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In the operation of airlines, the most important link is determining the route and scheduling of aircraft. Te key to this problem is
to input the fight segment and aircraft type and fnally determine all fight segments for each aircraft. In this paper, we focus on
fnding feasible, robust scheduling for various uncertainties in the fight process. Tis paper presents a new robust integer
mathematical model based on game theory that considers daily aircraft routing.Ten, in order to fnd the suboptimal solution to a
large-scale integer programming problem in a limited amount of time, a heuristic algorithm integrating a column generation
algorithm and variable domain search is introduced. In addition, we use the data of a Chinese airline to verify, and the ex-
perimental results show that the model proposed by us is more robust than the model in general.

1. Introduction

With the increasingly ferce competition in the aviation in-
dustry, an efective decision is very important to the proft-
ability of airlines. However, designing an aviation network is a
very complex task. Terefore, many researchers generally di-
vide the design of the entire aviation network into a series of
subproblems, including route trafc volume prediction, fight
planning, aircraft assignment, crew pairing, and crew rostering.
Te route trafc volume forecast is based on the trafc volume
of the national air transport market, the route market, and the
economic situation of a region. Flight planning is to generate
fight schedules based on the previously predicted route trafc
volume. Aircraft scheduling is to generate an aircraft sched-
uling plan based on the aircraft type selected for the fight plan
and other relevant constraints. Duty scheduling is to generate a
fight segment pairing that meets the requirements of a fight
crew’s one-day mission according to the required fight time
and laws and regulations in the fight plan, that is, the duty
schedule. Te crew rostering generates the fight schedule in
accordance with laws and regulations based on the generated
fight pairings and crew members. In this paper, we focus on
the aircraft assignment phase.

Although there are more and more routes and the route
structure is more and more complex due to the restrictions
on airspace resources, airport facilities, and the various
conditions of airlines, coupled with weather reasons, fight
delays and even fight cancellations are becoming more and
more frequent, which has gradually become a major
problem in the development of civil aviation. According to
the data of the Civil Aviation Administration of China, with
the increase in the number of fights and routes, the normal
rate of fights has shown a downward trend. Flight plans with
strong anti-interference can not only reduce fight delay to a
certain extent but also save some costs for airlines to a
certain extent. Whether the fight plan is antijamming is
mainly refected in its robustness. If a fight is delayed for
some reason, it is likely to cause successive delays of sub-
sequent fights. Terefore, it is of great practical signifcance
and value to develop a reasonable aircraft scheduling plan
based on the actual operation to reduce the airline delay rate.
At present, civil aviation usually divides fight plans into two
categories according to their functions during operation. On
the one hand, it is an “advance strategy,” that is, for the
prepared fight plan, the transit time should be adjusted
appropriately according to the actual operation to absorb the
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departure delay caused by previous fights as much as
possible so as to improve the robustness of fight plans. On
the other hand, it is an “after the fact strategy,” which is to
take certain measures and schemes in time after fight delays,
such as aircraft transfer, aircraft exchange, or even cancel-
lation of fights, so as to avoid causing larger delays. In this
paper, we mainly solve a daily aircraft route problem
(DARP), including route planning and route assignment.
Te advanced strategy is mainly used to adjust fight cost and
fight plan robustness and try to improve the robustness of
the fight plan on the basis of cost control.

1.1. Literature Review. In fact, the daily fight route problem
is a classical routing problem. Terefore, in this section, we
frst review the literature on daily aircraft route problems,
then review the application of game theory, and fnally
review the application of meta-heuristic algorithms to en-
gineering problems.

Tis problem was frst proposed in 1971 by Levin [1],
who modeled the problem as a 0–1 programming model and
solved large-scale instances using Land-and-Doig tech-
niques. Desaulniers et al. [2] model the problem as a set of
daily aircraft route allocation models and multicommodity
fow models to improve airline efciency and reduce costs,
and solve both models using column generation and
Dantzig–Wolfe decomposition, respectively. To solve this
model, an iterative solution method was proposed. In order
to solve the feet allocation problem and the aircraft routing
problem at the same time, Barnhart et al. [3] proposed a
model and solution method to solve the two problems si-
multaneously. Sosnowska [4] successfully solved the fight
data of a medium-sized company using a method based on a
simulated annealing algorithm and GRASP. Mercier and
Soumis [5] synthesized the aircraft routing problem and the
crew scheduling problem, proposed a basic ensemble model,
and solved this large-scale optimization model based on the
Benders decomposition. Weide et al. [6] integrated the
aircraft routing problem and the crew scheduling problem
and established a large-scale 0–1 programming model
considering the robustness of the problem. Jamili [7] pro-
posed a mixed-integer programming model that integrates
aircraft robustness and a hybrid heuristic that yields a more
efcient solution. Kenan et al. [8] propose a two-stage
planning model based on the uncertainty of demand and
fare and solve the model using the method of sample average
approximation. Considering the uncertainty of the data,
Cadarso and de Celis [9] propose a large-scale mathematical
model, which is solved by the Benders decomposition ap-
proach. Cui et al. [10] proposed 3models, improved the VNS
algorithm, compared the experimental results with com-
mercial solvers, and verifed the efectiveness of the algo-
rithm. Si et al. [11] proposed a multicommodity fow model
and an arc fow model, improved the column generation
algorithm, and signifcantly reduced the running time. Xu
et al. [12] proposed a mixed integer programming model
considering the infuence of propagation delay and fight
retiming decisions and proposed column generation as well
as variable neighborhood search for a solution. Şafak et al.

