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In this paper, we consider a natural convection flow of an incompressible viscous fluid subject to Newtonian heating and constant
mass diffusion. %e proposed model has been described by the Caputo fractional operator. %e used derivative is compatible with
physical initial and boundaries conditions. %e exact analytical solutions of the proposed model have been provided using the
Laplace transform method. %e obtained solutions are expressed using some special functions as the Gaussian error function,
Mittag–Leffler function, Wright function, and G-function. %e influences of the order of the fractional operator, parameters used
in modeling the considered fluid, Nusselt number, and Sherwood number have been analyzed and discussed. %e physical
interpretations of the influences of the parameters of our fluid model have been presented and analyzed as well. We use the
graphical representations of the exact solutions of the model to support the findings of the paper.

1. Introduction

%e main challenge during these decades is modeling real-
world phenomena using fractional operators. %is challenge
is motivated by the memory effect observed in fractional
operators and the generalization of the differential equations
to noninteger order derivatives. Many explanations and
tentatives to explain the utilities of fractional calculus have
been addressed in the literature. %e readers are advised to
take a look at the following application papers in biology
[1, 2], science and engineering [3, 4], physics [5–7],
mathematical physics [8–10], and many others domains
[11, 12]. Fractional calculus is also a field with many con-
troversies and discussions on the validity of fractional op-
erators. Note that there exist many fractional operators in
the literature: fractional operators with singularities as the
Riemann–Liouville derivative and the Caputo fractional
derivative [13, 14]. %ere also exist many generalizations of
the previous operators; see [15]. Fractional operators
without singularities are known as the fractional operator
with exponential kernel proposed by Caputo-Fabrizio and

the fractional operator with Mittag–Leffler kernel provided
by Atangana and Baleanu [16–18]. All cited operators have
their advantages and their conveniences reported in the
literature [16, 19]. %e present paper focuses on applying the
Caputo derivative to fluids models. %e first reason for using
this fractional operator is the memory effect, and the second
reason is that this operator is more realistic because the
derivative of a constant is zero, contrary to the Rie-
mann–Liouville operator in which the derivative of a con-
stant is not zero.

In the literature, there exist many papers in the same
directions. We recall some of them, which will permit us to
see the findings addressed in the literature and the advan-
tages of our present paper regarding the existing literature.
Khan et al. [19] model heat and mass transfer of second-
grade fluids over a vertical plate using derivative with ex-
ponential kernel and derivative with Mittag–Leffler kernel.
%ey have used the Laplace transforms to get the analytical
solutions of the proposed model. Samiulhaq et al. [20]
studied the magnetic field influence on unsteady free con-
vection flow of a second-grade fluid near an infinite vertical
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flat plate with ramped wall temperature embedded in a
porous medium. %e Laplace transform method has been
used in the investigations related to the exact solutions of the
model considered in the paper. Shah et al. [21] proposed an
investigation related to the influence of magnetic field on
double convection problem of viscous fluid described by
fractional-order derivative over an exponentially moving
vertical plate. Zafar et al. [22] proposed the exact solutions of
the model described by fractional operator obeying the
rotational flow of some fractional Maxwell fluid. Imran et al.
[3] proposed the study on the semianalytic solutions of a
viscous fluid with old and new definitions of fractional
derivatives. Hussanan et al. [23] investigated the soret effects
on unsteady magnetohydrodynamic mixed convection heat-
and-mass-transfer flow in a porousmediumwith Newtonian
heating. Reyaz et al. [24] studied modeling with Caputo
operator theMHDCasson fluid flow over an oscillating plate
with thermal radiation. Narahari [25] presented the effects of
thermal radiation andmass diffusion on free convection flow
near a vertical plate with Newtonian heating. Sheikh et al.
[26] proposed a comparative study between the fractional-
order derivatives without singularities to the convective flow
of a generalized Casson fluid. Ali et al. [9] applied the
fractional operation with the exponential kernel to MHD
free convection flow of generalized Walters’ B fluid model.
%e authors proposed a fractional model and tried to get
solutions using the applications of the Laplace transforms.
Abro [27] proposed using fractional operator investigation
in analytic investigation of thermodiffusion process on free
convection flow. Shen et al. [28] used Fourier sine transform
to propose the analytical solutions of the Rayleigh–Stokes
problem for a heated generalized second-grade fluid de-
scribed by the fractional derivative. Vieru et al. [29] first
proposed an investigation related to the analytical solutions
of the fractional model described free convection flow near a
vertical plate with Newtonian heating and mass diffusion
using Laplace transform. For works related to the unsteady
flow of generalized Casson fluid with fractional derivative,
the readers are recommended to take a look at [6]. For
papers in the same directions of research as addressed in our
paper, see in [30–33].

%is paper’s question is to determine the exact solutions
of the fluid model using the Laplace transforms. %e ad-
vantages of this paper are as follows: at first, the solutions
will be expressed using well-known functions as Gaussian
error function, Mittag–Leffler function, Wright function,
and G-function [29]. %us, the graphical representations of
the dynamics of the exact solutions of the proposed model
will be easy to be obtained via MATLAB manipulations.
Another advantage of this paper is that some new initial
conditions not previously considered in the literature will be
used and studied in detail. %e influence of the order of the
fractional operator will be studied and analyzed. %e
physical interpretations of the influence of the Caputo de-
rivative will be proposed. %e same procedure will be done
with the parameters of the model. In other words, the in-
fluences of the model parameters in the dynamics will be
focused on, analyzed, and interpreted. In our modeling, the
influence of the Nusselt number and the Sherwood number

will be presented and discussed, too. %e fact that the so-
lutions can be obtained via the resolution of the second-
order differential equation is also a significant advantage of
the Laplace transform method.

