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In this paper, we study the convex optimization problem with linear constraint, and the objective function is composed of m
separable convex functions. Considering the special case where the objective function is composed of two separable convex
functions, the auxiliary problem principle (APP) is an e�ective parallel distributed algorithm for solving the special case. Inspired
by the principle of APP, a natural idea to solve separable convex optimization problem withm≥ 3 is to extend the method of APP,
resulting in the APP-like algorithm. �e convergence of the APP-like algorithm is not clear yet. In this paper, we give a su�cient
condition for the convergence of the APP-like algorithm. Speci�cally, the APP algorithm is a special case of the APP-like al-
gorithmwhenm� 2. However, simulation results show that the convergence e�ciency of the APP-like algorithm is a�ected by the
selection of penalty parameter.�erefore, we propose an improved APP-like algorithm in this paper. Simulation results show that
the improved APP-like algorithm is robust to the selection of penalty parameter and that the convergence e�ciency of the
improved APP-like algorithm is better when compared with the APP-like algorithm.

1. Introduction

For the following convex problem with linear constrain,

min f1 x1( ) + f2 x2( ),

s.t
A1x1 + A2x2 � b,
x1 ∈ Ω1 and x2 ∈ Ω2,

(1)

where f1: R
m1⟶ R and f2: R

m2⟶ R are convex func-
tion, x1 ∈ Rm1 and x2 ∈ Rm2 are closed convex sets,
A1 ∈ Rr×m1 and A2 ∈ Rr×m2 are the given �xed matrices, and
b ∈ Rr is the given �xed vector.

Further analysis of problem (1) shows that the objective
function of problem (1) is separable without intersecting
variables. �en, a natural idea is whether a splitting algo-
rithm can be adopted to solve problem (1). �e alternating
direction multiplier method (ADMM) is an e�ective dis-
tributed iteration strategy [1] for solving problem (1) and has
been widely used to solve engineering problems [2, 3]. For
problem (1), the corresponding ADMM iteration strategy
can be expressed as follows [4]:

xk+11 � argmin f1 x1( ) +
c

2
A1x1 + A2x

k
2 − b

�����
�����
2
+〈− λk, A1x1〉|x1 ∈ Ω1{ },

xk+12 � argmin f2 x2( ) +
c

2
A1x

k+1
1 + A2x2 − b

�����
�����
2
+〈− λk, A2x2〉|x2 ∈ Ω2{ }

λk+1 � λk − c A1x
k+1
1 + A2x

k+1
2 − b( ),

,




(2)
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where λ ∈ Rr represents the Lagrange multiplier, c> 0
represents penalty parameter, and 〈·, ·〉 denotes the inner
product, i.e., 〈x, x〉 � xTx.

In this paper, we further consider the general case of
problem (1), the objective functions are composed of m
separable convex functions (m≥ 3) with linear constraint.

min 
m

i�1
fi xi( ,

s.t


m

i�1
Aixi � b,

xi ∈ Ωi i � 1, 2, . . . , m

(3)

By comparing problem (1) with problem (3), an intuitive
idea is to directly apply ADMM to solve problem (3)
resulting in an ADMM-like iteration strategy is shown in the
following equation:

x
k+1
1 � argmin f1 x1(  +

c

2
A1x1 + 

m

j�2
Ajx

k
j − b

����������

����������

2

+〈− λk
, A1x1〉|x1 ∈ Ω1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

x
k+1
2 � argmin f2 x2(  +

c

2
A1x

k+1
1 + A2x2 + 

m

j�3
Ajx

k
j − b

����������

����������

2

+〈− λk
, A2x2〉|x2 ∈ Ω2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

x
k+1
i � argmin fi xi(  +

c

2


i− 1

j�1
Ajx

k+1
j + Aix

k
i + 

m

j�i+1
Aix

k
i − b

����������

����������

2

+〈− λk
, Aixi〉|xi ∈ Ωi

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

x
k+1
m � argmin fm xm(  +

c

2


m− 1

j�1
Ajx

k+1
j + Amx

k
m − b

����������

����������

2

+〈− λk
, Amxm〉|xm ∈ Ωm

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

λk+1
� λk

− c 
m

j�1
Ajx

k+1
j − b⎛⎝ ⎞⎠,

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

For problem (1), the ADMM-like method is the classical
ADMMon the condition thatm� 2. It is clear that the classical
ADMM is convergent [1]. However, we cannot prove the
convergence of ADMM-like iteration strategy when m≥ 3 [5].
To tackle the divergence of ADMM-like method, predictive
correction ADMM-like iteration strategies ADM-G (ADM
with Gaussian back substitution) [6] and ADBC (alternating
direction-based contraction method) [7] are proposed. Spe-
cifically, for given wk � (xk

1, xk
1, . . . , xk

m, λk), the prediction
results wk is generated by ADMM-like method (4) and the
correction results wk+1 is generated by wk+1 � wk +

α(wk − wk), where α represents the correction step size ()e
expressions of parameter α are different in ADM-G and
ADBC). )e introduction of correction step ensures the
convergence of the ADMM-like iterative strategy, but the
correction step needs to calculate the inverse matrix, which
greatly increases the complexity of the iterative strategy.

