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Many nonlinear phenomena are modeled in terms of dierential and integral equations. However, modeling nonlinear phe-
nomena with fractional derivatives provides a better understanding of processes having memory eects. In this paper, we
introduce an eective model of iterative fractional partial integro-dierential equations (FPIDEs) with memory terms subject to
initial conditions in a Banach space. e convergence, existence, uniqueness, and error analysis are introduced as new theorems.
Moreover, an extension of the successive approximations method (SAM) is established to solve FPIDEs in sense of Caputo
fractional derivative. Furthermore, new results of stability analysis of solution are also shown.

1. Introduction

Most of the physical phenomena are modeled in ordinary
dierential equations (ODEs) and partial dierential
equations (PDEs). During the last decades, it has been noted
that modeling complex phenomena, using fractional de-
rivatives, provides a good �t due to their nonlocal nature.
Fractional derivatives are eective tools to formulate pro-
cesses having memory eects. Furthermore, fractional PDEs,
which are considered the generalization of PDEs with
fractional-order derivatives, have been widely used in many
areas of sciences and engineering, and they have been the
topics of many workshops and conferences due to their
essential uses applied in numerous diverse and wide-
spread �elds in applied sciences [1–7]. Furthermore,
FPIDEs are applicable in sciences and engineering, and
many works in FPIDEs have been introduced (see, for
example, [3, 8–11]), while studying iterative FPIDEs is
very rare and currently an active area of research due to
their particular applications in neural networks. However,
iterative FPIDEs are useful tools for modeling the memory
properties of various materials and processes, with a

nonlinear relationship to time, such as anomalous dif-
fusion, an elasticity theory, solids mechanic, and other
applications [12–14]. e study of the theory of the it-
erative dierential equations began with the work of Eder
[15] where Eder worked on a solution of an iterative
functional dierential equation. Moreover, many studies
on iterative dierential equations have been conducted
(see, for example, [16–18]).

In many physical systems described as models in terms of
initial and boundary value problems, it is essential to develop
techniques based on various types of successive approximations
constructed explicitly in analytic forms. Several analytical and
numerical methods for solving dierential and integral equa-
tions are available in the literature. One of the powerfulmethods
is the successive approximations method (SAM) which was
introduced in 1891 by E. Picard, and it has been used to prove
the existence and uniqueness of solutions of dierential
equations [19–22]. e SAM, which is also called the Picard
iterative solutions method, has been increasingly applied to
solve dierential equations and integral equations [23, 24]. e
SAM provides an approximate solution in a short series con-
vergent with readily determinable terms [25].
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�e existence and uniqueness of solutions are proved
with initial conditions for various types of iterative differ-
ential equations or iterative integro-differential in some
works available in the literature, for example, the exact
analytical solution for an iterative nonlinear differential
equation was given in [26] where the authors studied a
second-order nonlinear iterated differential equation, ana-
lytic solutions for an iterative differential equation were
given in [27] where the authors studied an iterative func-
tional differential equation, Yang and Zhang introduced
solutions for iterative differential equations [28], and Zhang
et al. [29] introduced the existence of wavefront solutions for
an integral differential equation in a nonlinear nonlocal
neuronal network. However, few works have been intro-
duced for the stability analysis of solutions for iterative
fractional integro-differential equations [30, 31].

�is paper presents new analytical and numerical so-
lutions of a new model called “iterative fractional partial
integro-differential equation” of iterative Volterra-type
equation. �is model is solved by using the method of
successive approximations. Moreover, the primary advances
applied in this paper are very effective with applications of a
Banach space and Gronwall–Bellman integral inequality in
sense of Caputo derivative. �e rest of the paper is organized
as follows. Section 2 gives the preliminaries. Section 3
presents the description of the method of successive ap-
proximations, existence, uniqueness, convergence, and error
analysis of the solution for the proposed model. Section 4
introduces solutions for two types of iterative FPIDEs.
Numerical results and discussion are given in Section 5.

2. Preliminaries and Definitions

�ere are various definitions and theorems of fractional
calculus available in the literature. �is section presents
some of these definitions and theorems that are needed in
this paper and can be found in [32–36] and among other
references cited therein.

Definition 1. Let u(x, t): R × (0,∞)⟶ R and
n − 1< α< n ∈ N. �e Riemann–Liouville integral of time
fractional order α for a function u is defined by

I
α
t u(x, t) �

1
Γ(α)


t

0
(t − τ)

α−1
u(x, τ)dτ, (1)

where Γ is the well-known gamma function.