%e present paper is structured as follows: In Section 2,
the fractional operators and the special functions used in this
paper have been recalled. In Section 3, the natural con-
vection flow of an incompressible viscous fluid subject to
Newtonian heating and constant mass diffusion model has
been proposed using Caputo derivative. In the modeling,
velocity, temperature, and concentrations of the fluid have
been considered and analyzed for the considered model. In
Section 4, the solutions procedure has been proposed via the
Laplace transform. In Section 5, we discuss themain findings
of the paper via graphical representations. In Section 6, we
give the conclusion and the final remarks and discuss the
main findings of the present paper and its advantages in the
existing literature.

2. Preliminaries

%is part is devoted to recalling certain fractional operators
necessary for our present investigations. As known, there
exist many fractional operators such as Riemann–Liouville
integral, the Caputo fractional derivative, Riemann–Liou-
ville derivative, derivative with the exponential kernel, de-
rivative with Mittag–Leffler kernel. %e use of fractional
operators in modeling real-world problems is motivated by
the memory effect. Here, we will investigate using the
Caputo operator because it satisfies, in particular, the initial
conditions which we planned to use. Note that the Rie-
mann–Liouville derivative does not satisfy the initial con-
ditions used in the present investigations. We give the
following definitions.

We represent the Riemann–Liouville integral as the
following form [13, 14]:

I
α
u(t) �

1
Γ(α)


t

0
(t − s)

α− 1
u(s)ds, (1)

where the function u: [0, +∞[⟶ R and the order obeys
the condition α> 0. %e function Γ(. . .) denotes the Gamma
Euler function.

%e Caputo fractional derivative as reported in the lit-
erature can be represented as the following form [12, 15]:

D
α
c u(t) �

1
Γ(1 − α)


t

0
(t − s)

− α
u′(s)ds, (2)

where the function u: [0, +∞[⟶ R and the order is taken
in the interval α ∈ (0.1).

Without losing generalities, we recall the Rie-
mann–Liouville derivative as reported in the literature with
the following form [12, 15]:

D
α
u(t) �

1
Γ(1 − α)

d

dt


t

0
u(s)(t − s)

− α
ds, (3)

with the condition that t> 0, the order of the fractional
operator satisfies the condition α ∈ (0, 1), and Γ(. . .) rep-
resents the Gamma Euler function.
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%ere exists a recent fractional operator in fractional
calculus. We mean the following definition of the Capu-
to–Fabrizio fractional derivative [18] of the function
u: [0, +∞[⟶ R, of order α in the following term:

D
α,CF

u(t) �
CF(α)

1 − α


t

0
u′(s) exp −

α
1 − α

(t − s) ds, (4)

with the following condition t> 0, the order of the fractional
operator satisfies α ∈ (0, 1) and CF(.) is the normalization
term and respects the condition CF(0) � CF(1) � 1. %e
integral associated with the Caputo–Fabrizio derivative is
represented as the following form:

I
α,CF

u(t) �
2(1 − α)

(2 − α)CF(α)
u(t) +

2α
(2 − α)CF(α)


t

0
f(s)ds.

(5)

We have the fractional derivative with Mittag–Leffler
kernel and its associated integral, seen in the literature
particularly in the following paper [17]. %e following is the
definition of the Atangana–Baleanu derivative of the
function u: [0, +∞[⟶ R, of order α:

D
α,AB

u(t) �
AB(α)

1 − α


t

0
u′(s)Eα −

α
1 − α

(t − s)
α

 ds, (6)

with respect to the condition t> 0, the order of the fractional
operator α ∈ (0, 1), and AB(.) denotes the normalization
term and satisfies the condition AB(0) � AB(1) � 1. %e
integral associated with the Atangana–Baleanu fractional
derivative is represented as follows:

I
α,AB

u(t) �
1 − α

AB(α)
u(t) +

α
AB(α)

I
α
u(t). (7)

We finish this section by recalling the Laplace transform
because this transformation is the key of the present paper.
In the following line, we recall the Laplace transform of the
Caputo derivative, for the function u, and we have the
following:

L D
α
c u( (t)  � s

α
L u(t){ } − s

α− 1
u(0), (8)

where the order α satisfies the relationship α ∈ (0, 1). %e
problem consists of establishing the analytical solutions of
the fluid models that need some special functions. We mean
the Mittag–Leffler function and the Wright function. %ey
will play an important role in expressing the form of ana-
lytical solutions. For the Mittag–Leffler function with three
parameters [29], we have the following definition:

Eα,β(x) � 
∞

k�0

x
k

Γ(αk + β)
, (9)

where α> 0, β ∈ R, and x ∈ C. Note that when α � β � 1, we
have the classical exponential function.

We define the Wright function [29] with three param-
eters as follows:

Φ(β, − σ, x) � 
∞

n�0

x
n

Γ(n + 1)Γ(β − σn)
, (10)

where the conditions σ ∈ (0, 1), β ∈ R, and x ∈ C are
satisfied.