ADM-G and ADBC both belong to the Gaussian Seidel
iterative scheme. )e Gauss-Seidel iterative scheme can use
the latest iteration information in solving each sub-prob-
lem to obtain a better convergence rate. At the same time,
due to the serial computation form of the Gauss-Seidel
iterative scheme, the total time consumption of each it-
eration in the prediction step is equal to the sum of the time
consumption of all sub-problems. According to the above
description, the Gauss-Seidel iterative scheme requires a
long computing time when the problem scale is large (in
other words, when the value of m is large). )en, the
parallel form is recommended when the problem scale is
large. )e auxiliary problem principle (APP), which was
proposed by G. Cohen in 1980 [8], is an effective parallel
distributed algorithm [9]. )e iteration strategy of the
auxiliary problem principle for solving (1) can be expressed
as follows:
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x
k+1
1 � argmin f1 x1(  +

β
2

A1x1
����

����
2

− β〈A1x1, A1x
k
1〉 + 〈 − λk

+ c A1x
k
1 + A2x

k
2 − b , A1x1〉|x1 ∈ Ω1 ,

x
k+1
2 � argmin f2 x2(  +

β
2

A2x2
����

����
2

− β〈A2x2, A2x
k
2〉 + 〈 − λk

+ c A1x
k
1 + A2x

k
2 − b , A2x2〉|x2 ∈ Ω2 ,

λk+1
� λk

− c A1x
k+1
1 + A2x

k+1
2 − b ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where β> 2c is a sufficient condition for the convergence of
auxiliary problem principle iterative strategy [10], other
symbols have the same meaning as (4). Reference [11]
further discussed APP and derive its O(1/n) convergence

rate . In order to facilitate the analysis of the mathematical
properties of the auxiliary problem principle, the equivalent
form of the APP is given [11].

x
k+1
1 � argmin f1 x1(  +

β − c

2
A1x1 − A1x

k
1

�����

�����
2

+
c

2
A1x1 + A2x

k
2 − b

�����

�����
2

+ 〈 − λk
, A1x1〉|x1 ∈ Ω1 ,

x
k+1
2 � argmin f2 x2(  +

β − c

2
A2x2 − A2x

k
2

�����

�����
2

+
c

2
A1x

k
1 + A2x2 − b

�����

�����
2

+ 〈 − λk
, A2x2〉|x2 ∈ Ω2 ,

λk+1
� λk

− c A1x
k+1
1 + A2x

k+1
2 − b ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Inspired by the principle of APP, a natural idea for
solving problem (3) is to extend the APP from problem (1) to
problem (3), resulting in an APP-like algorithm as follows:

x
k+1
1 � argmin f1 x1(  +

β − c

2
A1x1 − A1x

k
1

�����

�����
2

+
c

2
A1x1 + 

m

j�2
Ajx

k
j − b

����������

����������

2

+〈 − λk
, A1x1〉|x1 ∈ Ω1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

x
k+1
2 � argmin f2 x2(  +

β − c

2
A2x2 − A2x

k
2

�����

�����
2

+
c

2
A1x

k
1 + A2x2 + 

m

j�3
Ajx

k
j − b

����������

����������

2

+〈 − λk
, A2x2〉|x2 ∈ Ω2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

x
k+1
i � argmin fi xi(  +

β − c

2
Aixi − Aix

k
i

�����

�����
2

+
c

2


i− 1

j�1
Ajx

k
j + Aix

k
i + 

m

j�i+1
Aix

k
i − b

����������

����������

2

+〈 − λk
, Aixi〉|xi ∈ Ωi

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

x
k+1
m � argmin fm xm(  +

β − c

2
Amxm − Amx

k
m

�����

�����
2

+
c

2


m− 1

j�1
Ajx

k
j + Amx

k
m − b

����������

����������

2

+〈 − λk
, Amxm〉|xm ∈ Ωm

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

λk+1
� λk

− c 
m

j�1
Ajx

k+1
j − b⎛⎝ ⎞⎠,

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

)e convergence of APP-like algorithm (7) is not clear
yet. In this paper, we prove that β>mc is a sufficient
condition for the convergence of APP-like algorithm.

Specifically, the APP algorithm is a special case of the APP-
like algorithm whenm� 2. )is is the first innovation of this
paper.
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For APP algorithm, the penalty parameter c is a given
positive number. For APP-like algorithm, the setting
method of the penalty parameter c is same as that in APP
algorithm. Simulation results show that the convergence
efficiency of APP-like algorithm is affected by the selection
of penalty parameter. )erefore, we propose an improved
APP-like algorithm in this paper. Compared with APP-like
algorithm, the improved APP-like algorithm is robust in
terms of the selection of penalty parameter, and the con-
vergence efficiency of the improved APP-like algorithm is
better. )is is the second innovation of this paper.

2. Preliminaries

For a general convex optimization problem is as follows:

min f(x)|x ∈ Ω , (8)

where f(x): Rn⟶ R  is the convex function and Ω is the
closed convex set. Assuming x∗ is the optimal solution of the
convex optimization problem (8), it can be shown that point
x∗ must be in the feasible region, and all feasible directions
starting from point x∗ are the ascending directions of the
convex optimization problem (8). Supposing we use ∇f(x)

to represent the first derivative of function f(x), using
Sf(x) to represent all feasible directions of the function
f(x) at point x, and using Sd(x) to represent all descending
directions of the function f(x) at point x:

Sf(x) � s ∈ R
n
|s � x′ − x, x′ ∈ Ω , (9)

Sd(x) � s ∈ R
n
|s

T∇f(x)< 0 . (10)

According to the definition (9 and 10), it can be known
that the sufficient and necessary conditions for x∗ to be the
optimal solution of the convex optimization problem (8) can
be expressed as follows:

x
∗ ∈ Ω, Sf x

∗
( ∩ Sd x

∗
(  � ∅. (11)

According to the above description, it can be known that
solving the convex optimization problem (8) is equivalent to
solving the following variational inequality problem:

x ∈ Ω, x′ − x( 
T∇f(x)≥ 0, ∀x′ ∈ Ω. (12)