Definition 2. Let u(x, t): R × (0,∞)⟶ R and n − 1< α
< n ∈ N. �e Riemann–Liouville time fractional partial
derivative of order α for a function u is defined by

RL
D

α
t u(x, t) �

z
n

zt
n 

t

0

(t − τ)
n−α−1

Γ(n − α)
u(x, τ)dτ. (2)

Definition 3. Let u(x, t): R × (0,∞)⟶ R and
n − 1< α< n ∈ N; then, the Caputo derivative of time frac-
tional order α for a function u is

D
α
t u(x, t) � 

t

0

(t − τ)
n−α−1

Γ(n − α)

z
n
u(x, τ)

zτn dτ,

D
α
t u(x, t) �

z
n
u(x, t)

zt
n , α � n ∈ N.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(3)

Theorem 1 Let u(x, t): R × (0,∞)⟶ R and
n − 1< α< n ∈ N. 'en,

I
α
t D

α
t u(x, t) � u(x, t) − 

n−1

k�0

t
k

k!

z
k
u x, 0+

( 

zt
k

,

D
α
t I

α
t u(x, t) � u(x, t).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

Theorem 2 Let α, t ∈ R, t> 0, and n − 1< α< n ∈ N. 'en,

D
α
t t

q
�
Γ(q + 1)

Γ(q − α + 1)
t
q−α

, n≤ q, q ∈ R,

D
α
t t

q
� 0, q≤ n − 1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

Lemma 1 (Gronwall–Bellman inequality). Let u(x, t) be a
nonnegative continuous function on J × J, J � [a, a + h],
0< a, h ∈ R. If u(x, t)≤ c + 

t

a
f(x, r)u(x, r)dr where f is

an analytic function and c is a nonnegative constant, then
u(x, t)≤ c exp(

t

a
f(x, r)dr).

3. Description of the Numerical Scheme

In this section, we introduce an effective model of an it-
erative fractional partial integro-differential equation with
memory term subject to initial value conditions of the
following form:

D
α
t u(x, t) � f(x, t) + 

t

0
K(x, r)u(x, u(x, r))dr,

z
k
u(x, 0)

zt
k

� fk(x), k � 0, 1, 2, . . . , n − 1, (x, t) ∈ J × J, J � [0, T], n − 1< α< n,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(6)
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where Dα
t is the α-th Caputo fractional partial derivative,

K(x, t) is a bivariate kernel, f(x, t) and fk(x) are known
analytic functions, and u(x, t) is the unknown function to be
determined.

To find the solution for the iterative fractional partial
integro-differential equation (6), we introduce an extension
of the SAM as follows. We assume that (6) has an ap-
proximate solution given by

un+1(x, t) � u0 + 
t

0

(x − τ)
α−1

Γ(α)

· f(x, τ) + 
τ

0
K(x, r)un x, un(x, r)( dr dτ,

(7)

for n � 0, 1, 2, . . . where u0(x, t) is of class C1 from
[0, T] to [0, T] for |u0′(x, t)|≤T.

Our extension here is that all the components un(x, t)

are continuous where un can be given as a sum of successive
differences in the following form:

un(x, t) � u0(x, t) + 
n

k�1
uk(x, t) − uk−1(x, t)( . (8)

Next, if (uk(x, t) − uk−1(x, t) converges, then un(x, t)

converges and the solution for (6) is given by

u(x, t) � lim
n⟶∞

un(x, t). (9)

Lemma 2. Let a function u ∈ C1([0, T] × [0, T]) satisfy (6)
on [0, T] × [0, T]; then,

u(x, t) � u0 + 
t

0

(x − τ)
α−1

Γ(α)

· f(x, τ) + 
τ

0
K(x, r)u(x, u(x, r))dr dτ.

(10)

3.1. Existence and Uniqueness. �is section presents new
results for existence and uniqueness of solution for the
proposed model (6).

Theorem 3. Suppose that |u0 + Tα(N + T3kT)/Γ(α + 1)|≤T

and 0<M< Γ(α + 1)/Tα+1kT − 1< 1. 'en, there is a unique
solution for equation (6).