3. Modeling Dynamics of the Fractional Model

In this part, we propose the constructive equations of the
model subject of investigation in this paper. We consider an
unsteady free conventional flow of an incompressible vis-
cous fluid over an infinite vertical plate with mass diffusion
and chemical reaction [3]. We let the x-axis be obtained
along with the plate in the vertical direction, and the y-axis is
taken normal to the plate as presented in the literature
[2, 29]. In the present modeling, the use of the Caputo
derivative in the newly added assumption. At the neigh-
borhood of the initial time of the diffusion processes, the
temperature is constant at T∞ and the concentration on the
plate is fixed to C∞ while plate and fluid are at the rest. We
suppose that at t � 0+, the heat and the mass from the plate
to the fluid is raised to a variable temperature T∞ + [Tw −

T∞][t/t0] and the concentration level near the plate is
considered as C∞ + [Cw − C∞][t/t0]. For the rest of the
modeling, we use the Boussinesq rules. Furthermore, we
consider the Caputo fractional operator. Fick’s first and
second laws in the context of fractional operators reported in
the literature [21] will be applied to get the constructive
equations. Note that inspired to the modeling described in
the paper [21], the Linear momentum equation with Caputo
operator can conventionally be represented by the following
differential equation:

ρ
zv

zt
�

zϵ
zx

+ gβD
1− α

T − T∞(  + gcD
1− α

C − C∞( , (11)

where ϵ represents the shear stress. We use the Caputo
derivative to express the shear stress as the following form:

ϵ � ] 1 +
1
β

 D
1− α
t

zv

zx
 . (12)

%e next step is to introduce equations (12) into (11). We
obtain the following fractional differential equation:

ρ
zv

zt
� ] 1 +

1
β

 D
1− α
t

z
2
v

zx
2  + gβD

1− α
T − T∞( 

+ gcD
1− α

C − C∞( .

(13)

Applying the Riemann–Liouville integral I1− α to both
sides of equation (13), we arrive at our first fractional dif-
ferential equation described as follows:

ρD
α
t v � ] 1 +

1
β

 
z
2
v

zx
2 + gβ T − T∞(  + gc C − C∞( . (14)

%e Fick second law related to the thermal balance
equation as reported in the literature [21] can be represented
by the following form:

ρCp

zT

zt
� −

zq

zx
, (15)

where q is the thermal flux and obeys Fick’s first law reported
with the fractional operator and represented as follows:
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q � − k0D
1− α
t

zT

zx
 . (16)

We replace equations (16) into (15); then, the temper-
ature distribution considered in the present paper can be
represented as follows:

ρCp

zT

zt
� k0

z

zx
D

1− α
t

zT

zx
  . (17)

We repeat the previous procedure by applying the
Caputo operator I1− α to both sides of equation (17). We
arrive at our second fractional differential equation satisfied
by the temperature distribution and described as follows:

ρCpD
α
t T � k0

z
2
T

zx
2 . (18)

We now give the constructive equation in which the con-
centration obeys in our modeling. %e diffusion equation
can be expressed using the Riemann–Liouville integral as
follows:

zC

zt
� −

zJ

zx
− KD

1− α
t C − C∞( , (19)

where J satisfies the molecular diffusion equation given by
Fick’s first law represented as follows:

J � − dD
1− α
t

zC

zx
 . (20)

Replacing equation (20) into (19), then the concentration
distribution in our present modeling satisfies the following
equation:

D
α
t C � d

z
2
C

zx
2 − K C − C∞( . (21)

%erefore, the constructive equations of the present
work are assigned in the following equations:

ρD
α
t v � ] 1 +

1
β

 
z
2
v

zx
2 + gβ T − T∞( 

+ gc C − C∞( ,

(22)

ρCpD
α
t T � k0

z
2
T

zx
2 , (23)

D
α
t C � d

z
2
C

zx
2 − K C − C∞( . (24)

%e initial and boundaries conditions are summarized in
the following lines, and we have

v(x, 0) � 0, T(x, 0) � T∞, C(x, 0) � C∞, (25)

T(0, t) � 0, T(0, t) � T∞ + Tw − T∞ 
t

t0
 , (26)

C(0, t) � C∞ + Cw − C∞ 
t

t0
 , v(x, t)⟶ 0 asx⟶∞.

(27)

Furthermore, we consider that

v⟶ 0, T⟶ T∞, C⟶ C∞ asx⟶∞. (28)

To simplify the previous model for helpful manipula-
tions, we will try to introduce dimensionless variables. Here,
in our modeling, we set the dimensionless variables [29] as
follows:

x
∗

�
x

]
t
∗

�
t

]
v
∗

�
v

]
,

ϕ∗ �
T − T∞

Tw − T∞
θ∗ �

C − C∞
Cw − C∞

,

K
∗

�
]

gk0
K.

(29)

Note that the rest of the modeling follows [29]. Plugging
equations (29) into (22) by removing the ″∗″ and multi-
plying by 1/ρ, we have the first constructive equation of our
fluid model related to the velocity described as follows:

D
α
t v � 1 +

1
β

 
z
2
v

zx
2 + Grϕ + Gmθ, (30)

where Gr and Gm are defined in the next lines. Replacing
equations (29) into (23) by removing the ″∗ ″ and divising
by ρCp, we have the second constructive equation of our
fluid model related to the temperature described as follows:

D
α
t ϕ �

1
Pr

z
2ϕ

zx
2 . (31)

where Pr is defined in the next lines. Plugging (29) into (24)
by removing the ″∗ ″, we have the third constructive
equation of our fluid model related to the concentration
described as follows:

D
α
t θ �

1
Sc

z
2θ

zx
2 − Kθ, (32)

where Sc is defined in the next lines. %e velocity, tem-
perature, and concentration according to dimensionless
variables at initial time t � 0 are summarized as follows:

v(x, 0) � ϕ(x, 0) � θ(x, 0) � 0. (33)

Note that we consider velocity v, temperature ϕ, and
concentration θ satisfying the boundary conditions repre-
sented in the following relationships:

v(0, t) � 0, (34)

ϕ(0, t) � t � θ(0, t). (35)

In our previous constructive equations, we consider that
the Prandtl number, thermal Grashof number, mass Grashof

4 Journal of Mathematics



number, and chemical reaction parameter are defined, re-
spectively, as follows:

Pr �
μCp

k0
, Gr � ]gβ Tw − T∞( , (36)

Sc �
]
d

, Gm � cg] Cw − C∞( . (37)

To complete the modeling, we give tables of nomen-
clature where all parameters described in this paper have
been summarized for more comprehension (Tables 1 and 2).