It is clear that problem (8) contains no equality con-
straint condition, and problem (3) contains an equality
constraint condition. Problem (3) can be easily transformed
into a mathematical form of problem (8) by means of
Lagrange function. )e symbol λ in (13) represents the
Lagrange multiplier. According to the above description, the
variational inequality (VI) can be used to express the first-
order optimality condition of the optimization problem (3)
[12]. Let W :� Ω1 ×Ω2 × · · · ×Ωm × Rr, solving (3) is
equivalent to solving w∗ � (x∗1 , x∗2 , · · · , x∗m, λ∗) ∈W, which
satisfies following inequalities:

f1 x1(  − f1 x
∗
1(  + x1 − x

∗
1(  − A

T
1 λ
∗

 ≥ 0,

f2 x2(  − f2 x
∗
2(  + x2 − x

∗
2(  − A

T
2 λ
∗

 ≥ 0,

fm xm(  − fm x
∗
m(  + xm − x

∗
m(  − A

T
mλ
∗

 ≥ 0

λ − λ∗(  

m

i�1
Aix
∗
i − b � 0,

, ∀w ∈W,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

and the compact form of (13) can be written as follows:

f(x) − f x
∗

(  + w − w
∗

( F w
∗

( ≥ 0, (14)

where

x �

x1

x2

⋮

xm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, f(x) � 

m

i�1
fi xi( , w �

x1

x2

⋮

xm

λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, F(w) �

− A
T
1 λ

− A
T
2 λ

⋮

− A
T
mλ



m

i�1
Aixi − b

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

and F(w) is monotonic operator.

Definition 1. For the operator F, if the operator F satisfies

(F(u) − F(v))
T
(u − v)≥ 0, ∀u, v ∈ R

n
. (16)

Operator F is monotone operator [13].
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3. Convergence Analysis of the APP-
Like Algorithm

Lemma 1. Let sequence wk  is generated by APP-like al-
gorithm (7). If β>mc, then we obtain:

lim
k⟶∞

Aix
k+1
i − Aix

k
i

�����

����� � 0,

lim
k⟶∞

Aix
k+1
i � Aix

∗
i , i � 1, 2, · · · , m,

(17)

lim
k⟶∞

λk+1
− λk

�����

����� � 0,

lim
k⟶∞

λk+1
� λ∗.

(18)

Proof of Lemma 1. According to the description in section 2,
solving the sub-problems in (7) is equivalent to solving xk+1

i ,
which satisfies

f1 x1(  − f1 x
k+1
1  + x1 − x

k+1
1 

T

· (β − c)A
T
1 A1x

k+1
1 − A1x

k
1  + cA

T
1 A1x

k+1
1 + 

m

j�2
Ajx

k
j − b⎛⎝ ⎞⎠ − A

T
i λ

k
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
≥ 0, ∀x1 ∈ Ω1,

(19)

fi xi(  − fi x
k+1
i  + xi − x

k+1
i 

T

· (β − c)A
T
i Aix

k+1
i − Aix

k
i  + cA

T
i 

i− 1

j�1
Ajx

k
j + Aix

k+1
i + 

m

j�i+1
Ajx

k
j − b⎛⎝ ⎞⎠ − A

T
i λ

k
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
≥ 0, ∀xi ∈ Ωi�2≤ i≤m − 1.

(20)

fm xm(  − fm x
k+1
m  + xm − x

k+1
m 

T

· (β − c)A
T
m Amx

k+1
i − Amx

k
i  + cA

T
m 

m− 1

j�1
Ajx

k
j + Amx

k+1
m − b⎛⎝ ⎞⎠ − A

T
mλ

k
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
≥ 0, ∀xm ∈ Ωm.

(21)

Considering

λk+1
� λk

− c 
m

i�1
Aix

k+1
i − b⎛⎝ ⎞⎠. (22)

Combing (19)–(22), we obtain

f(x) − f x
k+1

  + w − w
k+1

 
T

F w
k+1

  + M w
k+1

− w
k

  

≥ 0, ∀w ∈W,

(23)

where

M �

(β − c)A
T
1 A1 − cA

T
1 A2 · · · − cA

T
1 Am 0

− cA
T
2 A1 (β − c)A

T
2 A2 · · · − cA

T
2 Am 0

⋮ ⋱ ⋱ ⋱ ⋮

− cA
T
mA1 − cA

T
mA2 · · · (β − c)A

T
mAm 0

0 · · · 0 0
1
c
Ir

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (24)
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By setting w � w∗ in (23), we obtain

w
∗

− w
k+1

 
T
M w

k+1
− w

k
 ≥f x

k+1
  − f x

∗
(  + w

k+1
− w
∗

 
T
F w

k+1
 . (25)

Mapping F is monotone, so we have

w
k+1

− w
∗

 
T
F w

k+1
 ≥ w

k+1
− w
∗

 
T
F w
∗

( . (26)

By combining (14) and (26), we obtain

f x
k+1

  − f x
∗

(  + w
k+1

− w
∗

 
T
F w

k+1
 ≥ 0. (27)

By combining (25)–(27), we obtain

w
∗

− w
k+1

 
T
M w

k+1
− w

k
 ≥ 0

⇒ w
∗

− w
k

+ w
k

− w
k+1

 
T
M w

k+1
− w

k
 ≥ 0

⇒ w
∗

− w
k

 
T
M w

k+1
− w

k
 ≥ w

k
− w

k+1
 

T
M w

k
− w

k+1
 .

(28)

By using (28), we obtain

w
k

− w
∗

�����

�����
2

M
− w

k+1
− w
∗

�����

�����
2

M
� w

k
− w
∗

�����

�����
2

M
− w

k
− w
∗

− w
k

− w
k+1

 
�����

�����
2

M

� 2 w
∗

− w
k

 
T
M w

k+1
− w

k
  − w

k
− w

k+1
�����

�����
2

M
≥ 2 w

k
− w

k+1
�����

�����
2

M
− w

k
− w

k+1
�����

�����
2

M

� w
k

− w
k+1

�����

�����
2

M
.