[13] proposed a new two-stage stochastic decision-depen-
dency programming model for airline network expansion.
In fact, the daily fight route problem for aircraft is a routing
problem. For routing problems, many studies were con-
ducted during the new epidemic, especially on the supply
chain problem [14].

Based on the previous work, the main purpose of this
paper is to fnd a schedule that ensures the lowest cost
incurred when some fights are delayed. Tis paper mainly
develops a new method to deal with fight delays caused by
various uncertain factors to maintain the stability of the
system. Based on the abovementioned remarks, we establish
a robust optimization model based on game theory.

Game theory is a commonly used optimization method.
Game theory has been used in many felds, such as trans-
portation and power systems. Lima et al. [15] constructed a
cooperative game theory model based on the cooperative
game theory framework, found a loss allocation solution,
and, compared with other traditional loss allocation
methods in transmission power systems. In [16], a beneft
distribution method is proposed using a cooperative game,
and the result shows that power producers will get more
profts by cooperating in competition. In [17], to ensure
sufcient power generation, a game theory-based approach
to power system reserves is proposed, with planners and
nature as two players. Compared with traditional methods,
the proposed game theory method has better robustness and
higher efciency. In [18, 19], based on a game theory
framework, a robust railway transportation network is
designed for line failures.

At the same time, because it is very difcult to solve the
daily fight route problem with an accurate algorithm, this
paper combines the column generation algorithm and a
meta-heuristic algorithm to solve it. Te meta-heuristic
algorithm can obtain a feasible solution close to the optimal
solution in a limited time and has been widely used in
engineering problems. For example, Alinaghian and Goli
[20] used an improved harmonious search algorithm to
solve the confguration problem of temporary medical
centers in rural areas in crisis. Yang et al. [21] calibrated
surface turbulence-related parameters in the source area of
the Yellow River using a particle swarm optimization al-
gorithm. Yang et al. [22] used a particle swarm optimization
algorithm to efectively calibrate freezing and thawing-re-
lated parameters and improve simulation accuracy.

Based on the abovementioned literature review,
according to the author’s current knowledge, although some
scholars have studied integrated aircraft routing and
scheduling before, they have not yet used the game theory
method for research. As can be seen from the previous
literature on game theory, game theory is an efective way to
deal with uncertain problems. At the same time, a meta-
heuristic algorithm is an efective method to solve these
complex models.

1.2. Contribution of the Paper. Tis paper presents a new
model of integrated aircraft routing and scheduling that
considers feet assignment. In addition, there are many
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uncertain factors that cause fight delays, including weather
and air trafc control. Terefore, we introduce a robust
method based on game theory into the model. Finally,
because the model is difcult to fnd the optimal solution in a
limited time, a method integrating column generation and
variable neighborhood search is proposed to solve this
model.

1.3. Outline. Te main parts of this paper are as follows: In
Section 2, the problem is described and a new integer
programming model is established. In Section 3, we propose
a method to solve large-scale integer programming by in-
tegrating column generation and variable neighborhood
search. Sections 4 and 5 are numerical experiments and
conclusions, respectively.

2. Problem Definition

DARP requires aircraft to be allocated to each fight segment
to minimize cost. Te takeof time and landing time of each
fight segment have been fxed. If two fight segments can be
connected, the arrival point of one fight segment is equal to
the departure point of the other fight segment, and the
minimum transfer time requirement is met. In the problem
of the daily fight route of the aircraft, the delay of the fight is
usually related to two factors: one is due to weather reasons,
trafc reasons, passenger reasons, etc.; we call it a fight delay
caused by uncertainty, and the second is the next fight delay
caused by the delay of the previous fight; we call it delays
due to the spread of the fight. In this section, we will ro-
bustly optimize DARP based on these two aspects. We
model the DARP problem. Tis problem will result in a
schedule that optimizes some utility functions when there
are no fight delays. In this paper, we assume a robust
schedule that minimizes the cost incurred by the delay in the
case of fight delays.

Based on the abovementioned remarks, we now for-
mulate a DARP problem model. Let F(g) be the utility
function of a DARP problem for any schedule g ∈ G, where
G is the set of all feasible schedules. Te construction of the
network is described in Section 2.1. In the following, we use
the symbol v to refer to the nodes in the network graph. We
defne V to be the set of all nodes in the network graph, and
we assume that all fight segments are delayable. Te utility
function of the network is afected by fight delays. Let
F(g, v) be the utility function when segment v ∈ V is
delayed. Our usual approach to dealing with this kind of
uncertainty is to fnd a network with the least cost of delay in
the worst case. At this point, our problem can become
ming∈Gmaxv∈VF(g, v).

Defnition 1. Let G be the set of all feasible schedules let V be
the set of all fight segments, and let f(g, v) be the utility
function where fight v ∈ V is delayed. If there exists g∗ ∈ G

such that ming∈Gmaxv∈VF(g, v) � F(g∗, v), we consider
g∗ ∈ G to be an optimal robust schedule.

2.1. Deterministic Models for DARP

2.1.1. Network Construction. We defne V to be the set of all
legs. Each leg v ∈ V has a departure time dv and an arrival
time av. Te minimum connection time between two legs is
t. For any two legs v1, v2 ∈ V, if av2

− dv1
> t and v2 ‘s arrival

airport is v2’s departure airport; then, v1, v2 can connect, that
is, there is an arc ev1 ,v2

, Defne E as the set of all arcs, then a
directed graph G(E, V) can be constructed.