4. Dynamics Approaches

%is section provides the analytical solutions of the equa-
tions established in our modeling section. %e procedure to
obtain the solutions starts with the second and the third
equation and finishes with the first equation. %is procedure
is adopted because the first equation of the constructive
equation (30) contains solutions of the second and last
equations of models (31) and (32). In this section, the
technique will use the Laplace transform and the Mit-
tag–Leffler function, Gaussian error function, and Wright
function. %ese functions will play an important role in
expressing the forms of the analytical solutions.

4.1. Dynamics Approaches of the Concentration. We begin
with the fractional diffusion equation with the reaction term
expressed in equation (32) under the initial and boundaries
conditions (33)–(35). See the following fractional differential
equation:

D
α
τ θ �

1
Sc

z
2θ

zx
2 − Kθ. (38)

Its initial and boundary conditions are described in the
following equations:

θ(x, 0) � 0, (39)

θ(0, τ) � t. (40)

As previously mentioned, the considered initial and
boundary conditions are one of the novelties of the present
paper. %e solution approach will apply the Laplace trans-
form to both sides of (38). Note that the Laplace transform of
the fractional operator will also be used, and we obtain the
following relationships:

s
αθ − s

α− 1θ(0) �
1
Sc

z
2θ

zx
2 − Kθ,

s
αθ �

1
Sc

z
2θ

zx
2 − Kθ,

z
2θ

zx
2 − Scs

αθ − ScKθ � 0.

(41)

Utilizing the Laplace transform of the initial condition
described by θ(0, s) � 1/s2 and solving the second-order

differential equation (41) with the classical mathematical
method, the exact analytical solution is given as follows:

θ(x, s) �
s
α

+ K

s
2

exp − x
���������
Sc s

α
+ K( 



 

s
α

+ K
.

(42)

We can observe that in (42), we have a product of two
Laplace transform functions. Using convolution rule, the
analytical solution of (38) follows the form described by the
relationship

θ(x, t) � 
∞

0
f(x, u)g(t)du, (43)

where, in particular, function f is represented as follows:

f(x, u) � exp(− Ku)erfc
x

��
Sc

√

2
��
u

√ , (44)

and function g is a function obtained via integration and the
Wright function:

g(t) � 
t

0

1
s

K(t − s) +
(t − s)

α− 1

Γ(2 − α)
 W 0, − α, − us

− α
( ds.

(45)

It is also important to propose the analytical solution
when the order of the fractional operator is α � 1. To be
more clear, we repeat the previous procedure. It will permit
some readers to do the same investigation when the integer-
order derivative is used. Note that, in integer-order

Table 1: Nomenclature section.

Parameters Descriptions
ρ Density
T Temperature distribution of the fluid
Tw Constant temperature
T∞ Ambient fluid temperature
Cw Constant concentration level at the plate
C Concentration distribution of the fluid
C∞ Ambient fluid concentration
] Kinematic viscosity
μ Dynamic viscosity
K Chemical reaction parameter
β Volumetric coefficient of thermal expansion

Table 2: Nomenclature section.

Parameters Descriptions
k0 %ermal conductivity of the fluid
ρ Density of the fluid
Cp Heat at a constant pressure
g Acceleration constant
λ %ermal conductivity
d Mass diffusivity
Gm Mass Grashof number
Gr %ermal Grashof number
Pr Prandtl number
Sc Schmidt number

Journal of Mathematics 5



derivative, we get the following form of the Laplace trans-
form of the first-order derivative sθ − θ(0). Using the pre-
vious transform, we have the following relationships:

sθ − θ(0) �
1
Sc

z
2θ

zx
2 − Kθ,

sθ �
1
Sc

z
2θ

zx
2 − Kθ,

z
2θ

zx
2 − Sc(s + K)θ � 0.

(46)

We utilize the Laplace transform of the initial condition;
that is θ(0, s) � 1/s2. %e second-order differential equation
(46) with classical method has the following solution:

θ(x, s) �
exp[− x

��������
Sc(s + K)


]

s
2 . (47)

%e inverse of the Laplace transform according to the
second variable can be represented by the following
equation:

θ(x, t) �
1
2

t −
xSc

2
��
K

√  exp(− x
����
KSc

√
)ercf

x
��
Sc

√

2
�
t

√ −
���
Kt

√
  

+
1
2

t +
xSc

2
��
K

√  exp(x
����
KSc

√
)ercf

x
��
Sc

√

2
�
t

√ +
���
Kt

√
  .

(48)

We finish this part by focusing on a special case that can
be obtained when the α � 1 and K � 0. K � 0 means the
chemical reaction parameter is null. %e procedure of the
solution is similar to the integer-order version. After cal-
culation, we have the inverse as follows:

θ(x, s) �
exp[− x

���
Scs

√
]

s
2 . (49)

Applying the inverse of the Laplace transform of the
previous function (49), we obtain the following relationship:

θ(x, t) �
x
2
Sc

2
+ t erfc

x
��
Sc

√

2
�
t

√  −
x

���
Sct

√

2
��
π

√ exp −
x
2
Sc

4t
 .