(29)

And (29) can be rewritten as follows:

v
k

− v
∗

�����

�����
2

G
− v

k+1
− v
∗

�����

�����
2

G
≥ v

k
− v

k+1
�����

�����
2

G
, (30)

where

v �

A1x1

A2x2

⋮

Amxm

λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

G �

(β − c) − c · · · − c 0

− c (β − c) · · · − c 0

⋮ ⋱ ⋱ ⋱ ⋮

− c − c · · · (β − c) 0

0 · · · 0 0
1
c
Ir

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (31)

Considering

v
k

− v
k+1

�����

�����
2

G
� 

m

i�1


m

j�i+1
Aix

k
i − Aix

k+1
i 

����� − Ajx
k
j − Ajx

k+1
j 

�����
2

cIr

+ 
m

i�1
(β − mc) Aix

k
i − Aix

k+1
i

�����

�����
2

Ir

+ λk+1
− λk

�����

�����
2
1
c
Ir

≥ 0. (32)

For (32), it is clear that if β>mc, ‖vk − vk+1‖
2
G � 0 is true only

and only if vk � vk+1. )erefore, we can say that matrix G is a
symmetric positive matrix when β>mc and (30) is Fejér
monotone [14]. )en, we can obtain

lim
k⟶∞

Aix
k+1
i − Aix

k
i

�����

����� � 0,

lim
k⟶∞

Aix
k+1
i � Aix

∗
i , i � 1, 2, · · · , m,

(33)
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lim
k⟶∞

λk+1
− λk

�����

����� � 0� lim
k⟶∞

λk+1
� λ∗. (34)

Based on above discussion, the proof of Lemma 1 is
completed.

According to the description of Lemma 1, it is clear that
if all Ai�i � 1, 2, · · · , m are full column rank matrices, then
we can obtain lim

k⟶∞
xk+1

i � x∗i and lim
k⟶∞

λk+1 � λ∗. In other

words, the sequence wk  generated by APP-like algorithm
(7) approximates the optimal solution of problem (3) on the

premise that all Ai�i � 1, 2, · · · , m are full column rank
matrices and β>mc. However, in solving practical problems,
we cannot guarantee that all Ai�i � 1, 2, · · · , m are full
column rank matrices. For the general matrix
Ai�i � 1, 2, · · · , m, Lemma 2 is given. □

Lemma 2. Let sequence wk  is generated by APP-like al-
gorithm (7). If problem (3) is convex, continuous, differen-
tiable, and satisfies the following equation:

lim
k⟶∞

Aix
k+1
i − Aix

k
i

�����

����� � 0, lim
k⟶∞

λk+1
− λk

�����

����� � lim
k⟶∞

c 
m

i�1
Aix

k+1
i − b⎛⎝ ⎞⎠

����������

����������
� 0, (35)

then, the sequence wk  converges to the optimal solution
w∗ of problem (3).

Proof of Lemma 2. For convex optimization problem,
according to the Karloch-Kuhn-Tucker condition (KKT
condition), it is very convenient to determine whether the
current iteration point is the optimal solution of the convex
optimization problem. For problem (3), if the current it-
eration point w ∈W satisfies the following equality
constraints:

∇fi xi(  − A
T
i λ � 0, i � 1, 2, · · · , m, (36)



m

i�1
Aixi − b � 0� xi ⊂ Ωi, (37)

then the current iteration point w is the optimal solution of
the optimization problem (3).

)e sequence wk  is generated by APP-like algorithm
(7). It is clear that xk+1

1 ⊂ Ω1 satisfy the following equality:

∇f1 x
k+1
1  +(β − c)A

T
1 A1x

k+1
1 − A1x

k
1  + cA

T
1 Aix

k+1
i + 

m

j�2
Ajx

k
j − b⎛⎝ ⎞⎠ − A

T
1 λ

k
� 0

⇒∇f1 x
k+1
1  − A

T
1 λ

k+1
+(β − c)A

T
1 A1x

k+1
1 − A1x

k
1  + cA

T
1 Aix

k+1
i + 

m

j�2
Ajx

k
j − b⎛⎝ ⎞⎠ − A

T
1 λk

− λk+1
  � 0

⇒∇f1 x
k+1
1  − A

T
1 λ

k+1
� A

T
1 λk

− λk+1
  − (β − c)A

T
1 A1x

k+1
1 − A1x

k
1  − cA

T
1 Aix

k+1
i + 

m

j�2
Ajx

k
j − b⎛⎝ ⎞⎠

� cA
T
1 

m

j�1
Ajx

k+1
j − b⎛⎝ ⎞⎠ − (β − c)A

T
1 A1x

k+1
1 − A1x

k
1  − cA

T
1 

m

j�1
Ajx

k+1
j − b + 

m

j�2
Ajx

k
j − Ajx

k+1
j ⎛⎝ ⎞⎠

� − (β − c)A
T
1 A1x

k+1
1 − A1x

k
1  − cA

T
1 

m

j�2
Ajx

k
j − Ajx

k+1
j .