Proof. Let B � C([0, T] × [0, T]) be a Banach space with a
norm ‖u‖ � max(x,t)∈Ω|u(x, t)|,Ω ⊂ J × J, J � [0, T] and

S(ρ) � u ∈ B: 0≤ u≤ ρ, u x, t1( 


− u x, t2( 
≤M t1 − t2


, ∀t1, t2 ∈ J,

(11)

where ρ � u0 + Tα(N + T2kT)/Γ(α + 1) and kT � sup
|K(x, t)|: 0≤ t≤T{ }.

Before we apply the Banach contraction principle, we
need to define an operator P: B⟶ B as

P(u(x, t)) � u0 + 
t

0

(t − τ)
α−1

Γ(α)

· f(x, τ) + 
τ

0
K(x, r)u(x, u(x, r))dr dτ.

(12)

From (12), we have

0≤ |P(u(x, t))| � u0 + 
t

0

(t − τ)
α−1

Γ(α)
f(x, τ) + 

τ

0
K(x, r)u(x, u(x, r))dr dτ





≤ u0 + 
t

0

(t − τ)
α−1

Γ(α)
f(x, τ) + 

τ

0
K(x, r)u(x, u(x, r))dr




 dτ

≤ u0 + 
t

0

(t − τ)
α−1

Γ(α)
|f(x, τ)| + 

τ

0
|K(x, r)||(x, u(x, r))|dr dτ ≤ u0 +

T
α

N + T
3
kT 

Γ(α + 1)
.

(13)

By similar argument, we obtain
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P u x, t1( (  − P u x, t2( ( 


≤ 
t1

0

(t − τ)
α−1

Γ(α)
f(x, τ) + 

τ

0
K(x, r)u(x, u(x, r))dr dτ − 

t2

0

(t − τ)
α−1

Γ(α)



· f(x, τ) + 
τ

0
K(x, r)u(x, u(x, r))dr dτ|

≤ 
t1

t2

(t − τ)
α−1

Γ(α)




|f(x, τ)| + 

τ

0
|K(x, r)||u(x, u(x, r))|dr dτ ≤

N + kTT
3

 

Γ(α + 1)
t1 − t2



α
.

(14)

�is proves that P is a function from S(ρ) to S(ρ). Next,
for u, v ∈ S(ρ), we have

|P(u(x, t)) − P(v(x, t))|≤ 
t

0

(x − τ)
α−1

Γ(α)

τ

0
(|K(x, r)||u(x, u(x, r)) − v(x, v(x, r))|)dr dτ

≤ kT 
t

0

(x − τ)
α−1

Γ(α)

τ

0
(|u(x, u(x, r)) − u(x, v(x, r))| +|u(x, v(x, r)) − v(x, v(x, r))|)dr dτ

≤ kT 
t

0

(x − τ)
α−1

Γ(α)

τ

0
(M(|u(x, r) − v(x, r)|) +|u(x, r) − v(x, r)|)dr dτ

≤ kT 
t

0

(x − τ)
α−1

Γ(α)

τ

0
(M + 1)|u(x, r) − v(x, r)|dr dτ

≤TkT(M + 1)‖u − v‖ 
t

0

(x − τ)
α−1

Γ(α)
dτ ≤

T
α+1

kT(M + 1)

Γ(α + 1)
‖u − v‖.

(15)

�erefore, we obtain

‖(P(u(x, t)) − P(v(x, t))‖≤
T
α+1

kT(M + 1)

Γ(α + 1)
‖u − v‖.

(16)

Since M< Γ(α + 1)/Tα+1kT − 1 which implies that
Tα+1kT(M + 1)/Γ(α + 1)< 1, then by Banach principle, the

operator P has a unique fixed point. �erefore, equation (6)
has a solution. □

Theorem 4 (convergence).. If the assumptions of 'eorem 3
are proposed, then (7) converges.

Proof. Define the sequence Sk � max(x,t)∈J×J|uk(x, t)−

uk−1(x, t)|. �en,

S0 � max
(x,t)∈J×J

u0(x, t)


,

S1 � max
(x,t)∈J×J

u1(x, t)




� max
(x,t)∈J×J

u0 + 
t

0

(t − τ)
α−1

Γ(α)
f(x, τ) + 

τ

0
K(x, r)u0 x, u0(x, r)( dr dτ




≤ u0 +

T
α

Γ(α + 1)
N + T

3
kT 




<T.