We frst build a deterministic model that minimizes the
total cost when all fights are not delayed.

2.1.2. Sets, Parameters, and Variables

A: A set of all matching routes in the plane and fight
connection network.
V: A set of all legs that need to be scheduled.
K: A set of all available aircraft.
xa: Binary variable. 1 if matching a ∈ A is selected; 0
otherwise.
c a:Te cost of matching a ∈ A.
αav: Binary variable. 1 if match a ∈ A contains the leg v;
0 otherwise.
βak: Binary variable. 1 if the match a ∈ A contains
aircraft k; 0 otherwise.

We can get the following integer linear programming
(model 1):

Min 
a∈A

caxa, (1)

subject to


a∈A

αavxa � 1, ∀v ∈ V, (2)


a∈A

βakxa ≤ 1, ∀k ∈ K, (3)

xa ∈ 0, 1{ }, ∀a ∈ A. (4)

In the abovementioned linear programming, the ob-
jective function (1) is to minimize the total cost when all
fights are not delayed. Constraint (2) states that each fight
segment can only be assigned to one aircraft. Te constraint
(3) specifes that each aircraft can perform at most one route
per day. Te decision variable xa is equal to 1 if the matching
variable A is in the solution, 0 otherwise.

2.2. Problem Expansion. In this subsection, a robust opti-
mization model based on game theory is proposed to deal
with the uncertainty of fight delays. Under the framework of
the proposed model, two players are virtualized: one is the
systemmaker (hereinafter referred to as player 1), and one is
the attacker (hereafter also referred to as player 2). Flight
delays are caused by infuences such as weather. Te
scheduling problem of daily aircraft routes is formulated.
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2.2.1. A max-min Game Model under Uncertainty.
Diferent from other robust optimization models of aircraft
routes, an uncertain robust optimization model is estab-
lished based on game theory. Taking player 1 and player 2 as
the two participants, the constructed min-max game model
is as follows:

mingF(g, v),maxvF(g, v) , (5)

subject to

G(x, g, v)≤ 0,

g ∈ G,

v ∈ V,

(6)

where x is the decision variable, g is the decision of player 1,
v is the decision of player 2, F(g, v) is the payof function,
and G(x, g, v) is the constraint, G and V are the strategy sets
of player 1 and player 2, respectively. In the abovementioned
model, player 1 wants to minimize function F by changing g,
and player 2 wants to maximize function F by changing v.
From a game theory perspective, we can describe it as a
noncooperative two-player zero-sum game problem. It is
known from knowledge of game theory that not all two-
player zero-sum games have a pure strategy. Nash equi-
librium (i.e., mingmaxvF(g, v) � maxvmingF(g, v). Tere-
fore, we adopt the min-max game model widely used in
practice, as follows:

mingmaxvF(g, v), (7)

subject to

G(x, g, v)≤ 0. (8)

In the abovementioned equation, there is always a so-
lution (g, v). In engineering technology, there are the fol-
lowing meanings:

(a) Player 1’s best strategy can handle when player 2
chooses the strategy that makes it the worst.

(b) In our problem, our decision order is that player 1
chooses the strategy frst and player 2 chooses the
strategy second. Player 1 needs to presuppose that
player 2 chooses the worst strategy when formulating
a strategy, so it is reasonable to formulate the de-
cision problem as a min-max model. Since this is
player 2’s uncertainty, player 1’s best strategy is to
choose the worst strategy for player 2.

2.2.2. Modeling the Daily Airplane Route Problem as a Min-
Max Game. Te purpose of robust optimization of the daily
aircraft route problem is to fnd a schedule that minimizes
the cost of the system and keeps the stability of the system
within a certain range. In the game model, we can think of
player 2 as an attacker who wants to make the schedule made
by player 1 less stable due to the uncertainty of fight delays.
In this model, one player’s gain causes another player’s loss,
so we can simply model the model as a two-player zero-sum
game. In the game model, it usually includes three elements:

player set, strategy set, and payof function. Tese three
elements are described in the following detail:

(1) Player set: In the daily plane route problem, two
players are involved, the aforementioned player 1
and player 2. Player 1 is the real maker of the
schedule, whose main purpose is to fnd the schedule
with the least cost. Player 2 is a virtual player with
strong uncertainty, mainly afected by factors such as
weather.

(2) Strategy set: Player 1’s policy set is all feasible
scheduling networks, i.e., g ∈ G, player 2’s strategy
set is all fight segments, i.e., v ∈ V.

(3) Payof function: Player 1’s goal is to fnd the schedule
with the lowest cost while keeping the reliability of
the system within a certain range. Terefore, the
function value of the scheduling network is taken as
the cost of player 1, and its strategy is to minimize the
cost. Player 2 is deteriorating the system, and its
strategy is to maximize cost.

In the daily aircraft route problem, when player 2
chooses to attack a certain fight v, the subsequent fight may
also be delayed due to the spread, and this delay probability
can be obtained through experience. We adopt the approach
proposed by Cui et al. [10], that the probability of fight delay
is related to the transit time between two fights. We assume
that t1 is the minimum connecting time specifed by the Civil
Aviation Administration and mi is the probability that the
connection time is between ti and ti+1. When the connection
time is greater than tk+1, the probability of delay is mk+1, So
the probability of delay is

p �


n

r�1
qr, n≥ 1,

0, otherwise,

⎧⎪⎪⎨

⎪⎪⎩
(9)

where n is the number of fights after fight i in the aircraft’s
route, and qr � mi refers to the probability of the rth delay
time after fight i.