(38)

Similarly, we can obtain

∇fi x
k+1
i  − A

T
i λ

k+1
� − (β − c)A

T
i Aix

k+1
i − Aix

k
i 

− cA
T
i 

i− 1

j�1
Ajx

k
j − Ajx

k+1
j  + 

m

j�i+1
Ajx

k
j − Ajx

k+1
j ⎛⎝ ⎞⎠� xi ⊂ Ωi�2≤ i≤m − 1,

(39)
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and

∇fm x
k+1
m  − A

T
mλ

k+1
� − (β − c)A

T
m Amx

k+1
m − Amx

k
m  − cA

T
m 

m− 1

j�1
Ajx

k
j − Ajx

k+1
j � xm ⊂ Ωm. (40)

According to the description of Lemma 1, it is clear that,

lim
k⟶∞

Ax
k+1
i − Ax

k
i

�����

����� � 0, lim
k⟶∞

λk+1
− λk

�����

����� � lim
k⟶∞

c 
m

i�1
Aix

k+1
i − b⎛⎝ ⎞⎠

����������

����������
� 0. (41)

By combining (38)–(41), we can obtain

lim
k⟶∞
∇fi x

k+1
i  − A

T
i λ

k+1
� 0, i � 1, 2, · · · , m, (42)

lim
k⟶∞



m

i�1
Aix

k+1
i − b � 0� xi ⊂ Ωi. (43)

)erefore, we can say that sequence wk  generated by
APP-like algorithm (7) converges to the optimal solution w∗

of problem (3) when problem (3) is convex, continuous,
differentiable, and satisfies (35).

)erefore, the proof of Lemma 2 is completed. □

4. The Improved APP-Like Algorithm and
Convergence Analysis

In Section 3, we prove the convergence of the proposed APP-
like algorithm. In this section, we will discuss the parameter
selection of the proposed APP-like algorithm and give the
improved APP-like algorithm. In addition, we will prove the
convergence of the improved APP-like algorithm.

4.1. 6e Improved APP-Like Algorithm. For the proposed
APP-like algorithm, the objective function contains
c/2‖A1x1 + 

m
j�2 Ajx

k
j − b‖2, we can say that c/2‖A1x1+


m
j�2 Ajx

k
j − b‖2 represents the penalty function for the

equality constraint 
m
i�1 Aixi � b of the original optimization

problem.)e concept of penalty functions reminds us of the
concept of exterior penalty function. To be specific, the
solution of the exterior penalty function tends to be optimal
solution as the penalty parameter tends to infinity. However,
when the penalty parameter tends to infinity, it is easy to

cause the ill of exterior penalty functions. Fortunately, for
the proposed APP-like algorithm, the objective function
contains not only the penalty function but also the Lagrange
function. )is method of combining the punishment
function and the Lagrange function is called augmented
Lagrange function method, and the obvious advantage is
that the penalty parameter tends to infinity is not required as
the convergence condition of the proposed APP-like
algorithm.

According to the description of (30), the sequence vk 

generated by the proposed APP-like algorithm gradually
approaches the optimal solution and the penalty functions
c/2‖A1x1 + 

m
j�2 Ajx

k
j − b‖2 gradually approach zero, which

means the convergence efficiency of the proposed APP-like
algorithm becomes progressively worse when the current
iteration point approximates the optimal solution. Inspired
by the method of exterior penalty function, we propose the
iterative strategy of penalty parameter as follows:

ck+1 �
2∗ ck, k< kstop,

ck, k≥ kstop,

⎧⎨

⎩ (44)

where kstop is an integer greater than one. According to the
description of (44) and considering the initial penalty pa-
rameter c0 > 0, it can be known that the sequence ck  has
upper and lower bounds, which means the iterative strategy
of penalty parameter will not cause the ill-conditioned
Hessian matrix of objective function.

For APP-like algorithm with m≥ 3, the objective func-
tion contains (β − c)/2‖Aixi − Aix

k
i ‖2 and the parameter β is

set to be β>mc in order to ensure the convergence of APP-
like algorithm. Based on the above discussion, we can give
the improved the APP-like algorithm as follows:
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x
k+1
1 � argmin f1 x1(  +

βk − ck

2
A1x1 − A1x
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1

�����

�����
2

+
ck

2
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m

j�2
Ajx

k
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����������

����������

2

+〈 − λk
, A1x1〉|x1 ∈ Ω1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

x
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βk − ck

2
A2x2 − A2x

k
2

�����

�����
2

+
ck

2
A1x

k
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m

j�3
Ajx

k
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����������

����������

2

+〈 − λk
, A2x2〉|x2 ∈ Ω2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

x
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i � argmin fi xi(  +

βk − ck

2
Aixi − Aix

k
i

�����

�����
2

+
ck

2


i− 1

j�1
Ajx

k
j + Aix

k
i + 

m

j�i+1
Aix

k
i − b

����������

����������

2

+〈 − λk
, Aixi〉|xi ∈ Ωi

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

x
k+1
m � argmin fm xm(  +

βk − ck

2
Amxm − Amx

k
m

�����

�����
2

+
ck

2


m− 1

j�1
Ajx

k
j + Amx

k
m − b

����������

����������

2

+〈 − λk
, Amxm〉|xm ∈ Ωm

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

λk+1
� λk

− ck 

m

j�1
Ajx

k+1
j − b⎛⎝ ⎞⎠,

ck+1 � 2∗ ck, k< kstop,

ck+1 � ck, k≥ kstop,

βk+1 � (m + δ)ck+1, δ > 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(45)

4.2. Convergence Analysis of the Improved APP-Like
Algorithm

Lemma 3. Let sequence wk  is generated by improved APP-
like algorithm (45). If problem (3) is convex, continuous, and
differentiable, then sequence wk  converges to the optimal
solution w∗ of problem (3).

Proof of Lemma 3

For given wk, wk+1 is generated by the improved APP-
like algorithm. Based on the description of the improved
APP-like algorithm, it is clear that ck � c0 × 2kstop and βk �

ck × 2kstop(m + δ) when k≥ kstop. According to the proof of
Lemma1, if k≥ kstop, then we can get

v
k

− v
∗

�����

�����
2

M
− v

k+1
− v
∗

�����

�����
2

M
≥ v

k
− v

k+1
�����

�����
2

M
, (46)

where

v �

A1x1

A2x2

⋮

Amxm

λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M �

βk − ck(  − ck · · · − ck 0

− ck βk − ck(  · · · − ck 0

⋮ ⋱ ⋱ ⋱ ⋮

− ck − ck · · · βk − ck(  0

0 · · · 0 0
1
ck

Ir

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, c
k

� c
0

× 2kstop , βk
� c

0
× 2kstop (m + δ).