(17)

Since u0 is a function from [0, T] to [0, T], we get
U1 ≤ u0 + Tα/Γ(α + 1)(N + T3kT)≤T:
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S2 � max
(x,t)∈J×J

u2(x, t) − u1(x, t)




� max
(x,t)∈J×J

u0 + 
t

0

(t − τ)
α−1

Γ(α)
f(x, τ) + 

τ

0
K(x, r)u1 x, u1(x, r)( dr dτ − u0



− 
t

0

(t − τ)
α−1

Γ(α)
f(x, τ) + 

τ

0
K(x, r)u0 x, u0(x, r)( dr dτ



� max
(x,t)∈J×J


t

0

(t − τ)
α−1

Γ(α)

τ

0
K(x, r) u1 x, u1(x, r)(  − u0 x, u0(x, r)( ( dr dτ





≤ max
(x,t)∈J×J


t

0

(t − τ)
α−1

Γ(α)

τ

0
K(x, r) u1 x, u1(x, r)(  − u0 x, u0(x, r)( ( 

����
����dr dτ ≤TS1 ≤T

2
,

(18)

S3 � max
(x,t)∈J×J

u3(x, t) − u2(x, t)


 max
(x,t)∈J×J

· u0 + 
t

0

(t − τ)
α−1

Γ(α)
f(x, τ) + 

τ

0
K(x, r)u2 x, u2(x, r)( dr dτ − u0



− 
t

0

(x − τ)
α−1

Γ(α)
f(x, τ) + 

τ

0
K(x, r)u1 x, u1(x, r)( dr dτ



� max
(x,t)∈J×J


t

0

(t − τ)
α−1

Γ(α)

τ

0
K(x, r) u2 x, u2(x, r)(  − u1 x, u1(x, r)( ( dr dτ





≤ max
(x,t)∈J×J


t

0

(t − τ)
α−1

Γ(α)

τ

0
K(x, r) u2 x, u2(x, r)(  − u1 x, u1(x, r)( ( 


dr dτ ≤TS2 ≤T

3
.

(19)

By induction, we have Sk ≤Tk. Since |u0 + Tα

(N + T3kT)/Γ(α + 1)|≤T, we get T< 1 when u0 ≥ 0.
�erefore, Sk goes to zero as k goes to infinity. For every
subsequence ukj  of Sk , there exists a subsequence skj 

which uniformly converges and the limit must to be a so-
lution of (6). �us, Sk  uniformly goes to a unique solution
of (6). □

3.2. Error Analysis. In this section, we evaluate the maxi-
mum absolute error of the proposed method for the solution
series (7) for (6).

Theorem 5. Suppose that the hypothesis of 'eorem 3 holds.
Let un and sn be two solutions satisfying equation (6) for

0≤x, t≤T, M> 0 with the initial approximations un(x, t)

and sn(x, t), respectively. 'en, the maximum absolute error
for a solution series (7) for (6) is estimated to be

max
(x,t)∈J×J

un(x, t) − sn(x, t)




≤ exp
kT(M + 1)T

α+1

Γ(α + 1)
  max

(x,t)∈J×J
u0(x, t) − s0(x, t)


.

(20)

Proof. By using �eorem 3, we have

un(x, t) � u0(x, t) + 
t

0

(t − τ)
α−1

Γ(α)
f(x, τ) + 

τ

0
K(x, r)un−1 x, un−1(x, r)( dr dτ,

sn(x, t) � s0(x, t) + 
t

0

(t − τ)
α−1

Γ(α)
f(x, τ) + 

τ

0
K(x, r)sn−1 x, sn−1(x, r)( dr dτ.

(21)
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Next, by using �eorem 4, we have

un − sn


 � u0(x, t) − s0(x, t) + 

t

0

(t − τ)
α−1

Γ(α)


t

0
K(x, r) un x, un(x, r)(  − sn x, sn(x, r)( ( dr dτ





≤ u0(x, t) − s0(x, t)


 + 
t

0

(t − τ)
α−1

Γ(α)
kT 

τ

0
un x, un(x, r)(  − sn x, sn(x, r)( ( dr dτ





� u0(x, t) − s0(x, t)


 + kT 
t

0

(t − τ)
α−1

Γ(α)

τ

0
un x, un(x, r)(  − un x, sn(x, r)(  + un x, sn(x, r)(  − sn x, sn(x, r)( dr( dτ 





≤ u0(x, t) − s0(x, t)


 + kT 
t

0

(t − τ)
α−1

Γ(α)

τ

0
(M + 1) un(x, r) − sn(x, r)( dr dτ





� u0(x, t) − s0(x, t)


 + kT(M + 1) 
t

0

τ

0

(t − τ)
α−1

Γ(α)
un(x, r) − sn(x, r)( drdτ





� u0(x, t) − s0(x, t)


 + kT(M + 1) 
t

0

τ

0

(t − τ)
α−1

Γ(α)
un(x, r) − sn(x, r)( dτdr





≤ u0(x, t) − s0(x, t)


 +
kT(M + 1)T

α

Γ(α + 1)


t

0
un(x, τ) − sn(x, τ)


dτ.

