1GURE 2: The comparison of sequences {c\}, {c?}, {v,} and {z,} with x; =3, N =2 and n= N = 1000.

From (114), we have G(y) >0, for every y € R. If G(y)
has most one solution in R, thus we get A < 0. This yields that

i _5mr, = 2in,p +22, - 1,2,
" 2(1+2r)

c (116)

For each n € N, (51) becomes
P, =V (I-7A)z,

d o 5mr, — Zir’np; +2z,-1,2,
" 2(1+2r})

>

Zpe1 = Youf (v,) + Bu2, +96,S,v,, ¥YneNandi=12,...,N.
(117)

From Theorem 2, {z,}, {v,} and {c}} generated by (117)
converge strongly to 7, for every i =1,2,...,N
The numerical values of all sequences {z,}, {v,} and {c}},

{c?} are shown in Table 3 and Figure 2, where N =2 and
n =N = 20000.

Remark 3.

(i) From Table 3 and Figure 2, the sequences {c.}, {2},

{v,} and {z,} converge to 7, where {n}=
NN Fix(T))n  n¥ Fix(W,)n n¥, (MGEP), (¥,
6, A).

(ii) The convergence of {c.}, {c2}, {v,} and {z,} can be
guaranteed by Theorem 2.

(iii) Using this as an example, Theorem 2 can be used to
approximate the value of 7.
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5. Conclusion

In this research, we study and analyze the viscosity iterative
method for approximating a common solution of the
modified generalized equilibrium problems and a common
fixed point of a finite family of Lipchitzian mappings. It can
be seen as an improvement and modification of some
existing algorithms for solving an equilibrium problem and a
fixed point problem of Lipchitzian mappings and some
related mappings. Some previous research works, for ex-
ample, [6, 7, 16, 17, 25] can be considered as special cases of
Theorem 2. Moreover, some numerical examples for our
main theorem are provided.
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