Example 1. Assuming that there is an aircraft route such as
[F1, F2, F3, F4], when F1 is attacked and delayed, that is,
segment F1 has been determined to be delayed. At this time,
it is assumed that the delay probabilities caused by the
previous fight are pF2, pF3, pF4, Ten, the expected total
additional cost of this fight route due to delay is c � cF1 +

cF2pF2 + cF3pF2pF3 + cF4pF2pF3pF4.
Sets, parameters, and variables are as follows:

cv: Additional costs incurred by fight v ∈ V being
delayed.
pv:Te probability that a leg v ∈ V is delayed.

So, under uncertainty, we have the following linear
programming (model 2):

min
g

max
v


a∈A

caxa + 
v∈V

pvcv, (10)

subject to
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a∈A

αavxa � 1, ∀v ∈ V,


a∈A

βakxa ≤ 1, ∀k ∈ K,

xa ∈ 0, 1{ }, ∀a ∈ A.

(11)

In model 2, player 2 frst delays the fight by attacking the
legs, and then player 1 minimizes the total cost by adjusting
the scheduling network.Te fight delay probability of player
2’s attack is 1, and the delay probability of other fights is
determined by their relationship with the attacked fight.
When all fights are not delayed, for any segment v ∈ V, the
delay probability is pv � 0, which is the same as the model in
Section 2.1.

Assuming that there are multiple aircraft segments with
delays and the two aircraft do not interfere with each other,
we can limit each aircraft’s fight path to a maximum of one
aircraft that is delayed. Our model will change. So, we have
the following linear programming (model 3):

min
g

max
V1⊂V:||≤|K|


a∈A

caxa + 
v∈V

pvcv, (12)

subject to

a∈A

αavxa � 1, ∀v ∈ V,


a∈A

βakxa ≤ 1, ∀k ∈ K,

xa ∈ 0, 1{ }, ∀a ∈ A.

(13)

In model 3, V1 is a subset of V, such that for any two
fight segments v1, v2 ∈ V1, v1, and v2 do not belong to any
matching a at the same time. Te delay probability is 1 if
v ∈ V1; otherwise, the delay probability is determined by the
relationship with other fights.

3. Solution Approach

In model 2, there are |A| decision variables, and the number
of combinations of |A| increases exponentially with the
increase of fights. Also, there are |V| + |K| constraints, the
complexity and scale of the model are very large, so it is
difcult to solve. A simple idea to solve this problem is to
reduce the number of feasible schedules considered, since we
can get an optimal schedule when no fight is delayed.
Terefore, it is a feasible method to limit the scheduling cost
to a certain proportion of the optimal scheduling. Tis
makes sense, because in practical situations, a balance be-
tween cost and robustness is often pursued. For conve-
nience, we refer to the two models above as the deterministic
model (model 1) and the nondeterministic model (model 2
and model 3). Trough the abovementioned description, if
we want to solve the nondeterministic model, we can frst
solve the deterministic model, that is, to fnd the optimal
value of the model in the absence of any fight segment delay.

3.1. Solution for Model 1. Te branch pricing algorithm is
an efcient algorithm for solving large-scale linear pro-
gramming problems. Te branch-pricing algorithm is a

combination of a column-generating algorithm and a
branch-and-bound algorithm. Among them, the column
generation algorithm can be used to solve the solution of
the relaxed model. Te column generation algorithm
narrows the range of candidate solutions and greatly
reduces the amount of computation. After we use the
column generation algorithm to obtain the candidate
solution of the relaxed model, we can use the integer
programming algorithm to solve it, but this often does not
get the optimal solution to the original problem, so we
need to use the column generation algorithm and the
iteration of the branch and bound algorithm to solve it.
However, in this paper, in order to save the time spent in
the branch and bound process after obtaining the can-
didate solutions of the relaxed model; we start from the
optimal solution of the integer programming and further
obtain the suboptimal solution by using the variable
neighborhood search algorithm. Tis greatly reduces the
solution time of the model used.

3.1.1. Column Generation. We frst linearly relax the
aforementioned problem such that the variable xa ∈ [0, 1],
and call it the restrictive main problem (RMP). In general,
not all matches will appear in the optimal solution, so we
only need to consider adding some matches that reduce the
objective function the most to the problem model, which is
called the main problem of the column generation algo-
rithm. In fact, only a small subset of all feasible matches will
be added to the model. In this way, a solution can be found
quickly, then look for variables outside the model, fnd
variables that can make the model better, add the model to
solve again, and so on until no better variables can be added
to the model.