(22)

By using Gronwall–Bellman inequality given by Lemma
1, we get

un(x, t) − sn(x, t)


≤ u0(x, t) − s0(x, t)


exp 
t

0

kT(M + 1)T
α

Γ(α + 1)
dr ≤ u0(x, t) − s0(x, t)


exp

kT(M + 1)T
α+1

Γ(α + 1)
 . (23)

�us, we obtain

max
(x,t)∈J×J

un(x, t) − sn(x, t)


≤ exp
kT(M + 1)T

α+1

Γ(α + 1)
 

× max
(x,t)∈J×J

u0(x, t) − s0(x, t)


.

(24)

�is completes the proof of �eorem 5. □

3.3. Algorithms for Computer Implementations. In this sec-
tion, we introduce algorithms for computing numerical
results. Algorithm 1 computes the existence conditions given
by �eorem 3.

Further, Algorithm 2 can be used to obtain particular
approximate numerical solutions at particular values of the
fractional order α.

4. Analytical Solutions for Iterative
Volterra FPIDEs

�is section introduces solutions for new examples of it-
erative FPIDEs. �ese examples are chosen since their so-
lutions are not available in the literature or they have been
solved previously some other well-known methods.for
0≤x, t≤ 0.75, 0< α< 1.

Example 1. In this example, we solve the following iterative
FPIDEs of Volterra type with initial value:

D
α
t u(x, t) � cos

x

2
  

t

0
u(x, u(x, r))dr,

u(x, 0) �
sin(x)

2
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(25)
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�en, equation (25) is of form (6) with T � 0.75, N �

0, kT � 1 which satisfies

u0 +
T
α

N + T
3
kT 

Γ(α + 1)




�
sin(x)

2
+
0.75α 0 + 0.753 × cos(x/2)

Γ(α + 1)




< 0.75 � T, (26)

where 0<M< Γ(α + 1)/Tα+1kT − 1 � Γ(α + 1)/0.75α+1

|cos(x/2)| − 1< 1 for all 0≤x≤ 0.75 and 0< α< 1.
As the hypotheses of �eorem 3 are satisfied, a unique

solution for equation (25) exists.

Next, by using �eorem 4 and assuming that
u0(x, t) � u(x, 0) � sin(x)/2, the first few iterative solutions
are

u1(x, t) � u1(x, 0) + 
t

0

(x − τ)
α−1

Γ(α)
cos

x

2
  

t

0
u0 x, u0(x, r)( dr dτ, u1(x, 0) � 0

�
1

2 α2 + α Γ(α)
t
α+1 sin(x)cos

x

2
 ,

(27)

u2(x, t) � u2(x, 0) +
1
Γ(α)


t

0
(x − τ)

α−1 cos
x

2
  

t

0
u1 x, u1(x, r)( dr dτ, u2(x, 0) � 0

�
2−α−2Γ(α + 2)

−α−1Γ(α(α + 2) + 3)t
(α+1)(α+2)csc(x)(sin(x)cos(x/2))

α+3

×(α(α + 2) + 2)Γ(α(α + 3) + 3)
,

(28)

Input: T< 1, N � |f(x, t)|, kT � K(x, t), u0(x, 0) � f(x),
(1) for 0≤x≤ 1, 0≤ t≤ 1, i − 1< α< i, do
(2) special treatment of the first element of line i;
(3) for i � 1, 2, . . . , n, do
(4) Compute |u0 + Tα(N + T3kT)/Γ(α + 1)|, Γ(α + 1)/Tα+1kT − 1.

Output: |u0 + Tα(N + T3kT)/Γ(α + 1)|<T, 0< Γ(α + 1)/Tα+1kT − 1< 1.

ALGORITHM 1: �e computation of the existence conditions.