(50)

4.2. Dynamics Approaches of the Temperature. In this part,
we try to determine the analytical solution of the fractional
diffusion equation presented in (31). To be more clear, we
recall the fractional differential (31), the problem is defined
as follows:

D
α
τϕ �

1
Pr

z
2ϕ

zx
2 , (51)

and its initial and boundary conditions are described by the
following equations:

ϕ(x, 0) � 0, (52)

ϕ(0, τ) � t. (53)

%e procedure of getting the solution does not change.
We apply the Laplace transform in equations (51) and (53)
and get the following relationships:

s
αϕ − s

α− 1ϕ(0) �
1
Pr

z
2ϕ

zx
2 ,

s
αϕ �

1
Pr

z
2ϕ

zx
2 ,

z
2ϕ

zx
2 − Prsαϕ � 0.

(54)

Note that the Laplace transform of the initial condition
described in (53) is given by ϕ(0, s) � 1/s2. Combining it
with the solution of the second-order differential equation
(54), we obtain the following relation:

ϕ(x, s) �
exp − x

����
Pr s

α√
 

s
2 . (55)

%e inverse of this Laplace transform can be written
using the wright function described in the preliminary
section. We have the following exact analytical solution:

ϕ(x, t) � tW 2, − α/2, − x
��
Pr

√
t
− α/2

 . (56)

We continue with a special case. Let the order of the
fractional operator α � 1. %e Laplace transform is repre-
sented as the following forms:

sϕ − sϕ(0) �
1
Pr

z
2ϕ

zx
2 ,

sϕ �
1
Pr

z
2ϕ

zx
2 ,

z
2ϕ

zx
2 − Pr sϕ � 0.

(57)

%e Laplace transform of the initial condition described
in (53) gives ϕ(0, s) � 1/s2. Combining it with the solution of
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the second-order differential equation (57), we obtain the
following relation:

ϕ(x, s) �
exp[− x

���
Prs

√
]

s
2 . (58)

Applying the inverse of the Laplace transform of the
previous function (46), we obtain the following relationship:

ϕ(x, t) �
x
2 Pr
2

+ t erfc
x

��
Pr

√

2
�
t

√  −
x

���
Prt

√

2
��
π

√ exp −
x
2 Pr
4t

 .

(59)

4.3. Dynamics Approaches of the Velocity. We propose the
velocity dynamics in the model proposed in the modeling
section. Here, the procedure does not change, and the
Laplace transform will be applied. Let the fractional dif-
ferential equation be defined by the following equation:

D
α
τv � 1 +

1
β

 
z
2
v

zx
2 + Grϕ + Gmθ, (60)

and its initial and boundary conditions are described in the
following equations:

v(x, 0) � 0, (61)

v(0, τ) � 0. (62)

For the simplification in the computations, we suppose
that κ � 1 + 1/β. %e Laplace transform as described in the
previous sections will be applied. %e particularity of this
present step is that the Laplace transforms in equations
(60)–(62) will be used. We have the following relationship:

s
α
v − s

α− 1
v(0) � κ

z
2
v

zx
2 + Grθ + Gmϕ,

s
α
v � κ

z
2
v

zx
2 + Grθ + Gmϕ,

z
2
v

zx
2 −

s
α

κ
v � −

Gr

κ
θ −

Gm

κ
ϕ.

(63)

In the resolution of this equation, we need to replace the
terms in the second member by their values. Using the
function in equations (42) and (55), we have to solve the
following second-order differential equation:

z
2
v

zx
2 −

s
α

κ
v � −

Gr

κ
exp − x

����
Pr s

α√
 

s
2 −

Gm

κ

exp − x
���������
Sc s

α
+ K( 



 

s
2 .

(64)

In the resolution of this equation, we need to get the
homogenous solution and the particular solution. We first
consider the equation defined by

z
2
v

zx
2 −

s
α

κ
v � −

Gm

κ

exp − x
���������
Sc s

α
+ K( 



 

s
2 .

(65)

Its solution considering the Laplace transform of the
initial condition can be represented as the following form:

v(x, s) � a(x, s) + b(x, s) + c(x, s) + d(x, s), (66)

with the functions defined as

a(x, s) �
Gm

KκSc

s
α

s
2

exp − x
����
s
α/κ

√
 

s
α , (67)

b(x, s) � −
Gms

α− (2− α)

KκSc s
α

+ b1( 

exp − x
����
s
α/κ

√
 

s
α , (68)

c(x, s) � −
Gm

KκSc

s
α

+ K

s
2

exp − x
���������
Sc s

α
+ K( 



 

s
α

+ K
,

(69)

d(x, s) �
Gms

α− 2
s
α

+ K( 

KκSc s
α

+ b1( 

exp − x
���������
Sc s

α
+ K( 



 

s
α

+ K
. (70)

Note that the constant b1 � KκSc/(κSc − 1). %e ana-
lytical solution of the model considered in our paper will be
calculated by the inverse of the Laplace transforms of the
functions represented in equations (67) to (70). We begin
with the first function. We need to invert the function a

using the convolution rule and have the following:

a(x, t) �
Gm

KκSc


t

0

(t − τ)
1− α

Γ(2 − α)
f1(x, τ)dτ, (71)

where, in particular, the functions f is represented by the
following form:

f1(x, t) � 
∞

0
erfc

x

2
���
κu

√ 
1
t

W 0, − α, − ut
α

( du. (72)

We continue with the inverse of the Laplace transform of
the function b and adopt the same procedure as previously
made:

b(x, t) � −
Gm

KκSc


t

0
(t − τ)

1− α
Eα,2− α − b1(t − τ)

α
 f1(x, τ)dτ.