Te way to fnd better variables is to fnd a solution that
minimizes the objective function of the subproblem of the
model. We set the dual variables corresponding to con-
straints 2 and 3 to be πv and πk, respectively. Ten, the
objective function of the subproblem is minZ � ca

−v∈Vαavπv − k∈Kβakπk � (ck
p + ck) − v∈pπv − πk � v∈p

(ck
v − πv) + ck − πk. Note here that, ck

p represents the cost of
path p allocated to aircraft k , and ck represents the fxed cost
of matching aircraft k contained in a, i.e., ca � ck

p + ck,
Terefore, we need to fnd a match that minimizes Z to add
to themodel. In this problem, although the number of planes
is large, there may be only a few types of planes per airline.
Te cost for each type of aircraft to perform the same fight
segment is the same, that is, for two aircraft of the same type
v1, v2 ∈ V there are ck

v1
� ck

v2
. Terefore, we only need to fnd

the matching k, p that minimizes Z. Tis corresponds to the
shortest path problem with resource constraints, which can
be solved by the labeling algorithm proposed by Si et al. [11].
We then add the resulting matches to the main problem
until no match is found, such that Z< 0. In this way, we fnd
all the candidate solutions corresponding to the relaxed
model and then get the integer solution of the current
candidate solution. But there is still a distance between the
current solution and the optimal solution.
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3.1.2. Variable Neighborhood Search Algorithm. Variable
neighborhood search (VNS) [26] is an improved local search
algorithm. It alternately searches using the neighborhood
structure composed of diferent actions, achieving a good
balance between concentration and evacuation. Te VNS
algorithm mainly relies on the selection of neighborhood
sets in the Shaking phase. In the Shaking phase, the algo-
rithm randomly generates a new solution from the kth
neighborhood of the solution x. Tere are 4 commonly used
neighborhood actions, namely: 2-opt [23], swap-move [24],
insert [25], and exchange-move. But applied to this problem,
not all operations are applicable.Te algorithm designs three
neighborhood actions, such as fight segment exchange,
aircraft exchange, and insertion, and optimizes the solutions
in sequence. Tree kinds of neighborhood action search can
deeply dig out the local optimal solution, and the specifc
methods are as follows:

Segment exchange: In the solution, two aircraft and
segment path matches are randomly selected, and the
segments in the two matched segment paths are
swapped, as shown in Figure1. During this process,
some exchanged solutions are infeasible, and we do not
accept such infeasible solutions.
Aircraft exchange: In the solution, two matches are
randomly selected, and the aircraft in them are directly
exchanged to form a new solution, as shown in
Figure 2.
Insert: In the solution, two matches are randomly se-
lected, one or more fight segments in one of the
matches are selected, and the selected fight segments
are directly merged into the other match so that they
are connected to form a new path, as shown in Figure 3.

Since it takes a lot of time to calculate in the branch and
bound process, in order to improve the running speed, we
use the variable neighborhood search algorithm in this part
to get the optimal solution to the original problem. We
combine the column generation algorithm and the variable
neighborhood search algorithm to obtain algorithm. Steps
1–8 generate an initial solution for the column generation
algorithm. Steps 9–31 improve the initial solution obtained
by the column generation algorithm through domain search
and fnally obtain a suboptimal solution.

3.2. Solution forModel 2. Due to the complexity and scale of
model 2, it becomes difcult to solve, but in practical ap-
plications, we cannot only consider robustness but also
robustness and cost. Terefore, we need to ensure that the
generated scheduling cost does not exceed a certain per-
centage of the suboptimal solution cost generated in Section
3.1. To solve this problem, we developed an algorithm based
on variable neighborhood search. Te pseudocode for the
variable neighborhood search algorithm applied to this
problem is shown in algorithm. Note that F in algorithm
represents the cost when there is no fight delay.

Step 1 is to generate an initial solution via algorithm.
Step 2 is to calculate the worst-case cost of the initial so-
lution. Step 3 is to initialize the number of iterations. Steps

4–27 are the main iterative process of the algorithm. Step 7 is
the shake action. Steps 10–19 are the process of variable
neighborhood descent. Steps 20–24 determine whether to
update the current solution.

σ is a parameter that balances the two indicators of cost
and stability. Since we describe the DARP problem as a
minimization model, σ ≥ 1. When σ � 1, it means that we
only choose one schedule from the optimal schedule.

Te algorithm is aimed at the situation where only one
defnite fight is delayed in the scheduling network. In practice,
more than one fight is often delayed due to uncertainty. By
making corresponding changes to the algorithm, the corre-
sponding robust scheduling can be obtained. We can modify
the single segment in algorithm to be a subset of all segments,
so that we can get the solution for model 3.

3.3. Example. Here, we give a simple example to illustrate. Te
example contains 10 fight segments (for the sake of conve-
nience, in the following description, Leg1 is written directly as
L1), 2 aircraft of the same type. Tere is a certain fee for each
aircraft to perform the corresponding fight segment. Also, there
is a fxed fee for using the plane, which we set it as 2000.
According to the China Civil Aviation Statistical Yearbook, the

k1 f1 f2 f3 f4 f5 f6

k2 f7 f8 f9 f10 f11 f12 k2 f7 f8 f3 f4 f11 f12

k1 f1 f2 f9 f10 f5 f6

Figure 1: Segment exchange.

k1 f1 f2 f3 f4 f5 f6

k2 f7 f8 f9 f10 f11 f12 k1 f7 f8 f9 f10 f11 f12

k1 f1 f2 f3 f4 f5 f6

Figure 2: Aircraft exchange.