(47)
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If k≥ kstop, the matrix M is a fixed symmetric positive
definite matrix. Similar to the analysis of (30), we can obtain
(46) Fejér monotone. )en, we can obtain

lim
k⟶∞

Aix
k+1
i − Aix

k
i

�����

����� � 0, lim
k⟶∞

Aix
k+1
i � Aix

∗
i , i � 1, 2, · · · , m, (48)

lim
k⟶∞

λk+1
− λk

�����

����� � 0� lim
k⟶∞

λk+1
� λ∗. (49)

Based on the description of Lemma 2, it is clear that
sequence wk  converges to the optimal solution w∗ of
problem (3) if it is convex, continuous, and differentiable.

)erefore, the proof of Lemma 3 is completed. □

5. Application

In this section, we firstly give the mathematical model of the
power system dynamic economic dispatching problem
(DEDP) and point out that the mathematical model for
DEDP can be easily transformed into the multiseparable
convex problemwith linear constraints studied in this paper.
After that, we use the proposed APP-like algorithm and
improved APP-like algorithm to solve DEDP and analyze
the corresponding simulation results. We coded by the
MATLAB 2018b, and all codes were implemented on Dell
T5820 Server with Xeon- W-2102 CPU at 2.9GHz and 16G
of memory.

5.1. 6e Mathematical Model of the Dynamic Economic
Dispatching Problem for Power System. )e mathematical
model of dynamic economic dispatching problem for power
system can be expressed as follows:

min F � 
H

h�1


N

i�1
f Pi,h  � 

H

h�1


N

i�1
aiP

2
i,h + biPi,h + ci ,

s.t



N

i�1
Pi,h � PD,h, h � 1, 2, · · · , H,

Pi,min ≤Pi,h ≤Pi,max, h � 1, 2, · · · , H,

Pi,h − Pi,h− 1 ≤ r
i
u, h � 2, · · · , H,

Pi,h− 1 − Pi,h ≤ r
i
d, h � 2, · · · , H,

(50)

where F represents the objective function, N represents the
total number of power generation unit, H represents the
total dispatching period of power generation unit, Pi,h

represents the output of the ith power generation unit in the
hth dispatching period, ai, bi, and ci are given parameters in
objective function, PD,h represents the system load in the hth
dispatching period, and ri

u and ri
d are the upper and lower

ramp rate limits for the ith generation unit and are given.
For problem (50), the equivalent mathematical model

can be rewritten as follows:

min 
H

i�1
Fi xi( ,

s.t


N

i�1
Aixi � b,

xi ∈ Ωi i � 1, 2, · · · , N,

(51)

where

Ai � IN×N, (52)

b � PD,1, PD,h, · · · , PD,H 
T
, (53)

xi � Pi,1, Pi,2, · · · , Pi,H 
T
, i � 1, 2, · · · , N, (54)

Ωi � xi|Pi,min ≤Pi,h ≤Pi,max,

h � 1, 2, · · · , H; Pi,h − Pi,h− 1

≤ r
i
u, Pi,h− 1 − Pi,h ≤ r

i
d, h � 2, · · · , H,

(55)

Fi xi(  � 
H

h�1
aiP

2
i,h + biPi,h + ci . (56)

It is clear that Ai in (52) is full column rank matrices.
)erefore, we can directly use the APP-like algorithm and
improved APP-like algorithm to solve problem (51) in the
form of distributed parallel.

5.2. Test System. In this section, a test system [15] containing
ten generation units is presented to verify the validity and
correctness of the proposed algorithms. )e data refer to
generation units are shown in Table 1. In addition, the
demand of the ten-unit test system was divided into 24
intervals in reference [15]. Reference [16] employs the de-
mand data in 1–8 intervals as the data refer to system de-
mand. In this paper, we also employ the demand data in 1–8
intervals as in reference [16] and the data refer to system
demand are shown in Table 2. For the test system, according
to the description in Section 5.1, the original optimization
problem can be decomposed into ten sub-optimization
problems. )e information shown in Table 1 shows that the
output upper and lower limits, for the 10th generation unit,
are both 55. )erefore, in the actual simulation process, we
can directly set the output of the 10th generation unit to be
55, and only solve nine sub-optimization problems.
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5.3. Simulation Analysis

5.3.1. APP-Like Algorithm for Solving Test System. In this
section, we use APP-like algorithm to solve the test system
and observe the influence of parameter on the convergence
efficiency of APP-like algorithm. We set the maximum
number of iterations as 50. For the iterative strategy of
penalty parameter shown in (44), we set kstop � 30 and
δ � 0.1. )e convergence condition is set to max(|wk+1 −

wk|)< 0.0001. If the convergence condition is not satisfied
when the number of iterations is greater than 50, then we can
say that the corresponding algorithm fail to convergence
with maximum iterations.