Input: T< 1, N � |f(x, t)|, kT � K(x, t), u0(x, 0) � f(x),
(1) for 0≤x≤ 1, 0≤ t≤ 1, i − 1< α< i, do
(2) special treatment of the first element of line i;
(3) for i � 1, 2, . . . , n, do
(4) Compute |u0 + Tα(N + T3kT)/Γ(α + 1)|, Γ(α + 1)/Tα+1kT − 1.;
(5) if |u0 + Tα(N + T3kT)/Γ(α + 1)|<T, Γ(α + 1)/Tα+1kT − 1< 1 then
(6) Compute ui+1(x, t) � u0 + 

t

0 (x − τ)α− 1/Γ(α)(f(x, τ) + 
τ
0 K(x, r)ui(x, ui(x, r))dr)dτ.

(7) Output: ui+1(x, t) � u0 + 
t

0 (x − τ)α− 1/Γ(α)(f(x, τ) + 
τ
0 K(x, r)ui(x, ui(x, r))dr)dτ.

ALGORITHM 2: �e computation of the numerical solutions.
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u3(x, t) � u2(x, 0) + 
t

0

(x − τ)
α−1

Γ(α)
cos

x

2
  

t

0
u2 x, u2(x, r)( dr dτ, u3(x, 0) � 0,

�
((α(α + 2) + 2)Γ(α(α + 3) + 3))

− α(α+3)− 3

α2 + α + 1 (α(α + 5) + 7)Γ(α(α(α(α + 6) + 13) + 13) + 8)

× Γ(α(α + 3)(α(α + 3) + 4) + 8)t
α(α(α(α+6)+13)+13)+7

× 2−α−2Γ(α + 2)
−α−1Γ(α(α + 2) + 3)csc(x) sin(x)cos

x

2
  

α+3
 

α(α+3)+3

.

(29)

�erefore, the approximate solution of (25) is obtained
by u(x, t) ≈ 

3
i�0 ui(x, t).

Example 2. In this example, we solve the following iterative
FPIDEs of Volterra type with initial value:

D
α
t u(x, t) �

sin(x)

3
+ 

t

0
u(x, u(x, r))dr, 0≤x, t≤ 0.75, 0< α< 1,

u(x, 0) � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(30)

Equation (30) is of form (8) with
T � 0.75, N � |sin(x)/3|, kT � 1, which satisfies

u0 +
T
α

N + T
2
kT 

Γ(α + 1)





� 0 +
0.75α sin(x)/3 + 0.753 

Γ(α + 1)




< 0.75 � T,

(31)

where 0<M< Γ(α + 1)/Tα+1kT − 1< 1 for all x ∈ [0, 0.75]

and 0< α< 1. As all the hypotheses of �eorem 3 are sat-
isfied, a unique solution for (30) exists.

By using �eorem 4, we obtain a solution of (30) for
different values of α. We assume that u0(x, t) � u(x, 0) � 0
and by using Mathematica software, the first three iterative
solutions are obtained as follows:

u1(x, t) �
1

4Γ(α)


t

0
(x − τ)

α−1 sin(x)/3 + 
t

0
u0 x, u0(x, r)( dr dτ

�
t
α

3αΓ(α)
sin(x),

(32)

u2(x, t) �
1

4Γ(α)


t

0
(x − τ)

α−1 sin(x)

3
+ 

t

0
u1 x, u1(x, r)( dr dτ

�
3−α−1

t
α sin(x) 2 × 3αΓ α2 + α + 2  + Γ α2 + 2 t

α2+1
(sin(x)/Γ(α + 1))

α
 

2Γ(α + 1)Γ α2 + α + 2 
,

(33)
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u3(x, t) �
1

4Γ(α)


t

0
(x − τ)

α−1 sin(x)

3
+ 

t

0
, u2 x, u2(x, r)( dr dτ

�
sin(x)

12Γ(α + 1)Γ(α + 2)Γ α2 + α + 2 
3−αΓ α2 + 2 t

α+1 sin(x)

Γ(α + 1)
 

α



×
2−2α−1 2 × 3αΓ α2 + α + 2(  + 4−α2− 1Γ α2 + 2( (sin(x)/Γ(α + 1))α 

Γ(α + 1)Γ α2 + α + 2( )
⎛⎝ ⎞⎠

α2+α+1

× 3−α−1 sin(x) 
α2+α+1

+
4Γ(α + 2)Γ α2 + α + 2 t

α
+ 2tΓ α2 + α + 2 

Γ(α + 1)Γ α2 + α + 2 

× 2−2α−13−α−1
t sin(x) 2 3αΓ α2 + α + 2  + 2−2 α2+1( )Γ α2 + 2 

×
sin(x)

Γ(α + 1)
 

α



α

.