(73)

We continue now with the inverse of the function c.
Here, we use the procedure adopted in the determination of
the concentration. We have the following:

c(x, s) � −
Gm

KκSc

s
α

+ K

s
2

exp − x
���������
Sc s

α
+ K( 



 

s
α

+ K
.

(74)

We can observe that, in equation (74), according to the
product of two Laplace transform functions, the analytical
form follows the form described by

c(x, t) � −
Gm

KκSc


t

0
k(t − τ) +

(t − τ)
1− α

Γ(2 − α)
 f2(x, τ)dτ,

(75)

where, in particular, function f2 is represented by the fol-
lowing form:
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f2(x, t) � 
∞

0
exp(− Ku)erfc

x
��
Sc

√

2
��
u

√ 
1
t

W 0, − α, − ut
α

( du.

(76)

We finish the first part of the inversion by the function d.
We use the same procedure as in the previous parts and get
the following analytical form:

d(x, t) �
Gm

KκSc


t

0
g1(t − τ)f2(x, τ)dτ, (77)

where, in particular, function f2 is represented by the fol-
lowing form:

f2(x, t) � 
∞

0
exp(− Ku)erfc

x
��
Sc

√

2
��
u

√ 
1
t

W 0, − α, − ut
α

( du,

(78)

and the function g is a function obtained via integration and
the Wright function:

g1(t) �
Eα,2− α − b1t

α
( 

t
α− 1 + tEα,2 − b1t

α
( . (79)

We now try to solve the second-order differential
equation defined by the following relationship:

z
2
v

zx
2 −

s
α

κ
v � −

Gr

κ
exp − x

����
Pr s

α√
 

s
2 . (80)

%e solution of equation (80) is not difficult to be
established and can be represented as the following form:

v(x, s) � m(x, s) + m(x, s), (81)

where the functions m and n are defined as

m(x, s) �
Gr

κPr − 1
1
s
2

exp − x
����
s
α/κ

√
 

s
α , (82)

n(x, s) � −
Gr

κPr − 1
1
s
2

exp − x
����
Pr s

α√
 

s
α . (83)

Applying the inverse of the Laplace transform and
combining it with the convolution product, the analytical
solution of equation (80) can be represented as follows:

v(x, t) �
Gr

κPr − 1


t

0
(t − τ)f1(x, τ)dτ

−
Gr

κPr − 1


t

0
(t − τ)f2(x, τ)dτ,

(84)

where, in particular, functions f1 and f2 are represented by
the following forms:

f1(x, t) � 
∞

0
erfc

x

2
���
κu

√ 
1
t

W 0, − α, − ut
α

( du, (85)

f2(x, t) � 
∞

0
erfc

x
��
Pr

√

2
��
u

√ 
1
t

W 0, − α, − ut
α

( du. (86)

%e analytical solution of the fractional differential
equation described in equation (60) can be obtained by
combining the exact analytical solution in equations
(71)–(77) and equation (83). We have the following:

v(x, t) � a(x, t) + b(x, t) + c(x, t) + d(x, t)

+ m(x, t) + n(x, t).
(87)

We finish this part with a special case. In this part, the
special case is when the Caputo derivative is equivalent to the
integer-order derivative. So, we consider that α � 1. For
more clarity, the process to get the solution is repeated with
the new form of the Laplace transform, and we have the
following:

sv − v(0) � κ
z
2
v

zx
2 + Grθ + Gmϕ,

sv � κ
z
2
v

zx
2 + Grθ + Gmϕ,

z
2
v

zx
2 −

s

κ
v � −

Gr

κ
θ −

Gm

κ
ϕ,

z
2
v

zx
2 −

s

κ
v � −

Gr

κ
exp[− x

���
Prs

√
]

s
2

−
Gm

κ
exp[− x

��������
Sc(s + K)


]

s
2 .

(88)

%e resolution of the second-order differential (87) gives
the following analytical Laplace solution:

v(x, s) � a(x, s) + b(x, s) + c(x, s) + d(x, s)

+ m(x, s) + n(x, s),
(89)

where the functions are defined as follows:

a(x, s) �
Gm

KκSc

exp(− x
���
s/κ

√
)

s
2 , (90)

b(x, s) � −
Gm

Kb1κSc

exp(− x
���
s/κ

√
)

s
+

Gm

Kb1κSc

exp(− x
���
s/κ

√
)

s − b2
, (91)
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c(x, s) � −
Gm

KκSc

exp(− x
��������
Sc(s + K)


)

s
2 , (92)

d(x, s) � −
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exp(− x
��������
Sc(s + K)


)

s
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Kb1κSc

exp(− x
��������
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, (93)

m(x, s) �
Gr

κPr − 1
1
s
2
exp(− x

���
s/κ

√
)

s
, (94)

n(x, s) � −
Gr

κPr − 1
1
s
2
exp(− x

���
Pr s

√
)

s
, (95)

where b2 � KκSc/(1 − κSc). %e analytical solution of (60) is
obtained via inverting the Laplace transform of equation
(89). We begin with the first function. %e inverse of the
function a is given by the following formula:

a(x, t) �
Gm

KκSc

x
2

2κ
+ t erfc
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2
��
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x

�
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(96)

%e inverse of the Laplace transform of the function b is
given by the following formula:

b(x, t) � −
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%e inverse of the Laplace transform of the function c is
given by the following representation:

c(x, t) � −
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%e inverse of the Laplace transform of the function d is
given by the following representation:

d(x, t) � −
Gm

Kb1κSc
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For the inverse of the Laplace transform of the function
m and n, we use convolution product properties and get the
following representations:

m(x, t) �
Gr

κPr − 1


t

0
(t − τ)erfc

x

2
��
κτ

√ dτ,

n(x, t) � −
Gr

κPr − 1


t

0
(t − τ)erfc

x
��
Pr

√

2
�
τ

√ dτ.