)e simulation results based on the APP-like algorithm
for the test system are shown in Table 3. In order to verify the
influence of different penalty parameter settings on the
convergence efficiency of the APP-like algorithm, we
designed five different penalty parameter settings named
Case1–Case5, respectively, which are shown in the first
column in Table 3. After that, the second column represents
the initial parameter setting of the APP-like algorithm, the
third column represents the number of iterations when
convergence conditions are met, and the fourth column
represents the value of max(|wk+1 − wk|) when convergence
conditions is met or the number of iterations reaches the
maximum iterations. In addition, the word “Fail” in Table 3
represents the corresponding algorithm fail to convergence
with maximum iterations. )e curve of max(|wk+1 − wk|)

changing with the number of iterations is shown in Figure 1.
According to the data in Table 3 and the curve in Fig-

ure 1, it can be known that the APP-like algorithmmeets the
convergence condition only under case5. By comparison, the
APP-like algorithm fails to converge or stops convergence
prematurely under case1-case4. For the further analysis of
Figure 1 and Table 3, we find that the value of max(|wk+1 −

wk|) gradually approaches the convergence condition with
the increase of the penalty parameter. Let’s recall the iter-
ative formula (7) of APP-like algorithm. Taking the ith sub-
optimization problem as an example, there are two terms
((β − c)/2‖Aixi − Aix

k
i ‖2 and c/2‖

i− 1
j�1Ajx

k
j + Aix

k
i +


m
j�i+1 Aix

k
i − b‖2) related to the penalty parameter in the

objective function. c/2‖
i− 1
j�1Ajx

k
j + Aix

k
i + 

m
j�i+1 Aix

k
i − b‖2

represents the punishment for the equality constraint. For
case1-case4 in Table 3 and Figure 2, at the initial stage of
iteration, it is obvious that max(|wk+1 − wk|) is large, so
c/2‖

i− 1
j�1Ajx

k
j + Aix

k
i + 

m
j�i+1 Aix

k
i − b‖2 can play a good

punishment role. However, as max(|wk+1 − wk|) approaches
zero gradually, the penalty effect of c/2‖

i− 1
j�1Ajx

k
j+ Aix

k
i +


m
j�i+1 Aix

k
i − b‖2 decreases gradually when the penalty pa-

rameter is set smaller. )is explains the reason why case1-
case4 in Table 3 and Figure 2 fail to convergence.

)e existence of (β − c)/2‖Aixi − Aix
k
i ‖2 is to ensure the

convergence of the APP-like algorithm. However, we must
realize that the existence of (β − c)/2‖Aixi − Aix

k
i ‖2 also

prevents the update of the current iteration point. )erefore,
we expect (β − c)/2‖Aixi − Aix

k
i ‖2 to be as small as possible

under the premise of ensuring the convergence of the APP-
like algorithm. In fact, for the APP-like algorithm, the value
of penalty parameters and β/c is given. )at is to say that the
APP-like algorithm ignores the role of (β − c)/2‖Aixi −

Aix
k
i ‖2 in the iterative process on the premise of ensuring

algorithm convergence.

5.3.2. Improved APP-Like Algorithm for Solving Test System.
In this section, we use improved APP-like algorithm to solve
the test system and observe the influence of parameter on
convergence efficiency of improved APP-like algorithm. In
order to comparison with the results of APP algorithm, the
initial parameter settings of improved APP-like algorithm
are the same as those of the APP algorithm. )e simulation
results based on improved APP-like algorithm for the test
system are shown in Table 4.)e columns in Table 4 have the
same meaning as the columns in Table 3. )e curve of
max(|wk+1 − wk|) based on improved APP-like algorithm
changing with iterations is shown in Figure 2.

According to the information shown in Table 4 and
Figure 2, we must admit that the trends of these curves of
max(|wk+1 − wk|) are not entirely consistent. However, the
curves of max(|wk+1 − wk|) with different initial penalty

Table 1: )e data refer to generation units [15].

Unit P max (MW) P min (MW) a ($/MW2h) b ($/MWh) c ($/h) Ur (MW/hour) Dr (MW/hour)
1 470 150 0.00043 21.6 958.2 80 80
2 460 135 0.00063 21.05 1313.6 80 80
3 340 73 0.00039 20.81 604.07 80 80
4 300 60 0.0007 23.9 471.6 50 50
5 243 73 0.00079 21.620 480.29 50 50
6 160 57 0.00056 17.87 601.75 50 50
7 130 20 0.00211 16.51 502.7 30 30
8 120 47 0.0048 23.23 639.4 30 30
9 80 20 0.10908 19.58 455.6 30 30
10 55 55 0.00951 22.54 692.4 30 30

Table 2: )e data refer to system demand [16].

Period 1 2 3 4 5 6 7 8
Load (MW) 1036 1110 1258 1406 1480 1628 1702 1776
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parameter values maintain similar trends, and can quickly
meet convergence condition. )at is to say, for improved
APP-like algorithm, the selection of penalty parameters is
robust to a certain extent.

)e difference between APP-like algorithm and im-
proved APP-like algorithm lies in the updating of penalty
parameters. For APP-like algorithm, the penalty parameter
is given in advance and remains unchanged in the iterative

Table 3: )e simulation results based on APP-like algorithm for test system.

Case Parameter Iteration max(|wk+1 − wk|)

Case1 c� 1, β� 9.1c Fail 0.3987
Case2 c� 10, β� 9.1c Fail 0.0589
Case3 c� 100, β� 9.1c Fail 0.0061
Case4 c� 1000, β� 9.1c Fail 6.1481× 10− 4

Case5 c� 10000, β� 9.1c 22 6.2349×10− 5

c=1000, β = 9.1c
c=10000, β = 9.1c

c=1, β = 9.1c
c=10, β = 9.1c
c=100, β = 9.1c
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Figure 1: )e curve of max(abs(wk+1 − wk)) based on the APP-like algorithm.
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Figure 2: )e curve of max(abs(wk + 1 − wk)) based on improved APP-like algorithm.
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process. For improved APP-like algorithm, the initial value
of penalty parameters is given, but it is updated ()e iterative
strategy of penalty parameter can be found in (44)) in the
iterative process.