k1 f1 f2 f3 f4 f5 f6

k2 f7 f8 f9 f10 k2 f7 f8 f3 f4 f9 f10

k1 f1 f2 f5 f6

Figure 3: Insert.
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extra cost of one minute of delay for this type of aircraft is about
300, and the matching cost of the aircraft and fight segment is
20,000 per hour. In addition, other costs are not considered in
this example. Te fight segment information is shown in Ta-
ble 1. We will use the game theory approach to solve the model
where the utility function is a cost. Under the condition that all
fight segments are not delayed, the optimal schedule of DARP
can be obtained, as shown by n1 in Table 2. Since there is only
one type of aircraft, no distinction is made between aircraft for
the time being. When the delay distribution of the fight seg-
ments is unknown, we can fnd the fight segment network g∗

that satisfes the condition F(g∗, v∗) � mingmaxvF(g, v), We
can fnd other feasible schedules besides n1 by setting σ � 1.05,
as shown in Table 2. Table 3 lists the costs incurred by each
solutionwhen a fight segment is delayed. It can be seen from the
cost table that there is no saddle point in this game, that is, there
is no pure strategy Nash equilibrium. Nash equilibrium is a
concept of solution in game theory. It refers to a combination of
strategies that satisfy the following properties: any player who
changes his strategy in this combination of strategies will not
improve his own profts. We consider the more conservative
case,ming∈Gmaxv∈V � 28.17, with solutions n4 and n7 satisfying
the condition. Hence, n4 and n7 are a robust schedule for this
example.

4. Numerical Experiment

All experiments are run on an Intel(R) Core (TM) i7-1165G7
processor, 2.80GHz, Windows 10 × 64 computer. Te code
of the algorithm uses the Python programming software and
adopts the CPLEX commercial processor.

4.1. Problem Scenario and Dataset Information. Airline
schedules often include multiple types of aircraft. In this
setup, the airline needs to guarantee a reasonable connection
time for each plane. In our experiments, the data provided by
an airline in China is taken as an example to further illustrate
the efectiveness of our proposed model and algorithm. For
the aircraft model, the number of aircraft, the number of
airports, the number of fight segments and other data in-
cluded in the data, see (Table 4). As shown in Table 4, there
are 7 types of aircraft in the dataset, including the “737,”
“73D,” “73E,” “73H,” “73L,” “73N,” and “789.” At the same
time, more than 60 diferent airports are included in the
dataset. Due to occasional aircraft maintenance, etc., the
available number of aircraft in Table 4 may vary slightly. In
the dataset, there are some canceled or planned canceled
fights every day; in this case, we directly delete these
canceled fights. Since the data of Wednesday is partially
corrupted, we only use the dataset information of the
remaining 6 days for the experiment. During the experi-
ment, the dataset was divided into 6 independent datasets by
date. Since our dataset contains the real scheduling infor-
mation provided by airlines, it is itself a feasible solution for
daily aircraft scheduling.Terefore, regardless of the airline’s
scheduling information, we use the basic information in the
data for experimental evaluation.

4.2. Comparison of Branch Pricing Algorithm and Algorithm.
In order to highlight the gap between the enumeration method
and the column generation algorithm in solving large-scale
linear programming, we frst analyze the complexity of the two
methods. For enumeration, it is necessary to fnd all feasible
paths in the airline network. However, with the increase of
fight segments, the scale of the deterministic model increases
exponentially. On the contrary, for the column generation
algorithm, only the paths that can reduce the objective function
are found each time.Te number of paths found by the column
generation algorithm is far less than the number found by the
enumeration method and can quickly approach the optimal.
Terefore, it is infeasible to adopt complete enumeration for a
large-scale aircraft routing problem.

First, we used the branch pricing algorithm and CG-VNS
algorithm to test six instances, and the results are shown in
Table 5. In the CG-VNS algorithm, the column generation
time is shown in column CG-Time. In fact, CG-VNS and the
branch pricing algorithm have the same column generation
time. If we directly use CPLEX to solve all columns gen-
erated by the column generation algorithm, we can get an
upper bound on the function value of the optimal integer
solution. Finally, we list the gap between the CG-VNS so-
lution and the branch pricing algorithm in the GAP column.

It can be seen from Table 5 that it is difcult to fnd large-
scale examples of deterministic models using the branch
pricing algorithm. Te reason for the rapid increase in
solution time is that the aircraft path in the connection
network increases rapidly with the increase in instance size.
Tis poses a great challenge to fnd high-quality solutions
from a large number of decision variables. Furthermore,
Table 6 reports the diference between the solution times of
the VNS and CG-VNS algorithms and the solution time of
the branch pricing algorithm. It can be seen from the cal-
culation results in Table 6 that the calculation time of the
VNS algorithm is lower than that of the CG-VNS algorithm.
Compared with the branch pricing algorithm, the VNS
algorithm is nearly 20 times faster than the standard branch
pricing algorithm. However, the optimality gap of the VNS
algorithm is far greater than that of the CG-VNS algorithm.
Te optimality gap of the CG-VNS algorithm is less than
0.1% except, for instance, on Friday. Another advantage of
our CG-VNS algorithm is that it can quickly approach the
optimal solution by taking a high-quality integer solution as
the initial solution of the VNS algorithm.

In a word, our algorithm achieves a good balance be-
tween time and accuracy. It is better than the branch pricing
algorithm in time and the VNS algorithm in precision. In
other words, we sacrifce smaller function accuracy in ex-
change for greater improvement in runtime. Tis is obvi-
ously acceptable for airlines.