(34)

�erefore, the third order term iterative solution (30) is
u(x, t) ≈ 

3
i�1 ui(x, t).

5. Numerical Solutions and Discussion

Table 1 presents numerical solutions for equation (25)
through various values of x, t when α � 0.5, 1. Table 2 in-
cludes numerical values of the iterative solutions for
equation (30) by different values of x, t at α � 0.5, 1. In
Figures 1(a) and 1(b), we plot the graphs of first-order it-
erative solution for (25) using various values of x, t at α �

0.5, 1 respectively. We plot the graph of second-order it-
erative solution for (25) by various values of x, t at α � 0.5, 1
in Figures 2(a) and 2(b), respectively. �e iterative solution

for Example 1 is graphically represented in Figures 3(a) and
3(b) through various points of x, t when α � 0.5, 1, re-
spectively. Figures 4(a) and 4(b) represent the graphs of
solution through various values of t for a fixed value of x �

0.75 when α � 0.5, 1, respectively, for Example 1. �e first-
order iterative solution for Example 2 is graphically rep-
resented in Figures 5(a) and 5(b) through various values of
x, t when α � 0.5, 1, respectively. �e second order of it-
erative solution for Example 2 is graphically represented in
Figures 6(a) and 6(b) by various values of x, t when
α � 0.5, 1, respectively. �e third-order iterative solution for
Example 2 is graphically represented in Figures 7(a) and 7(b)
by various points of x, t at α � 0.5, 1, respectively. �e so-
lution for Example 2 is graphically represented in

Table 1: Numerical values of the iterative solution when q1 � q2 � 0.5, 1 and α � β � 0.5 for Example 2.

x t u0(x, t)
α � 0.5 α � 1 α � 0.5 α � 1

u1(x, t) u2(x, t) u3(x, t) u1(x, t) u2(x, t) u3(x, t) 
3
i�0 ui 

3
i�0 ui

0.25
0.25 0.123702 0.011541 2.901×10−6 9.774×10−29 0.003836 3.732×10−9 1.035×10−61 0.135246 0.127538
0.50 0.123702 0.032643 0.000039 1.892×10−23 0.0153421 2.389×10−7 1.138×10−49 0.156384 0.139044
0.75 0.123702 0.059970 0.000179 2.342×10−20 0.034520 2.721×10−6 1.258×10−42 0.18385 158224

0.50
0.25 0.239713 0.021840 0.000014 1.700×10−25 0.007258 2.470×10−8 5.750×10−56 0.261567 0.246971
0.50 0.239713 0.061772 0.000188 3.291×10−20 0.029033 1.581×10−6 6.322×10−44 0.301673 0.268747
0.75 0.239713 0.113483 0.000859 4.073×10−17 0.065323 0.000018 6.991×10−37 0.354055 0.305054

0.75
0.25 0.340819 0.029821 0.000030 5.667×10−24 0.003836 6.038×10−8 3.002×10−53 0.370669 0.350730
0.50 0.340819 0.084346 0.000393 1.097×10−18 0.039642 3.865×10−6 3.301×10−41 0.425558 0.380465
0.75 0.340819 0.154953 0.001797 1.358×10−15 0.089194 0.000044 3.649×10−34 0.497569 0.430058

Table 2: Numerical values of the iterative solutions when q1 � q2 � 0.5, 1 and α � β � 0.5 for Example 1.

x t
α � 0.5 α � 1 α � 0.5 α � 1

u1(x, t) u2(x, t) u3(x, t) u1(x, t) u2(x, t) u3(x, t) 
3
i�1 ui 

3
i�0 ui

0.25
0.25 0.0465276 0.047411 0.047483 0.020617 0.020635 0.020644 0.141421 0.061895
0.50 0.065800 0.068773 0.068501 0.041234 0.041376 0.041340 0.20307 0.123950
0.75 0.080588 0.086632 0.085550 0.061851 0.062329 0.062090 0.25277 0.186270

0.50
0.25 0.090162 0.092546 0.092761 0.039952 0.040018 0.040052 0.275470 0.120023
0.50 0.127509 0.135527 0.134859 0.079904 0.080436 0.080304 0.397895 0.240645
0.75 0.156166 0.172468 0.169670 0.119856 0.121652 0.120756 0.498304 0.362264