According to the analysis of APP-like algorithm in
section 5.3.1, it can be found that APP-like algorithm has
achieved better convergence effect by setting a larger penalty
parameter value to ensure that c/2‖

i− 1
j�1Ajx

k
j + Aix

k
i +


m
j�i+1 Aix

k
i − b‖2 plays an effective punishment role.

Comparatively speaking, improved APP-like algorithm has
achieved better convergence effect by updating the penalty
parameter to ensure that c/2‖

i− 1
j�1Ajx

k
j + Aix

k
i + 

m
j�i+1

Aix
k
i − b‖2 plays an effective punishment role. Both methods

can achieve better convergence characteristics, and we
cannot say which algorithm is better.

Let’s turn our attention to (β − c)/2‖Aixi − Aix
k
i ‖2. APP-

like algorithm ignores the role of (β − c)/2‖Aixi − Aix
k
i ‖2

because the parameters β and c are given in advance. In fact, we
expect (β − c)/2‖Aixi − Aix

k
i ‖2 to be as small as possible under

the premise of ensuring the convergence of the algorithm.

According to the information shown in Table 4 and
Figure 2, obviously, the smaller the initial value of penalty
parameter is set, the better the convergence characteristic of
improved APP-like algorithm will be. According to the
description of iteration strategy (44) for penalty parameters,
it can be known that penalty parameter has upper and lower
bounds in the iterative process. For the improved APP-like
algorithm, if we give a small initial value of the penalty
parameter, the value of (βk − ck)/2‖Aixi − Aix

k
i ‖2 will be

smaller throughout the iteration.)is is why, in Figure 2, the
smaller the initial value of penalty parameter is, the better the
convergence efficiency is.

In the above part, we analyze the influence of penalty
parameter on the convergence efficiency of the improved
APP-like algorithm. If we further analyze (βk − ck)/2‖Aixi

− Aix
k
i ‖2, we will find that the value of (βk − ck)/2‖Aixi −

Aix
k
i ‖2 is related not only to the punishment parameter but

also to the parameter βk. )e simulation results based on
APP-like algorithm for the test system with different βk/ck

are shown in Table 5. )e corresponding curve of

Table 4: )e simulation results based on improved APP-like algorithm for test system.

Case Parameter Iteration max(|wk+1 − wk|)

Case1 c 0 �1, βk � 9.1ck 14 6.2929×10− 5

Case2 c 0 �10, βk � 9.1ck 14 5.8110×10− 5

Case3 c 0 �100, βk � 9.1ck 17 9.0122×10− 5

Case4 c 0 �1000, βk � 9.1ck 20 8.0008×10− 5

Case5 c 0 �10000, βk � 9.1ck 20 8.0579×10− 5

Table 5: )e simulation results based on improved APP-like algorithm with different β.

Case Parameter Iteration max(|wk+1 − wk|)

Case1 c 0 �10, βk � 9.1ck 14 6.2929×10− 5

Case2 c 0 �100, βk � 20ck 26 8.9700×10− 5

Case3 c 0 �1000, βk � 30ck Fail 1.6000×10− 3

Case4 c 0 �1, βk � 40ck Fail 7.0000×10− 2

c0=1, βk = 9.1ck
c0=1, βk = 20ck c0=1, βk = 40ck
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Figure 3: )e curve of max (abs(wk+1-wk)) based on improved APP-like algorithm with different β.
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max(|wk+1 − wk|) is shown in Figure 3. According to the
information shown in Table 5 and Figure 3, it is clear that, for
the same initialization penalty parameter, the smaller βk/ck

is, the better the convergence efficiency of APPP algorithm is
under the premise of ensuring the convergence of improved
APP-like algorithm. )e simulation results shown in Table 5
and Figure 3 are in agreement with our theoretical analysis
of (βk − ck)/2‖Aixi − Aix

k
i ‖2.

According to the theoretical analysis in Section 4 and the
simulation results in Section 5, we suggest using the im-
proved APP-like algorithm. Compared with the APP-like
algorithm, the penalty parameter selection of improved
APP-like algorithm is robust and the convergence efficiency
of improved APP-like algorithm is better. Our suggestions
for the initial parameters of improved APP-like algorithm
are shown as follows:

(1) It is better to select a smaller initial value of the
penalty parameter, and 1 or less is suggested as the
initial value of the penalty parameter.

(2) On the premise of ensuring convergence, it is rec-
ommended to select parameter βk as small as pos-
sible, and βk � (m + 0.1)ck is suggested, where m
presents the objective functions, which is composed
of m separable convex functions.

6. Conclusion

In this paper, we study the convex optimization problem with
linear constraint and the objective function is composed of m
separable convex functions. According to the properties of the
objective function, it is natural to consider a distributed iter-
ative strategy. ADM-G and ADBC are efficient algorithms to
solve the optimization problem in the form of the Gaussian
Seidel iterative scheme. Due to the serial computation form of
Gauss-Seidel iterative scheme, ADM-G and ADBC needsmore
computing time when the problem scale is large (in other
words, when the value of m is large). )en, a natural idea is to
solve optimization problem in parallel. )e auxiliary problem
principle (APP) is an effective parallel distributed algorithm for
solving separable convex optimization problem with m� 2.
Inspired by the principle of APP, a natural idea is to extend the
method of APP, resulting in an APP-like algorithm.)erefore,
we firstly prove that β>mc is a sufficient condition for the
convergence of APP-like algorithm. However, simulation re-
sults show the convergence efficiency of APP-like algorithm is
sensitive to the selection of penalty parameter. In order to
overcome the deficiency of APP-like algorithm, we proposed
the improved APP-like algorithm with variable penalty pa-
rameter. Compared with APP-like algorithm, the improved
APP-like algorithm is robust in terms of the selection of penalty
parameter, and the convergence efficiency of improved APP-
like algorithm is better.
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