(100)

.
In the discussion section, these solutions will be

implemented via MATLAB, and the solution will be drawn.
%e advantages of the analytical solutions are useful and not
difficult to be implemented via MATLAB.

%e expression of the Nusselt number is obtained after
the inverse of the Laplace transform of a certain function,
and we use the temperature distribution given by

Nu � − L
− 1 lim

x⟶0

zϕ(x, s)

zx
 . (101)

After calculations, the Nusselt number is represented by
the following value:

Nu �
��
Pr

√ t
1− α/2

Γ(2 − α/2)
. (102)

%e formula of the Sherwood number is obtained after
the inverse of the Laplace transform of a certain function,
and we use the concentration distribution given by

Sh � − L
− 1 lim

x⟶0

zθ(x, s)

zx
 . (103)

%is number is obtained as previously mentioned using
the inverse of the function represented in equation (103) and
expressed via a special function G(.) known as the Lor-
enzo–Hartley function. We have the following value:

Sh �
��
Sc

√
Gα,α− 2,1/2(− K, t) + KGα,− 2,1/2(− K, t) . (104)

5. Results and Interpretations

%is section represents the dynamics using the exact analytical
solutions described in the previous section.Wewill also analyze
the impact of the order of the fractional operator.%e influence
of themass Grashof number, thermal Grashof number, Prandtl
number, Schmidt number will also be discussed and physically
interpreted. We will also analyze and discuss the Nusselt
number and Sherwood number in the fractional context.

5.1. Dynamics of the Concentration. %is section represents
the dynamics of the concentration in our model (30)–(32). In
Figures 1(a), 1(b), 2(a), and 2(b), we consider Sc � 4 and
Sc � 10,K � 0.06. In the first part, we focus on the influence of
different orders of the Caputo derivative. We represent the
concentration of the fluid in Figures 1(a), 1(b), 2(a), and 2(b)
versus the variations of the order of the fractional operator.

We now consider analyzing the influence of the Schmidt
number Sc. We work with different values of the order of the

Caputo derivative, and the time is fixed to τ � 4 and
K � 0.06. %e concentrations are represented in
Figures 3(a), 3(b), 4(a), and 4(b).

We notice with Figures 3(a), 3(b), 4(a), and 4(b), when
the Schmidt number Sc increases the concentration of the
considered fluid decreases as well. %is fact can be explained
physically by the fact that when the Schmidt number and the
order of the Caputo derivative increase, they reduce the
diffusivity of the fluid. %us, the concentration of the fluid
decreases. %e same behaviors can be observed with the
chemical reaction parameter. %erefore, this part is omitted.

We finish the analysis of the influence of the parameters
by representing the dynamics of the concentration when the
chemical reaction parameter k � 0. If we use the analytical
solution presented in equation (50) in the graphical rep-
resentations, we have Figures 5(a) and 5(b).

In Figures 5(a) and 5(b), we can observe that the in-
fluence of the order of the Caputo derivative and Schmidt
number does not change.

5.2. Dynamics of the Temperature. %e objective of this
section is to give graphical representations of the temper-
ature distribution and analyze the influence of the order of
the Caputo derivative α and the Prandtl number Pr. Here, we
work with equation (56). In this section, we consider dif-
ferent orders of the Caputo derivative and different values of
the Prandtl number. We have the following graphical rep-
resentations (Figures 6(a), 6(b), 7(a), and 7(b)) for the dy-
namics of our model (30)–(32) considering the temperature.

From Figures 6(a), 6(b), and 7(a), we can observe that as
the order of the Caputo derivative increases when the time is
fixed to τ � 5, the temperature distribution increases as well.
We notice the acceleration effect generated by the Caputo
derivative on the temperature dynamics of the considered
fluid model. From Figure 7(b), we observe that when the
Prandtl number increases, the temperature distribution
decreases. %is behavior is normal because big values of the
Prandtl number reduce the diffusivity of the considered fluid
too. %us, the temperature decreases with it increase.

5.3. Dynamics of the Velocity. %is section is interesting and
we will analyze the impact of all the parameters of the
considered model on the velocity dynamics. Using the so-
lution described in equation (87) and the resolution pro-
cedure adopted to obtain the analytical form of the velocity,
we can notice both the concentration and the temperature
impact the velocity, which make this section more inter-
esting. %e influence of the mass Grashof number Gm,
%ermal Grashof number Gr, volumetric coefficient of
thermal expansion β, Prandtl number Pr, and Schmidt
number Sc should be analyzed. In our first case, fix the
following values Gr � 5, Pr � 5, κ � 9.5, Gm � 5, K � 1.5,
and τ � 2. We have Figures 8(a), 8(b), 9(a), and 9(b) when
we work with different orders of the fractional operator.

Firstly, we observe that in Figures 8(a), 8(b), 9(a), and
9(b), when the order of the Caputo operator increases, the
velocity of the considered fluid increases as well. %is be-
havior is due to the accumulation of the memory, which
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causes an acceleration effect in the velocity. %e second
remark is that the Schmidt number Sc generates a decrease in
the velocity when its value increases. %e same behaviors are
obtained also with the increase of the Prandtl number Pr.
%ese behaviors are already mentioned with temperature
and concentration because these values reduce diffusivity.
We focus on the influence of the mass Grashof number Gm.