0.75
0.25 0.128191 0.132233 0.132637 0.020617 0.056938 0.057005 0.393061 0.170746
0.50 0.181290 0.194884 0.193864 0.113606 0.114682 0.114415 0.570037 0.342704
0.75 0.222034 0.249672 0.245134 0.170410 0.174040 0.172229 0.716839 0.516678
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Figure 1: �e graphs of the first-order iterative solution u1(x, t) for (25) through various values of x, t at α � 0.5, 1, respectively. (a) �e
graph of first-order iterative solution for (25) through various values of x, t at α � 0.5. (b) �e graph of the first-order iterative solution for
(25) through various values of x, t at α � 1.
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Figure 3: �e graphs of the approximate iterative solution u(x, t) for (25) through various values of x, t at α � 0.5, 1, respectively. (a) �e
graph of the approximate iterative solution u(x, t) for (25) through various values of x, t at α � 0.5. (b) �e graph of the approximate
iterative solution u(x, t) for (25) through various values of x, t at α � 1.
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Figure 2: �e graphs of the second-order iterative solution u2(x, t) for (25) through various values of x, t at α � 0.5, 1, respectively. (a) �e
graph of the second-order iterative solution for (25) through various values of x, t at α � 0.5. (b) �e graph of the second-order iterative
solution for (25) through various values of x, t at α � 1.
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Figure 5: �e graphs of the first-order iterative solution u1(x, t) for (30) through various values of x, t at α � 0.5, 1, respectively. (a) �e
graph of first-order iterative solution u1(x, t) for (30) through various values of x, t at α � 0.5. (b) �e graph of the first-order iterative
solution u1(x, t) for (30) through various values of x, t at α � 1.
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Figure 4: �e graphical comparison of the iterative solutions for (25) through various values of t at x � 0.75 and α � 0.5, 1, respectively.
(a) �e graphical comparison of the iterative solutions for (25) through various values of t at x � 0.75 and α � 0.5. (b) �e graphical
comparison of the iterative solutions for (25) through various values of t at x � 0.75 and α � 1.
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Figure 6:�e graphs of second-order iterative solution u2(x, t) for (30) through various points x, t at α � 0.5, 1, respectively. (a) �e graph
of second-order iterative solution u2(x, t) for (30) through various values of x, t at α � 0.5. (b) �e graph of second-order iterative solution
u2(x, t) for (30) through various values of x, t at α � 1.
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Figure 7: �e graphs of the third-order iterative solution u3(x, t) for (30) through various values of x, t at α � 0.5, 1, respectively. (a) �e
graph of third-order iterative solution u3(x, t) for (30) through various values of x, t at α � 0.5. (b) �e graph of the third-order iterative
solution u3(x, t) for (30) through various values of x, t at α � 1.
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Figure 8: �e graphs of the third-order approximate iterative solution u(x, t) for (30) through various values of x, t at α � 0.5, 1, re-
spectively. (a) �e graph of the approximate iterative solution u(x, t) for (30) through various values of x, t at α � 0.5. (b) �e graph of the
approximate iterative solution u(x, t) for (30) through various values of x, t at α � 1.
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Figure 9: �e graphical comparison of solutions for (30) through various values of t at x � 0.75, α � 0.5, 1, respectively. (a) �e graphical
comparison of solutions for (30) through various values of t at x � 0.75; α � 0.5. (b)�e graphical comparison of solutions for (30) through
various values of t at x � 0.75; α � 1.
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Figures 8(a) and 8(b) using various points of x, t when
α � 0.5, 1, respectively. In Figures 9(a) and 9(b), we plot the
graphs of the solution through different values of t for a
fixed value of x � 0.75 when α � 0.5, 1, respectively, for
Example 2.

6. Conclusion

In this paper, we introduced a model of FPIDEs. �e
proposed model is iterative with fractional derivative, which
can be used in neural networks and help us to describe how
the input data can be accessed. For instance, for subdiffusion
in the porous media, fractional-order derivatives determine
the decaying rate of the breakthrough curve for long-term
observations. Moreover, new results on the local existence,
uniqueness, and stability analysis of the solution for the
proposed model were introduced. Furthermore, we ex-
tended the method of successive approximations to solve
FPIDEs with memory terms subject to initial conditions in a
Banach space. �is extension derives good approximations
and reliable techniques to handle iterative FPIDEs. New
solutions for Volterra types of iterative FPIDEs were in-
troduced. �e numerical solutions were successfully ob-
tained which confirm the presented results.
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