4.3. Comparison of Model 3 and Model 1 with Flight Delays.
If a delay occurs, set the delay time to 30 minutes, and the
cost per minute of delay is determined by the aircraft type.
For the propagation probability of delay between two fight
segments, if the transit time between the two fight segments
is less than 60 minutes, the propagation probability is set to
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0.8; if the layover time is 60 minutes to 120 minutes, the
propagation probability is set to 0.3; if the layover time is
greater than 120 minutes, the propagation probability is set
to 0.005. At the same time, we assume that only one fight on
each aircraft’s route is delayed due to uncertainty factors and
the other fights are delayed due to propagation. In this case,
we will compare the cost of the solution produced by model
3 and the solution produced by model 1 in the case of fight
delays. At the same time, we also compare the costs incurred
by model 1 and model 3 when the fight is not delayed.

In Figure 4, it is visually shown that the cost of daily
aircraft routing problems is diferent under diferent
numbers of delayed fights and using diferent models. Te
abscissa in the fgure corresponds to the number of fight
segments that are assumed to be delayed; that is, when the
abscissa is k, it corresponds to the objective function value of
model 3 corresponding to the number of fights we assume
to be k. Te abscissa in Figure 4 corresponds to the number
of fights assumed to be delayed. Assuming that the number
of delayed fights is the green curve in Figure 4 corresponds
to the worst-case cost of the scheduling generated bymodel 3
when the number of delayed fights is k. Obviously, when
only one fight is delayed, that is, when k � 1, model 3 is
equal to model 2. Te blue curve in Figure 4 corresponds to

the worst-case cost of the schedule generated by model 3 when
the number of delayed fights is k. In Figure 5, it shows the cost
of model 3 and model 1 when the user assumes that there are k
fight delays but there are actually no fight delays. As can be
seen fromFigure 1, the cost incurred bymodel 3 is higher when
there are actually no fight delays. Even so, we keep the cost
below 1.05x of model 1. Combining Figures 4 and 5, we
conclude that model 3 is more robust when fights are delayed
due to uncertain factors. Even if none of the fights are actually
delayed, the schedule generated by model 3 will not cost much.

4.4. Discussion. In conclusion, the abovementioned nu-
merical results show that the uncertainty of fight delays will
lead to an increase in airline costs. Te reason for this is that
it is impossible to know in advance which fights will be
delayed during aircraft routing. Terefore, airlines can only
assume that some segments will be delayed in advance to
avoid some losses. However, before making this assumption,
we also need to estimate the number of fights with delays. If
the number is too large, the cost of the airline will increase
more. If the number is too small, it will cause greater losses
once the delay occurs. In fact, we can judge by experience.
For example, if there is a typhoon in a certain area, there is a

Input: Te maximum number of iterations Maxiter;
Output: Get a suboptimal solution x

(1) Use the DFS algorithm to generate an initial set O and initial path;
(2) whileT≠∅ do
(3) Using the Solver to fnd the optimal solution x of RMP and dual solutions πv and πk;
(4) Change arc costs in segment network using obtained dual solution;
(5) Find the matching T that minimizes Z by the labeling algorithm;
(6) Set O � O∪T

(7) end while
(8) Use the solver to fnd the integer solution x of RMP;
(9) t � 0;
(10) while t<Maxiter do
(11) k � 0;
(12) while k< kmax do
(13) Shaking: Randomly choose a solution x′ from the k th neighbor Nk(x);
(14) VND: local search
(15) l � 0;
(16) while l< lmax do
(17) fnd a neighbor x″ in Nl(x′);
(18) ifF(x″)<F(x′) then,
(19) x′ � x″, l � 0;
(20) else
(21) l � l + 1;
(22) end if
(23) end while
(24) ifF(x′)<F(x) then,
(25) x � x′, k � 0;
(26) else
(27) k � k + 1;
(28) end if
(29) end while
(30) t � t + 1;
(31) end while

ALGORITHM 1: Column generation and variable neighborhood search (CG-VNS).
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Input: Te maximum number of iterations Maxiter;
Output: Robust scheduling x; scheduling cost rob;

(1) Te solution x of model 1 is obtained by algorithm 1;
(2) Compute rob � maxv∈VF(x, v);
(3) t � 0;
(4) whilet<Maxiterdo
(5) k � 0;
(6) whilek< kmaxdo
(7) Shaking: Randomly choose a solution x′ from the kth neighbor Nk(x);
(8) VND: local search
(9) l � 0;
(10) whilel< lmaxdo
(11) fnd a neighbor x″ in Nl(x′);
(12) ifF(x″)< σF(x′)then
(13) ifmaxv∈VF(x, v)<maxv∈VF(x′, v)then
(14) x′ � x″, l � 0;
(15) else
(16) l � l + 1;
(17) end if
(18) end if
(19) end while
(20) ifmaxv∈VF(x′, v)< robthen
(21) rob � maxv∈VF(x, v), x � x′, k � 0;
(22) else
(23) k � k + 1;
(24) end if
(25) end while
(26) t � t + 1;
(27) end while

ALGORITHM 2: Variable neighborhood search (VNS).

Table 1: Flight segment information table.

Leg Airport dep Time dep Airport arr Time arr
Leg1 Airport 1 03-29 12:05 Airport 2 03-29 14:00
Leg2 Airport 2 03-29 13:00 Airport 1 03-29 14:50
Leg3 Airport 1 03-29 18:05 Airport 3 03-29 19:15
Leg4 Airport 3 03-29 19:55 Airport 1 03-29 20:55
Leg5 Airport 1 03-29 21:55 Airport 3 03-29 23:15
Leg6 Airport 3 03-29 23:55 Airport 1 03-30 00:55
Leg7 Airport 1 03-29 08:05 Airport 6 03-29 09:10
Leg8 Airport 6 03-29 09:50 Airport 1 03-29 10:55
Leg9 Airport 1 03-29 08:05 Airport 3 03-29 09:15
Leg10 Airport 3 03-29 09:55 Airport 1 03-29 10:55

Table 2: Feasible scheduling.