Before we represent the graphics with the values previously
fixed, the difference at this stage is that we take different
values for the mass Grashof number Gm. We have
Figures 10(a), 10(b), 11(a), and 11(b).

We use Figures 10(a), 10(b), 11(a), and 11(b) to explain the
influence of the mass of the Grashof number. We notice that
the increase in this number generates an increase in the
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Figure 1: Concentration for different values of the order α.Note. Figures 1(a) and 1(b) are represented with the Schmidt number Sc � 4 and
with times τ � 4 (a) and τ � 0.4 (b).
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Figure 2: Concentration for different values of the order α. We observe that when τ � 4 and the order of the Caputo derivative increases, the
concentration of our considered model increases as well. In contrast, when τ � 0.4, we notice the increase in the order of the fractional
operator generates a decrease in the concentration. %e previous behaviors are confirmed when the Schmidt number Sc � 10; see Figures
2(a), and 2(b). Finally, the order of the Caputo derivative has an acceleration or retardation effect that depends on the considered times.
%ese behaviors are explained by the accumulation of the memory effect when the order of the Caputo derivative increases.
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velocities. %is behavior can be explained physically by the
following fact: the mass Grashof number influences the ratio of
the species buoyancy force to the viscous hydrodynamic force
and its increase generates an increase in the species buoyancy
force, which in turn implies an increase in the velocities. %e
same behavior can be observed with the thermal Grashof
number Gm (Figures 12(a), 12(b), 13(a), and 13(b)).

Referring to Figures 12(a), 12(b), 13(a), and 13(b), we
observe that the velocities increase when the thermal Gra-
shof number Gr increases. %ese dynamics are because the
thermal Grashof number generates an increase in the

buoyancy forces, which in turn causes an increase in the
momentum boundary layer thickness and then the velocity
of the fluid considered in our model.

%e comparative studies will be made versus the results
in [21, 29]. As considered in [29], the same model has been
considered. For the temperature distribution, the con-
structive equations described for the temperature in the
present paper and [29] are the same, but the initial and
boundary conditions differ. %e dynamics observed for the
temperature in [29] and the present paper in Section 5.2 are
similar (Figure 14(a)). %e similarity can be explained by the
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Figure 3: Concentration for different values of the order α for Sc � 10 (a) and Sc � 15 (b).
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Figure 4: Concentration for different values of the order α for Sc � 20 (a) and Sc � 25 (b).
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fact that our present initial and boundary conditions are a
particular case of the boundary and initial conditions
considered in [29].

%e advantage of our initial condition, in this case, is that
it is in a polynomial form, and it is more realistic because it
excludes negative value for the derivative of the temperature
with respect to the state. In Section 5.1, the concentration has
been considered and the constructive equation is the same as
the constructive equation for the concentration in [29].
However, the initial conditions are totally different. Here, our
initial and boundary condition depends on time, but in [29],
they are constant; the consequences are that the dynamics in

the figures differ; see Figure 14(b). Note that the difference is
caused in this case by the difference in the initial condition.
%e same initial condition for initial and boundaries condi-
tions have been considered for the velocity. We observe the
dynamics of the velocities in [29], and findings in Section 5.3
have the same form, but the values are impacted because the
concentrations differ in the paper (Figure 15(a)).

A similar comparison can be made with paper [6].

5.4. Nusselt Number and Sherwood Number. We finish this
section by analyzing the influence of the Nusselt number and
Sherwood number. %ese local numbers permit
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Figure 5: Concentration for different values of the order α for Sc � 10 (a) and Sc � 20 (b).
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Figure 6: Temperature for different values of order α.
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characterizing the mass transfer rate from the plate to the
considered fluid. %e impact of the Prandtl number and
Schmidt number to these local coefficients and the order of
the Caputo derivative will be analyzed for more compre-
hension of our model. Let us consider the Nusselt number
with different order of the Caputo derivative; we have
Figures 16(a) and 16(b).

We can observe that the variation of the Nusselt
number depends strongly on the order of the Caputo
derivative. %e Nusselt number increases with the in-
crease in the order of the Caputo derivative in the interval
(0, 1) and decreases with the increase of the order of the

operator in the rest of the interval. Figures 16(a) and
16(b) confirm the increase in the Nusselt number when
the Prandtl number increases.

We finish with the Sherwood number, which depends on
the Schmidt number. %e graphical representation is a
function of the time and with different values for the order of
the fractional operator.

Figures 17(a) and 17(b) confirm the dependence between
the Sherwood number, Schmidt number, and order of the
fractional operator. Contrary to the Nusselt number, the
Sherwood number converges to a small number when the
time converges to infinity.
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Figure 7: Temperature for different values of order α.
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Figure 10: Velocities for different values of order α.
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Figure 16: Nusselt number for different values of order α.
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6. Conclusion

%is paper has addressed and focused on the analytical
solutions of the fluid model described by the Caputo de-
rivative using the Laplace transform method. %e special
functions have been used to describe the analytical solutions
and their graphical representations. We have analyzed the
influence of the order of the Caputo derivative and find that
it plays acceleration or retardation effects. %ese behaviors
are due to the accumulation of the memory effect described
in the paper. We have also analyzed the influence of the
Prandtl and Schmidt numbers in the dynamics of the
concentration and the temperature. We find that these
numbers generate a decrease in these distributions. We also
find that Grashof numbers generate a decrease in the ve-
locities due to the impact of these numbers on the buoyancy
forces. In the future direction of research, the analysis
adopted in this paper can be addressed with the same model
but with different initial and boundary conditions, which
play an important role in the form of the exact analytical
solutions. %e graphical representations have been used in
this paper to support all the paper’s findings.
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