Schedule Route Total costs (ten thousand)
n1 (L9, L10), (L7, L8, L1, L2, L3, L4, L5, L6) 26.27
n2 (L7, L8), (L9, L10, L1, L2, L3, L4, L5, L6) 26.27
n3 (L9, L10, L1, L2), (L7, L8, L3, L4, L5, L6) 26.27
n4 (L9, L10, L3, L4), (L7, L8, L1, L2, L5, L6) 26.27
n5 (L9, L10, L5, L6), (L7, L8, L1, L2, L3, L4) 26.27
n6 (L7, L8, L5, L6), (L9, L10, L1, L2, L3, L4) 26.27
n7 (L7, L8, L3, L4), (L9, L10, L1, L2, L5, L6) 26.27
n8 (L7, L8, L1, L2), (L9, L10, L3, L4, L5, L6) 26.27
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high probability of a fight delay in that area. Te deter-
ministic model can provide a standard for the cost of the
uncertain model, and the uncertain model can efectively
cover the uncertainty in the display and reduce the loss
caused by the uncertain factors. Tis is why we put forward

the deterministic model and the uncertain model in this
study. Terefore, the previous numerical experiments also
verifed that the mathematical model and optimization al-
gorithm proposed by us can efectively absorb fight delays
caused by uncertain factors.

Table 3: Costs when a fight is delayed.

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
n1 27.62 27.77 28.28 27.66 27.89 27.17 28.21 27.57 27.89 27.17
n2 27.62 27.77 28.28 27.66 27.89 27.17 27.89 27.17 28.21 27.57
n3 27.44 27.17 28.28 27.66 27.89 27.17 27.90 27.18 28.17 27.52
n4 27.44 27.18 27.89 27.17 27.89 27.17 28.17 27.52 27.90 27.18
n5 27.59 27.66 27.89 27.17 27.89 27.17 28.21 27.60 27.90 27.18
n6 27.59 27.66 27.89 27.17 27.89 27.17 27.90 27.18 28.21 27.60
n7 27.44 27.18 27.89 27.17 27.89 27.17 27.90 27.18 28.17 27.52
n8 27.44 27.17 28.28 27.66 27.89 27.17 28.17 27.52 27.90 27.18

Table 4: Data information.

Instance Aircraft type Number of aircraft Number of airports Number of legs
Monday 7 83 63 350
Tuesday 7 83 63 318
Tursday 7 83 63 334
Friday 7 84 64 370
Saturday 7 84 63 329
Sunday 7 84 64 282

Table 5: CG-VNS vs BP.

Instance
CG-VNS BP

CG-time (s) VNS-time (s) Total-time (s) Gap (%) Time (s) GAP
Monday 278 33 311 0.05 727 —
Tuesday 235 35 270 0.02 724 —
Tursday 228 34 262 0.06 756 —
Friday 221 36 257 0.11 743 —
Saturday 253 32 285 0.08 703 —
Sunday 205 32 237 0.07 675 —

Table 6: VNS vs CG-VNS.

Instance
VNS CG-VNS

Time (s) Gap (%) Time (s) Gap
Monday 33 0.35 311 0.05
Tuesday 37 0.42 270 0.02
Tursday 39 0.46 262 0.06
Friday 34 0.51 257 0.11
Saturday 36 0.28 285 0.08
Sunday 31 0.17 237 0.07

10 Journal of Mathematics



5. Conclusion andDirections for Future Studies

Te daily aircraft routing problem is one of the biggest
challenges facing the aviation industry. For the daily aircraft
routing and scheduling problem, we propose three

mathematical models.Te frst model is a general, nonrobust
model that aims to fnd a daily minimum cost for aircraft
route scheduling. We build the second model based on game
theory, which considers the fight propagation delay and the
delay under uncertainty. As an extension of the second
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Figure 4: Delay costs under diferent models. (a) Monday. (b) Tuesday. (c) Tursday. (d) Friday. (e) Saturday. (f ) Sunday.
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Figure 5: Nondelay costs under diferent models. (a) Monday. (b) Tuesday. (c) Tursday. (d) Friday. (e) Saturday. (f ) Sunday.
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model, we established the third model. In the high-di-
mensional solution space, all three models are exponential
models, so it is very difcult to efectively solve these models.

Terefore, for the general model, we also developed a
VNS algorithm based on column generation. In addition, for
the robust model, we also designed an improved VNS al-
gorithm based on a column generation algorithm and
proved that the proposed robust model can be efectively
solved through reasonable calculations. On the one hand, a
large number of real airline examples show that, compared
with the exact solution generated by the branch pricing
algorithm, this algorithm has a smaller gap and requires less
time, so it has obvious advantages. On the other hand,
compared with the nonrobust model, the robust model
proposed by us has lower cost and stronger robustness.

In future research, we can consider, but not be limited to,
the following directions. First, we can consider adding the
impact of COVID-19 on fight delays to the model. Another
interesting direction is to combine the pilot scheduling
problem and the aircraft scheduling problem into a com-
prehensive problem because pilot scheduling [27] will also
afect fight delays.
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